Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol. 2010;65:500–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matthews PM, Rabiner EA, Passchier J, Gunn RN. Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol. 2012;73:175–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Comley J. In vivo preclinical imaging: An essential tool in translational research. Drug Discov World. 2011;11:58–71.
Google Scholar
Ellenbroek B, Youn J. Rodent models in neuroscience research: is it a rat race? Dis Model Mech. 2016;9:1079–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chu X, Bleasby K, Evers R. Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol. 2013;9:237–52.
Article
CAS
PubMed
Google Scholar
Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem. 2011;117:333–45.
Article
CAS
PubMed
Google Scholar
Löscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6:591–602.
Article
PubMed
CAS
Google Scholar
Schmitt U, Lee DE, Herth MM, Piel M, Buchholz H-G, Roesch F, et al. P-glycoprotein influence on the brain uptake of a 5-HT2A ligand: [18F]MHMZ. Neuropsychobiology. 2011;63:183–90.
Article
CAS
PubMed
Google Scholar
Choi JY, Song JS, Lee M, Cho WK, Chung J, Lyoo CH, et al. P-glycoprotein, not BCRP, limits the brain uptake of [18F]Mefway in rodent brain. Mol Imaging Biol. 2016;18:267–73.
Article
CAS
PubMed
Google Scholar
Syvänen S, Lindhe Ö, Palner M, Kornum BR, Rahman O, Långström B, et al. Species differences in blood–brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos. 2009;37:635–43.
Article
PubMed
CAS
Google Scholar
Keller SH, L’Estrade EN, Dall B, Palner M, Herth M. Quantification accuracy of a new HRRT high throughput rat hotel using transmission-based attenuation correction: a phantom study. In: 2016 IEEE nuclear science symposium (NSS) and medical imaging conf room-temperature semicond detect work. IEEE; 2016. p. 1–3.
Lemaire C, Cantineau R, Guillaume M, Plenevaux A, Christiaens L. Fluorine-18-altanserin: a radioligand for the study of serotonin receptors with PET: radiolabeling and in vivo biologic behavior in rats. J Nucl Med Soc Nucl Med. 1991;32:2266–72.
CAS
Google Scholar
Mukherjee J, Yang Z-Y, Das MK, Brown T. Fluorinated benzamide neuroleptics—III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2,3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer. Nucl Med Biol. 1995;22:283–96.
Article
CAS
PubMed
Google Scholar
Herth MM, Debus F, Piel M, Palner M, Knudsen GM, Lüddens H, et al. Total synthesis and evaluation of [18F]MHMZ. Bioorg Med Chem Lett. 2008;18:1515–9.
Article
CAS
PubMed
Google Scholar
Ettrup A, Hansen M, Santini MA, Paine J, Gillings N, Palner M, et al. Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT2A agonist PET tracers. Eur J Nucl Med Mol Imaging. 2011;38:681–93.
Article
CAS
PubMed
Google Scholar
Hansen HD, Herth MM, Ettrup A, Andersen VL, Lehel S, Dyssegaard A, et al. Radiosynthesis and in vivo evaluation of novel radioligands for PET imaging of cerebral 5-HT7 receptors. J Nucl Med. 2014;55:640–6.
Article
CAS
PubMed
Google Scholar
Hansen HD, Lacivita E, Di Pilato P, Herth MM, Lehel S, Ettrup A, et al. Synthesis, radiolabeling and in vivo evaluation of [11C](R)-1-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]-3-(2-pyrazinyloxy)-2-propanol, a potential PET radioligand for the 5-HT7 receptor. Eur J Med Chem. 2014;79:152–63.
Article
CAS
PubMed
Google Scholar
Herth M, Hansen H, Anders E, Lehel S, Kristensen J, Billard T, et al. Development of a novel 11C-labelled SB-269970 derivative for imaging the cerebral 5-HT7 receptors. J Nucl Med Soc Nucl Med. 2014;55:1814.
Google Scholar
Andersen VL, Hansen HD, Herth MM, Dyssegaard A, Knudsen GM, Kristensen JL. 11C-labeling and preliminary evaluation of pimavanserin as a 5-HT2A receptor PET-radioligand. Bioorg Med Chem Lett. 2015;25:1053–6.
Article
CAS
PubMed
Google Scholar
van Nueten JM, Janssen PAJ, van Beek J, Xhonneux R, Verbeuren TJ, Vanhoutte PM. Vascular effects of Ketanserin (R 41 468), a novel antagonist of 5-HT2 serotonergic receptors. J Pharmacol Exp Ther. 1981;218:217–30.
PubMed
Google Scholar
Lovell PJ, Bromidge SM, Dabbs S, Duckworth DM, Forbes IT, Jennings AJ, et al. A novel, potent, and selective 5-HT 7 antagonist: (R)-3-(2-(2-(4-Methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970). J Med Chem. 2000;43:342–5.
Article
CAS
PubMed
Google Scholar
Burt DR, Creese I, Snyder SH. Properties of [3H] haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes. Mol Pharmacol. 1976;12:800–12.
CAS
PubMed
Google Scholar
Kallem R, Kulkarni C, Patel D, Thakur M, Sinz M, Singh S, et al. A simplified protocol employing elacridar in rodents: a screening model in drug discovery to assess P-gp mediated efflux at the blood brain barrier. Drug Metab Lett. 2012;6:134–44.
