Sperlágh B, Illes P. P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci. 2014;35(10):537–47.
Article
PubMed
Google Scholar
Sanz JM, Chiozzi P, Ferrari D, Colaianna M, Idzko M, Falzoni S, et al. Activation of microglia by amyloid-beta requires P2X7 receptor expression. J Immunol. 2009;182(7):4378–85.
Article
CAS
PubMed
Google Scholar
Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain. 2005;114(3):386–96.
Article
CAS
PubMed
Google Scholar
Clark AK, Wodarski R, Guida F, Sasso O, Malcangio M. Cathepsin S release from primary cultured microglia is regulated by the P2X7 receptor. Glia. 2010;58(14):1710–26.
Article
PubMed
Google Scholar
Janssen B, Vugts DJ, Funke U, Spaans A, Schuit RC, Kooijman E, et al. Synthesis and initial preclinical evaluation of the P2X7 receptor antagonist [11C]A-740003 as a novel tracer of neuroinflammation. J Label Compd Radiopharm. 2014;57(8):509–16.
Article
CAS
Google Scholar
Janssen B, Ory D, SWilkinson S, Vugts DJW, Albert D. Initial evaluation of P2X7R antagonists [11C] A-740003 and [11C]SMW64-D16 as PET tracers of microglial activation in neuroinflammation. J Label Compd Radiopharm. 2015;58:S277.
Google Scholar
Gao M, Wang M, Green MA, Hutchins GD, Zheng Q-H. Synthesis of [11C]GSK1482160 as a new PET agent for targeting P2X7 receptor. Bioorg Med Chem Lett. 2015;25(9):1965–70.
Article
CAS
PubMed
Google Scholar
Donnelly-Roberts DL, Namovic MT, Surber B, Vaidyanathan SX, Perez-Medrano A, Wang Y, et al. [3H]A-804598 ([3H]2-cyano-1-[(1S)-1-phenylethyl]-3-quinolin-5-ylguanidine) is a novel, potent, and selective antagonist radioligand for P2X7 receptors. Neuropharmacology. 2009;56(1):223–9.
Article
CAS
PubMed
Google Scholar
Iwata M, Ota KT, Li X-Y, Sakaue F, Li N, Dutheil S, et al. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry. 2016;80(1):12–22.
Article
CAS
PubMed
Google Scholar
Perez-Medrano A, Donnelly-Roberts DL, Honore P, Hsieh GC, Namovic MT, Peddi S, et al. Discovery and biological evaluation of novel cyanoguanidine P2X(7) antagonists with analgesic activity in a rat model of neuropathic pain. J Med Chem. 2009;52(10):3366–76.
Article
CAS
PubMed
Google Scholar
Carroll WA, Perez-Medrano A, Jarvis MF, Wang Y, Peddi S. patent 2004 US20040980674
Morytko MJ, Betschmann P, Woller K, Ericsson A, Chen H, Donnelly-Roberts DL, et al. Synthesis and in vitro activity of N′-cyano-4-(2-phenylacetyl)-N-o-tolylpiperazine-1-carboximidamide P2X7 antagonists. Bioorg Med Chem Lett. 2008;18(6):2093–6.
Article
CAS
PubMed
Google Scholar
Betschmann P, Bettencourt B, Donnelly-Roberts D, Friedman M, George J, Hirst G, et al. Synthesis and activity of N-cyanoguanidine-piperazine P2X7 antagonists. Bioorg Med Chem Lett. 2008;18(14):3848–51.
Article
CAS
PubMed
Google Scholar
Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, et al. A-740003 [N-(1-{[(Cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther. 2006;319(3):1376–85.
Article
CAS
PubMed
Google Scholar
Dal Ben D, Buccioni M, Lambertucci C, Marucci G, Thomas A, Volpini R. Purinergic P2X receptors: structural models and analysis of ligand-target interaction. Eur J Med Chem. 2015;89:561–80.
Article
CAS
PubMed
Google Scholar
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19(14):1639–62.
Article
CAS
Google Scholar
Stewart JP. MOPAC: a semiempirical molecular orbital program. J Computer-Aided Mol Des. 1990;4(1):1–103.
Article
Google Scholar
Koslowsky I, Mercer J, Wuest F. Synthesis and application of 4-[18F]fluorobenzylamine: a versatile building block for the preparation of PET radiotracers. Org Biomol Chem. 2010;8(20):4730–5.
Article
CAS
PubMed
Google Scholar
J Label Compd Radiopharm, Cabrini G, Falzoni S, Forchap SL, Pellegatti P, Balboni A, Agostini P, et al. A His-155 to Tyr polymorphism confers gain-of-function to the human P2X7 receptor of human leukemic lymphocytes. J Immunol. 2005;175(1):82–9.
Article
Google Scholar
Rizzuto R, Brini M, Pizzo P, Murgia M, Pozzan T. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol. 1995;5(6):635–42.
Article
CAS
PubMed
Google Scholar
Morelli A, Chiozzi P, Chiesa A, Ferrari D, Sanz JM, Falzoni S, et al. Extracellular ATP causes ROCK I-dependent bleb formation in P2X7-transfected HEK293 cells. Mol Biol Cell. 2003;14(7):2655–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baricordi OR, Melchiorri L, Adinolfi E, Falzoni S, Chiozzi P, Buell G, et al. Increased proliferation rate of lymphoid cells transfected with the P2X7 ATP receptor. J Biol Chem. 1999;274(47):33206–8.
