Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–3.
Article
CAS
PubMed
Google Scholar
Chartier-Harlin MC, Parfitt M, Legrain S, Pérez-Tur J, Brousseau T, Evans A, et al. Apolipoprotein E, epsilon 4 allele as a major risk factor for sporadic early and late-onset forms of Alzheimer’s disease: analysis of the 19q13.2 chromosomal region. Hum Mol Genet. 1994;3:569–74.
Article
CAS
PubMed
Google Scholar
Chang TY, Yamauchi Y, Hasan MT, Chang C. Cellular cholesterol homeostasis and Alzheimer’s disease. J Lipid Res. 2017;58:2239–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hauser PS, Narayanaswami V, Ryan RO. Apolipoprotein E: from lipid transport to neurobiology. Prog Lipid Res. 2011;50:62–74.
Article
CAS
PubMed
Google Scholar
Pfrieger FW. Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol Life Sci. 2003;60:1158–71.
Article
CAS
PubMed
Google Scholar
Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, Otto A, Pfrieger FW. CNS synaptogenesis promoted by glia-derived cholesterol. Science. 2001;294:1354–7.
Article
CAS
PubMed
Google Scholar
Laskowitz DT, Vitek MP. Apolipoprotein E and neurological disease: therapeutic potential and pharmacogenomic interactions. Pharmacogenomics. 2007;8:959–69. https://doi.org/10.2217/14622416.8.8.959.
Article
CAS
PubMed
Google Scholar
Mahley RW. Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism. Arterioscler Thromb Vasc Biol. 2016;36:1305–15. https://doi.org/10.1161/ATVBAHA.116.307023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fazio S, Linton MF. Mouse models of hyperlipidemia and atherosclerosis. Front Biosci. 2001;6:D515–25.
Article
CAS
PubMed
Google Scholar
Veinbergs I, Masliah E. Synaptic alterations in apolipoprotein E knockout mice. Neuroscience. 1999;91:401–3.
Article
CAS
PubMed
Google Scholar
Genis I, Gordon I, Sehayek E, Michaelson DM. Phosphorylation of tau in apolipoprotein E-deficient mice. Neurosci Lett. 1995;199:5–8.
Article
CAS
PubMed
Google Scholar
Choi J, Forster MJ, McDonald SR, Weintraub ST, Carroll CA, Gracy RW. Proteomic identification of specific oxidized proteins in ApoE-knockout mice: relevance to Alzheimer’s disease. Free Radic Biol Med. 2004;36:1155–62. https://doi.org/10.1016/j.freeradbiomed.2004.02.002.
Article
CAS
PubMed
Google Scholar
Rühlmann C, Wölk T, Blümel T, Stahn L, Vollmar B, Kuhla A. Long-term caloric restriction in ApoE-deficient mice results in neuroprotection via Fgf21-induced AMPK/mTOR pathway. Aging (Albany NY). 2016;8:2777–89.
Article
Google Scholar
Chen K, Ayutyanont N, Langbaum JB, Fleisher AS, Reschke C, Lee W, et al. Correlations between FDG PET glucose uptake-MRI gray matter volume scores and apolipoprotein E ε4 gene dose in cognitively normal adults: a cross-validation study using voxel-based multi-modal partial least squares. Neuroimage. 2012;60:2316–22.
Article
CAS
PubMed
Google Scholar
Ossenkoppele R, van der Flier WM, Zwan MD, Adriaanse SF, Boellaard R, Windhorst AD, et al. Differential effect of APOE genotype on amyloid load and glucose metabolism in AD dementia. Neurology. 2013;80:359–65.
Article
CAS
PubMed
Google Scholar
Reiman EM, Chen K, Caselli RJ, Alexander GE, Bandy D, Adamson JL, et al. Cholesterol-related genetic risk scores are associated with hypometabolism in Alzheimer’s-affected brain regions. Neuroimage. 2008;40:1214–21.
Article
PubMed
Google Scholar
Mosconi L, De Santi S, Brys M, Tsui WH, Pirraglia E, Glodzik-Sobanska L, et al. Hypometabolism and altered cerebrospinal fluid markers in normal apolipoprotein E E4 carriers with subjective memory complaints. Biol Psych. 2008;63:609–18.