Article
CAS
PubMed
Google Scholar
Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL. Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods. 2006;155:272–84.
Article
CAS
PubMed
Google Scholar
Scott DO, Heath TG. Investigation of the CNS penetration of a potent 5-HT2a receptor antagonist (MDL 100,907) and an active metabolite (MDL 105,725) using in vivo microdialysis sampling in the rat. J Pharm Biomed Anal. 1998;17:17–25.
Article
CAS
PubMed
Google Scholar
Tantawy MN, Jones CK, Baldwin RM, Ansari MS, Conn PJ, Kessler RM, et al. [18F]Fallypride dopamine D2 receptor studies using delayed microPET scans and a modified Logan plot. Nucl Med Biol. 2009;36:931–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
L’Estrade ET, Shalgunov V, Edgar FG, Strebl-Bantillo MG, Xiong M, Crestey F, et al. Radiosynthesis and preclinical evaluation of [11C]Cimbi-701—towards the imaging of cerebral 5-HT 7 receptors. J Label Compd Radiopharm. 2020;63:46–55.
Article
CAS
Google Scholar
Hansen HD, Ettrup A, Herth MM, Dyssegaard A, Ratner C, Gillings N, et al. Direct comparison of [18F]MH.MZ and [18 F]altanserin for 5-HT 2A receptor imaging with PET. Synapse. 2013;67:328–37.
Article
CAS
PubMed
Google Scholar
Breedveld P, Beijnen JH, Schellens JHM. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci. 2006;27:17–24.
Article
CAS
PubMed
Google Scholar
Ramu A, Ramu N. Reversal of multidrug resistance by phenothiazines and structurally related compounds. Cancer Chemother Pharmacol. 1992;30:165–73.
Article
CAS
PubMed
Google Scholar
Stouch TR, Gudmundsson O. Progress in understanding the structure–activity relationships of P-glycoprotein. Adv Drug Deliv Rev. 2002;54:315–28.
Article
CAS
PubMed
Google Scholar
Wang X, Fang Y, Liang J, Yan M, Hu R, Pan X. 5-HT7 receptors are involved in neurogenic dural vasodilatation in an experimental model of migraine. J Mol Neurosci. 2014;54:164–70.
Article
CAS
PubMed
Google Scholar
Kramer V, Dyssegaard A, Flores J, Soza-Ried C, Rösch F, Knudsen GM, et al. Characterization of the serotonin 2A receptor selective PET tracer (R)-[18F]MH.MZ in the human brain. Eur J Nucl Med Mol Imaging. 2020;47:355–65.
Article
CAS
PubMed
Google Scholar
Sadzot B, Lemaire C, Maquet P, Salmon E, Plenevaux A, Degueldre C, et al. Serotonin 5HT2 receptor imaging in the human brain using positron emission tomography and a new radioligand, [18F]altanserin: results in young normal controls. J Cereb Blood Flow Metab. 1995;15:787–97.
Article
CAS
PubMed
Google Scholar
Ettrup A, da Cunha-Bang S, McMahon B, Lehel S, Dyssegaard A, Skibsted AW, et al. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36. J Cereb Blood Flow Metab. 2014;34:1188–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukherjee J, Christian BT, Dunigan KA, Shi B, Narayanan TK, Satter M, et al. Brain imaging of18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse. 2002;46:170–88.
Article
CAS
PubMed
Google Scholar
Vanover KE, Weiner DM, Makhay M, Veinbergs I, Gardell LR, Lameh J, et al. Pharmacological and behavioral profile of N-(4-Fluorophenylmethyl)-N-(1-methylpiperidin-4-yl) N′-(4-(2-methylpropyloxy)phenylmethyl) carbamide (2R,3R)-dihydroxybutanedioate (2:1) (ACP-103), a novel 5-hydroxytryptamine 2A receptor inverse agonist. J Pharmacol Exp Ther. 2006;317:910–8.
Article
CAS
PubMed
Google Scholar
Fowler JS, Ding YS, Logan J, Macgregor RR, Shea C, Garza V, et al. Species differences in [11C]clorgyline binding in brain. Nucl Med Biol. 2001;28:779–85.
Article
CAS
PubMed
Google Scholar
Ma Y, Lang L, Kiesewetter D, Jagoda E, Eckelman WC. Species differences in metabolites of PET ligands: serotonergic 5-HT1A receptor antagonists 3-trans-FCWAY and 3-cis-FCWAY. Nucl Med Biol. 2006;33:1013–9.
Article
CAS
PubMed
Google Scholar
Herth MM, Knudsen GM. PET imaging of the 5-HT2A receptor system: a tool to study the receptor’s in vivo brain function. In: Guiard B, Di Giovanni G, editors. 5-HT2A receptors in the central nervous system. Cham: Humana Press; 2018. p. 86–135.
Google Scholar
L’Estrade ET, Erlandsson M, Edgar FG, Ohlsson T, Knudsen GM, Herth MM. Towards selective CNS PET imaging of the 5-HT7 receptor system: past, present and future. Neuropharmacology. 2020;172:107830.
Article
PubMed
CAS
Google Scholar
Cumming P. Absolute abundances and affinity states of dopamine receptors in mammalian brain: a review. Synapse. 2011;65:892–909.
Article
CAS
PubMed
Google Scholar