Article
CAS
PubMed
Google Scholar
Turkman N, Shavrin A, Paolillo V, Yeh HH, Flores L, Soghomonian S, et al. Synthesis and preliminary evaluation of [18F]-labeled 2-oxoquinoline derivatives for PET imaging of cannabinoid CB2 receptor. Nucl Med Biol. 2012;39(4):593–600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lazareno S, Birdsall NJ. Estimation of competitive antagonist affinity from functional inhibition curves using the Gaddum, Schild and Cheng-Prusoff equations. Br J Pharmacol. 1993;109(4):1110–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hibell AD, Thompson KM, Xing M, Humphrey PP, Michel AD. Complexities of measuring antagonist potency at P2X(7) receptor orthologs. J Pharmacol Exp Ther. 2001;296(3):947–57.
CAS
PubMed
Google Scholar
Bossù P, Cutuli D, Palladino I, Caporali P, Angelucci F, Laricchiuta D, et al. A single intraperitoneal injection of endotoxin in rats induces long-lasting modifications in behavior and brain protein levels of TNF-α and IL-18. J Neuroinflammation. 2012;9(1):1–12.
Article
Google Scholar
Choi HB, Ryu JK, Kim SU, McLarnon JG. Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. J Neurosci. 2007;27(18):4957–68.
Article
CAS
PubMed
Google Scholar
Tietz O, Sharma SK, Kaur J, Way J, Marshall A, Wuest M, et al. Synthesis of three 18F-labelled cyclooxygenase-2 (COX-2) inhibitors based on a pyrimidine scaffold. Org Biomol Chem. 2013;11(46):8052–64.
Article
CAS
PubMed
Google Scholar
Kaur J, Tietz O, Bhardwaj A, Marshall A, Way J, Wuest M, et al. Design, synthesis, and evaluation of an 18F-labeled radiotracer based on celecoxib–NBD for positron emission tomography (PET) imaging of cyclooxygenase-2 (COX-2). ChemMedChem. 2015;10(10):1635–40.
Article
CAS
PubMed
Google Scholar
Nobile M, Monaldi I, Alloisio S, Cugnoli C, Ferroni S. ATP-induced, sustained calcium signalling in cultured rat cortical astrocytes: evidence for a non-capacitative, P2X7-like-mediated calcium entry. FEBS Lett. 2003;538(1):71–6.
Article
CAS
PubMed
Google Scholar
Donnelly-Roberts DL, Jarvis MF. Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br J Pharmacol. 2007;151(5):571–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gum R, Wakefield B, Jarvis M. P2X receptor antagonists for pain management: examination of binding and physicochemical properties. Purinerg Signal. 2012;8(1):41–56.
Article
CAS
Google Scholar
Donnelly-Roberts DL, Namovic MT, Han P, Jarvis MF. Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors. British J Pharmacol. 2009;157(1):1203–14.
Article
CAS
Google Scholar
Karasawa A, Kawate T. Structural basis for subtype-specific inhibition of the P2X7 receptor. elife. 2016;5:e22153–70.
Article
PubMed
PubMed Central
Google Scholar
Cheng Y-C, Prusoff WH. Relationship between the inhibition constant (K
I) and the concentration of inhibitor which causes 50 per cent inhibition (I
50) of an enzymatic reaction. Biochem Pharmacol. 1973;22(23):3099–108.
Article
CAS
PubMed
Google Scholar
Anderson ST, Commins S, Moynagh PN, Coogan AN. Lipopolysaccharide-induced sepsis induces long-lasting affective changes in the mouse. Brain Behav Immun. 2015;43:98–109.
Article
CAS
PubMed
Google Scholar
Sankowski R, Mader S, Valdés-Ferrer SI. Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neuroscience. 2015;9:28–48.
Article
Google Scholar
Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong J-S, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007;55(5):453–62.
Article
PubMed
PubMed Central
Google Scholar
Noh H, Jeon J, Seo H. Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem Int. 2014;69:35–40.
Article
CAS
PubMed
Google Scholar
Silverman HA, Dancho M, Regnier-Golanov A, Nasim M, Ochani M, Olofsson PS, et al. Brain region-specific alterations in the gene expression of cytokines, immune cell markers and cholinergic system components during peripheral endotoxin-induced inflammation. Mol Med. 2014;20:601–11.
Google Scholar
Fu HQ, Yang T, Xiao W, Fan L, Wu Y, Terrando N, et al. Prolonged neuroinflammation after lipopolysaccharide exposure in aged rats. PLoS One. 2014;9(8):e106331.
Article
PubMed
PubMed Central
Google Scholar
Kouhata S, Kagaya A, Nakae S, Nakata Y, Yamawaki S. Effect of acute lipopolysaccharide administration on (±)-1-(2,5-dimethoxy-4-iodophenyl)-2 aminopropane-induced wet dog shake behavior in rats: comparison with body weight change and locomotor activity. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25(2):395–407.
Article
CAS
PubMed
Google Scholar
Wohleb ES, Fenn AM, Pacenta AM, Powell ND, Sheridan JF, Godbout JP. Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice. Psychoneuroendocrinology. 2012;37(9):1491–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banks WA, Gray AM, Erickson MA, Salameh TS, Damodarasamy M, Sheibani N, Meabon JS, Wing EE, Morofuji Y, Cook DG, Reed MJ. J Neuroinflammation. 2015;12:223–38.
Article
PubMed
PubMed Central
Google Scholar
Molinspiration. logP - octanol-water partition coefficient http://www.molinspiration.com/services/logp.html: Molinspiration; 2006.