Article
CAS
Google Scholar
Venzi M, Tóth M, Häggkvist J, Bogstedt A, Rachalski A, Mattsson A, et al. Differential effect of APOE alleles on brain glucose metabolism in targeted replacement mice: an [18F]FDG-μPET study. J Alzheimers Dis Rep. 2017;1:169–80. https://doi.org/10.3233/ADR-170006.
Article
PubMed
PubMed Central
Google Scholar
Arora A, Bhagat N. Insight into the molecular imaging of Alzheimer’s disease. Int J Biomed Imaging. 2016;2016:7462014.
Article
PubMed
PubMed Central
Google Scholar
Clark JB. N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci. 1998;20:271–6.
Article
CAS
PubMed
Google Scholar
Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol. 2007;81:89–131.
Article
CAS
PubMed
PubMed Central
Google Scholar
den Heijer T, Sijens PE, Prins ND, Hofman A, Koudstaal PJ, Oudkerk M, et al. MR spectroscopy of brain white matter in the prediction of dementia. Neurology. 2006;66:540–4.
Article
Google Scholar
Jessen F, Traeber F, Freymann N, Maier W, Schild HH, Heun R, et al. A comparative study of the different N-acetylaspartate measures of the medial temporal lobe in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2005;20:178–83.
Article
CAS
PubMed
Google Scholar
Chen SQ, Cai Q, Shen YY, Wang PJ, Teng GJ, Zhang W, et al. Age-related changes in brain metabolites and cognitive function in APP/PS1 transgenic mice. Behav Brain Res. 2012;235:1–6.
Article
CAS
PubMed
Google Scholar
Paslakis G, Träber F, Roberz J, Block W, Jessen F. N-acetyl-aspartate (NAA) as a correlate of pharmacological treatment in psychiatric disorders: a systematic review. Eur Neuropsychopharmacol. 2014;24:1659–75.
Article
CAS
PubMed
Google Scholar
Wong KP, Sha W, Zhang X, Huang SC. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice. J Nucl Med. 2011;52:800–7. https://doi.org/10.2967/jnumed.110.085092.
Article
PubMed
Google Scholar
Kuhla A, Lange S, Holzmann C, Maass F, Petersen J, Vollmar B, et al. Lifelong caloric restriction increases working memory in mice. PLoS ONE. 2013;8:e68778. https://doi.org/10.1371/journal.pone.0068778.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poisnel G, Hérard AS, El Tannir El Tayara N, Bourrin E, Volk A, et al. Increased regional cerebral glucose uptake in an APP/PS1 model of Alzheimer’s disease. Neurobiol Aging. 2012;33:1995–2005.
Article
CAS
PubMed
Google Scholar
Tkác I, Starcuk Z, Choi IY, Gruetter R. In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med. 1999;41:649–56.
Article
PubMed
Google Scholar
Kuhla A, Rühlmann C, Lindner T, Polei S, Hadlich S, Krause BJ, et al. APPswe/PS1dE9 mice with cortical amyloid pathology show a reduced NAA/Cr ratio without apparent brain atrophy: a MRS and MRI study. Neuroimage Clin. 2017;15:581–6.
Article
PubMed
PubMed Central
Google Scholar
Pijnappel WWF, van den Boogaart A, de Beer R, van Ormondt D. SVD-based quantification of magnetic resonance signals. J Magn Reson. 1992;97:122–34.
Google Scholar
Deleye S, Waldron AM, Richardson JC, Schmidt M, Langlois X, Stroobants S, et al. The effects of physiological and methodological determinants on 18F-FDG mouse brain imaging exemplified in a double transgenic Alzheimer model. Mol Imaging. 2016;15:1536012115624919. https://doi.org/10.1177/1536012115624919.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herholz K. PET studies in dementia. Ann Nucl Med. 2003;17:79–89.
Article
PubMed
Google Scholar
Mielke R, Kessler J, Szelies B, Herholz K, Wienhard K, Heiss WD. Normal and pathological aging–findings of positron-emission-tomography. J Neural Transm (Vienna). 1998;105:821–37.
