Tsien RY. Imagining imaging’s future. Nat Rev Mol Cell Biol. 2003;Suppl:SS16-21.
An FF, Chan M, Kommidi H, Ting R. Dual PET and near-infrared fluorescence imaging probes as tools for imaging in oncology. AJR Am J Roentgenol. 2016;207:266–73. https://doi.org/10.2214/AJR.16.16181.
Article
PubMed
PubMed Central
Google Scholar
Disselhorst JA, Brom M, Laverman P, Slump CH, Boerman OC, Oyen WJ, et al. Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med. 2010;51:610–7. https://doi.org/10.2967/jnumed.109.068858.
Article
PubMed
Google Scholar
Nguyen QT, Tsien RY. Fluorescence-guided surgery with live molecular navigation--a new cutting edge. Nat Rev Cancer. 2013;13:653–62. https://doi.org/10.1038/nrc3566.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paulus A, Desai P, Carney B, Carlucci G, Reiner T, Brand C, et al. Development of a clickable bimodal fluorescent/PET probe for in vivo imaging. EJNMMI Res. 2015;5:120. https://doi.org/10.1186/s13550-015-0120-4.
Article
CAS
PubMed
Google Scholar
Rosenthal EL, Warram JM, De Boer E, Chung TK, Korb ML, Brandwein-Gensler M, et al. Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res. 2015;21:3658–66.
Article
CAS
Google Scholar
Cheng L, Kamkaew A, Sun H, Jiang D, Valdovinos HF, Gong H, et al. Dual-modality positron emission tomography/optical image-guided photodynamic cancer therapy with chlorin e6-containing nanomicelles. ACS Nano. 2016;10:7721–30.
Article
CAS
Google Scholar
Guo H, Harikrishna K, Vedvyas Y, McCloskey JE, Zhang W, Chen N, et al. A fluorescent,[18F]-positron-emitting agent for imaging PMSA allows genetic reporting in adoptively-transferred, genetically-modified cells. ACS Chem Biol. 2019.
Carlucci G, Carney B, Brand C, Kossatz S, Irwin CP, Carlin SD, et al. Dual-modality optical/PET imaging of PARP1 in glioblastoma. Mol Imaging Biol. 2015;17:848–55. https://doi.org/10.1007/s11307-015-0858-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khazim R, Dannawi Z, Spacey K, Khazim M, Lennon S, Reda A, et al. Incidence and treatment of delayed symptoms of CSF leak following lumbar spinal surgery. Eur Spine J. 2015;24:2069–76.
Article
CAS
Google Scholar
Schievink WI, Maya MM, Chu RM, Moser FG. False localizing sign of cervico-thoracic CSF leak in spontaneous intracranial hypotension. Neurology. 2015;84:2445–8.
Article
Google Scholar
Jiang D, Dalong N, Li S, Ehlerding E, Sun T, Cao T, et al. Framework DNA nanocages alleviate ischemic stroke via intrathecal injection. J Nucl Med. 2019;60:335.
Article
Google Scholar
Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123:1299–309. https://doi.org/10.1172/JCI67677.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwon S, Janssen CF, Velasquez FC, Sevick-Muraca EM. Fluorescence imaging of lymphatic outflow of cerebrospinal fluid in mice. J Immunol Methods. 2017;449:37–43.
Article
CAS
Google Scholar
Strazielle N, Ghersi-Egea JF. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm. 2013;10:1473–91. https://doi.org/10.1021/mp300518e.
Article
CAS
PubMed
Google Scholar
Wolf DA, Hesterman JY, Sullivan JM, Orcutt KD, Silva MD, Lobo M, et al. Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery. JCI insight. 2016;1.
George N, Gean EG, Nandi A, Frolov B, Zaidi E, Lee H, et al. Advances in CNS imaging agents: focus on PET and SPECT tracers in experimental and clinical use. CNS Drugs. 2015;29:313–30.
Article
CAS
Google Scholar
Sese D, Blaha T, Khurana R, Wachsman A, Al-ali F, Murray T, et al. A leaky situation: gadolinium contrast induced neurotoxicity from intrathecal contrast. D45 CRITICAL CARE CASE REPORTS: I (DON'T) WANT TO BE SEDATED-NEUROCRITICAL CARE, SEDATION, AND DELIRIUM: American Thoracic Society; 2018. p. A6888-A.
Starke RM, Dumont AS. Intraoperative imaging and assessment of cerebral blood flow in cerebrovascular surgery: hybrid operating rooms, intraoperative angiography and magnetic resonance imaging, Doppler ultrasound, cerebral blood flow probes, endoscopic assistance, indocyanine green videography, and laser speckle contrast imaging. World Neurosurg. 2014;82:e693–6. https://doi.org/10.1016/j.wneu.2013.10.045.
Article
PubMed
Google Scholar
Kommidi H, Guo H, Chen N, Kim D, He B, Wu AP, et al. An [18F]-positron-emitting, fluorescent, cerebrospinal fluid probe for imaging damage to the brain and spine. Theranostics. 2017;7:2377–91. https://doi.org/10.7150/thno.19408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo H, Kommidi H, Maachani UB, Voronina JC, Zhang W, Magge RS, et al. An [(18)F]-positron emitting fluorophore allows safe evaluation of small molecule distribution in the CSF, CSF fistulas, and CNS device placement. Mol Pharm. 2019;16:3636–46. https://doi.org/10.1021/acs.molpharmaceut.9b00485.
Article
CAS
PubMed
Google Scholar
Sajedi S, Sabet H, Choi HS. Intraoperative biophotonic imaging systems for image-guided interventions. Nanophotonics. 2018;8:99–116.