Article
CAS
Google Scholar
Takkinen JS, López-Picón FR, Al Majidi R, Eskola O, Krzyczmonik A, Keller T, et al. Brain energy metabolism and neuroinflammation in ageing APP/PS1-21 mice using longitudinal 18F-FDG and 18F-DPA-714 PET imaging. J Cereb Blood Flow Metab. 2017;37:2870–82. https://doi.org/10.1177/0271678X16677990.
Article
CAS
PubMed
Google Scholar
Bouter C, Henniges P, Franke TN, Irwin C, Sahlmann CO, Sichler ME, et al. 18F-FDG-PET detects drastic changes in brain metabolism in the Tg4-42 model of Alzheimer’s disease. Front Aging Neurosci. 2019;10:425.
Article
PubMed
PubMed Central
CAS
Google Scholar
López Mora DA, Sampedro F, Camacho V, Fernández A, Fuentes F, Duch J, et al. Selection of reference regions to model neurodegeneration in huntington disease by 18F-FDG PET/CT using imaging and clinical parameters. Clin Nucl Med. 2019;44:e1–5. https://doi.org/10.1097/RLU.0000000000002329.
Article
PubMed
Google Scholar
Yakushev I, Landvogt C, Buchholz HG, Fellgiebel A, Hammers A, Scheurich A, et al. Choice of reference area in studies of Alzheimer’s disease using positron emission tomography with fluorodeoxyglucose-F18. Psych Res. 2008;164:143–53. https://doi.org/10.1016/j.pscychresns.2007.11.004.
Article
Google Scholar
Kawasaki K, Ishii K, Saito Y, Oda K, Kimura Y, Ishiwata K. Influence of mild hyperglycemia on cerebral FDG distribution patterns calculated by statistical parametric mapping. Ann Nucl Med. 2008;22:191–200. https://doi.org/10.1007/s12149-007-0099-7.
Article
PubMed
Google Scholar
Alata W, Ye Y, St-Amour I, Vandal M, Calon F. Human apolipoprotein E ɛ4 expression impairs cerebral vascularization and blood-brain barrier function in mice. J Cereb Blood Flow Metab. 2015;35:86–94.
Article
CAS
PubMed
Google Scholar
Wu L, Zhang X, Zhao L. Human ApoE isoforms differentially modulate brain glucose and ketone body metabolism: implications for Alzheimer’s disease risk reduction and early intervention. J Neurosci. 2018;38:6665–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Ann Neurol. 1994;35:546–51.
Article
CAS
PubMed
Google Scholar
Rahman A, Akterin S, Flores-Morales A, Crisby M, Kivipelto M, Schultzberg M, et al. High cholesterol diet induces tau hyperphosphorylation in apolipoprotein E deficient mice. FEBS Lett. 2005;579:6411–6.
Article
CAS
PubMed
Google Scholar
Ismail MA, Mateos L, Maioli S, Merino-Serrais P, Ali Z, Lodeiro M, et al. 27-Hydroxycholesterol impairs neuronal glucose uptake through an IRAP/GLUT4 system dysregulation. J Exp Med. 2017;214:699–717.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poirier J, Minnich A, Davignon J, Apolipoprotein E. synaptic plasticity and Alzheimer’s disease. Ann Med. 1995;27:663–70.
Article
CAS
PubMed
Google Scholar
Zerbi V, Wiesmann M, Emmerzaal TL, Jansen D, Van Beek M, Mutsaers MP, et al. Resting-state functional connectivity changes in aging apoE4 and apoE-KO mice. J Neurosci. 2014;34:13963–75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Petrie EC, Cross DJ, Galasko D, Schellenberg GD, Raskind MA, Peskind ER, et al. Preclinical evidence of Alzheimer changes: convergent cerebrospinal fluid biomarker and fluorodeoxyglucose positron emission tomography findings. Arch Neurol. 2009;66:632–7.
Article
PubMed
PubMed Central
Google Scholar
Jeong YJ, Yoon HJ, Kang DY. Assessment of change in glucose metabolism in white matter of amyloid-positive patients with Alzheimer disease using F-18 FDG PET. Medicine (Baltimore). 2017;96:e9042.
Article
Google Scholar
Brendel M, Probst F, Jaworska A, Overhoff F, Korzhova V, Albert NL, et al. Glial activation and glucose metabolism in a transgenic amyloid mouse model: a triple-tracer PET study. J Nucl Med. 2016;57:954–60.
Article
CAS
PubMed
Google Scholar
Liu B, Le KX, Park MA, Wang S, Belanger AP, Dubey S, et al. In vivo detection of age- and disease-related increases in neuroinflammation by 18F-GE180 TSPO MicroPET imaging in wild-type and Alzheimer’s transgenic mice. J Neurosci. 2015;35:15716–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crisby M, Rahman SM, Sylvén C, Winblad B, Schultzberg M. Effects of high cholesterol diet on gliosis in apolipoprotein E knockout mice. Implications for Alzheimer’s disease and stroke. Neurosci Lett. 2004;369:87–92. https://doi.org/10.1016/j.neulet.2004.05.057.
Article
CAS
PubMed
Google Scholar
Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014;94:1077–98.
Article
PubMed
Google Scholar
Colombo E, Farina C. Astrocytes: key regulators of neuroinflammation. Trends Immunol. 2016;37:608–20. https://doi.org/10.1016/j.it.2016.06.006.
Article
CAS
PubMed
Google Scholar
Oberg J, Spenger C, Wang FH, Andersson A, Westman E, Skoglund P, et al. Age related changes in brain metabolites observed by 1H MRS in APP/PS1 mice. Neurobiol Aging. 2008;29:1423–33. https://doi.org/10.1016/j.neurobiolaging.2007.03.002.
Article
CAS
PubMed
Google Scholar
Marjanska M, Curran GL, Wengenack TM, Henry PG, Bliss RL, Poduslo JF, et al. Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci USA. 2005;102:11906–10. https://doi.org/10.1073/pnas.0505513102.
Article
CAS
PubMed
PubMed Central
Google Scholar
von Kienlin M, Künnecke B, Metzger F, Steiner G, Richards JG, Ozmen L, et al. Altered metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span. Neurobiol Dis. 2005;18:32–9. https://doi.org/10.1016/j.nbd.2004.09.005.
Article
CAS
Google Scholar
Jack CR Jr, Marjanska M, Wengenack TM, Reyes DA, Curran GL, Lin J, et al. Magnetic resonance imaging of Alzheimer’s pathology in the brains of living transgenic mice: a new tool in Alzheimer’s disease research. Neuroscientist. 2007;13:38–48. https://doi.org/10.1177/1073858406295610.
Article
CAS
PubMed
Google Scholar
Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA. Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci USA. 2018;115:E1896–905. https://doi.org/10.1073/pnas.1800165115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brendel M, Focke C, Blume T, Peters F, Deussing M, Probst F, et al. Time courses of cortical glucose metabolism and microglial activity across the life span of wild-type mice: a PET study. J Nucl Med. 2017;58:1984–90. https://doi.org/10.2967/jnumed.117.195107.
Article
CAS
PubMed
Google Scholar
Ding F, Yao J, Rettberg JR, Chen S, Brinton RD. Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer’s mouse brain: implication for bioenergetic intervention. PLoS ONE. 2013;8:e79977. https://doi.org/10.1371/journal.pone.0079977.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsieh TC, Lin WY, Ding HJ, Sun SS, Wu YC, Yen KY, et al. Sex- and age-related differences in brain FDG metabolism of healthy adults: an SPM analysis. J Neuroimaging. 2012;22:21–7.
Article
PubMed
Google Scholar
Yoshizawa H, Gazes Y, Stern Y, Miyata Y, Uchiyama S. Characterizing the normative profile of 18F-FDG-PET brain imaging: sex difference, aging effect, and cognitive reserve. Psych Res. 2014;221:78–85.
Google Scholar
Kakimoto A, Ito S, Okada H, Nishizawa S, Minoshima S, Ouchi Y. Age-Related Sex-Specific Changes in Brain Metabolism and Morphology. J Nucl Med. 2016;57:221–5.
Article
CAS
PubMed
Google Scholar
Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28.
Article
CAS
PubMed
PubMed Central
Google Scholar