Article
Google Scholar
Wang Y, An F-F, Chan M, Friedman B, Rodriguez EA, Tsien RY, et al. 18F-positron-emitting/fluorescent labeled erythrocytes allow imaging of internal hemorrhage in a murine intracranial hemorrhage model. J Cereb Blood Flow Metab. 2017:0271678X16682510. doi:10.1177/0271678X16682510.
Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med. 2006;47:1968–76.
PubMed
Google Scholar
Wu Y, Catana C, Farrell R, Dokhale PA, Shah KS, Qi J, et al. PET performance evaluation of an MR-compatible PET insert. IEEE Trans Nucl Sci. 2009;56:574–80. https://doi.org/10.1109/TNS.2009.2015448.
Article
PubMed
PubMed Central
Google Scholar
Liu Z, Lin KS, Benard F, Pourghiasian M, Kiesewetter DO, Perrin DM, et al. One-step (18)F labeling of biomolecules using organotrifluoroborates. Nat Protoc. 2015;10:1423–32. https://doi.org/10.1038/nprot.2015.090.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Pourghiasian M, Radtke MA, Lau J, Pan J, Dias GM, et al. An organotrifluoroborate for broadly applicable one-step F-labeling. Angew Chem Int Ed Eng. 2014. https://doi.org/10.1002/anie.201406258.
Liu Z, Li Y, Lozada J, Wong MQ, Greene J, Lin K-S, et al. Kit-like 18F-labeling of RGD-19F-Arytrifluroborate in high yield and at extraordinarily high specific activity with preliminary in vivo tumor imaging. Nucl Med Biol. 2013;40:841–9. https://doi.org/10.1016/j.nucmedbio.2013.05.002.
Article
CAS
Google Scholar
Seth R, Rajasekaran K, Benninger MS, Batra PS. The utility of intrathecal fluorescein in cerebrospinal fluid leak repair. Otolaryngol Head Neck Surg. 2010;143:626–32. https://doi.org/10.1016/j.otohns.2010.07.011.
Article
PubMed
Google Scholar
Banu MA, Kim J-H, Shin BJ, Woodworth GF, Anand VK, Schwartz TH. Low-dose intrathecal fluorescein and etiology-based graft choice in endoscopic endonasal closure of CSF leaks. Clin Neurol Neurosurg. 2014;116:28–34.
Article
Google Scholar
Bernard-Gauthier V, Bailey JJ, Liu Z, Wangler B, Wangler C, Jurkschat K, et al. From unorthodox to established: the current status of (18)F-trifluoroborate- and (18)F-SiFA-based radiopharmaceuticals in PET nuclear imaging. Bioconjug Chem. 2016;27:267–79. https://doi.org/10.1021/acs.bioconjchem.5b00560.
Article
CAS
PubMed
Google Scholar
Perrin DM. [18F]-organotrifluoroborates as radioprosthetic groups for PET Imaging: from design principles to preclinical applications. Acc Chem Res. 2016. https://doi.org/10.1021/acs.accounts.5b00398.
Schirrmacher E, Wängler B, Cypryk M, Bradtmöller G, Schäfer M, Eisenhut M, et al. Synthesis of p-(di-tert-butyl [18F] fluorosilyl) benzaldehyde ([18F] SiFA-A) with high specific activity by isotopic exchange: a convenient labeling synthon for the 18F-labeling of N-amino-oxy derivatized peptides. Bioconjug Chem. 2007;18:2085–9.
Article
CAS
Google Scholar
Yadav YR, Parihar V, Sinha M. Lumbar peritoneal shunt. Neurol India. 2010;58:179–84. https://doi.org/10.4103/0028-3886.63778.
Article
PubMed
Google Scholar
Kranz PG, Luetmer PH, Diehn FE, Amrhein TJ, Tanpitukpongse TP, Gray L. Myelographic techniques for the detection of spinal CSF leaks in spontaneous intracranial hypotension. Am J Roentgenol. 2016;206:8–19.
Article
Google Scholar
Kranz P, Gray L, Taylor J. CT-guided epidural blood patching of directly observed or potential leak sites for the targeted treatment of spontaneous intracranial hypotension. Am J Neuroradiol. 2011;32:832–8.
Article
CAS
Google Scholar
Melamed J, Stone B, Beaucher WN. Spontaneous cerebrospinal fluid rhinorrhea with associated sinusitis and allergic rhinitis. Allergy Proc. 1994;15:197–200.
Article
CAS
Google Scholar
Park K-W, Im S-B, Kim B-T, Hwang S-C, Park J-S, Shin W-H. Neurotoxic manifestations of an overdose intrathecal injection of gadopentetate dimeglumine. J Korean Med Sci. 2010;25:505–8.
Article
Google Scholar
Feng X, Xia Q, Yuan L, Yang X, Wang K. Impaired mitochondrial function and oxidative stress in rat cortical neurons: implications for gadolinium-induced neurotoxicity. Neurotoxicology. 2010;31:391–8.
Article
CAS
Google Scholar
Mokri B. Radioisotope cisternography in spontaneous CSF leaks: interpretations and misinterpretations. Headache: The Journal of Head and Face Pain. 2014;54:1358–68.
Article
Google Scholar
Howard BA, Gray L, Isaacs RE, Borges-Neto S. Definitive diagnosis of cerebrospinal fluid leak into the pleural space using 111In-DTPA cisternography. Clin Nucl Med. 2015;40:220–3.
Article
Google Scholar
Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29:193–207. https://doi.org/10.1097/MNM.0b013e3282f3a515.
Article
PubMed
Google Scholar