Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.
Article
CAS
PubMed
Google Scholar
Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Song W, Rubinstein M, Liu D. Recent updates in cancer immunotherapy: a comprehensive review and perspective of the 2018 China Cancer Immunotherapy Workshop in Beijing. J Hematol Oncol. 2018;11:142.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schadendorf D, Hodi FS, Robert C, et al. pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33:1889–94.
Article
CAS
Google Scholar
Weber J, Mandala M, Del Vecchio M, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377:1824–35.
Article
CAS
PubMed
Google Scholar
Schachter J, Ribas A, Long GV, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet (London, England). 2017;390:1853–62.
Article
CAS
Google Scholar
Patel MR, Ellerton J, Infante JR, et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol. 2018;19:51–64.
Article
CAS
PubMed
Google Scholar
Berland L, Kim L, Abousaway O, et al. Nanobodies for medical imaging: about ready for prime time? Biomolecules. 2021;11:637.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haslam A, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open. 2019;2:e192535.
Article
PubMed
PubMed Central
Google Scholar
Nishino M, Sholl LM, Hodi FS, Hatabu H, Ramaiya NH. Anti-PD-1-related pneumonitis during cancer immunotherapy. N Engl J Med. 2015;373:288–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heinzerling L, Ott PA, Hodi FS, et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer. 2016;4:50.
Article
PubMed
PubMed Central
Google Scholar
Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16:563–80.
Article
CAS
PubMed
Google Scholar
Lecocq Q, De Vlaeminck Y, Hanssens H, et al. Theranostics in immuno-oncology using nanobody derivatives. Theranostics. 2019;9:7772.
Article
CAS
PubMed
PubMed Central
Google Scholar
Broos K, Lecocq Q, Xavier C, et al. Evaluating a single domain antibody targeting human PD-L1 as a nuclear imaging and therapeutic agent. Cancers (Basel). 2019;11:872.
Article
CAS
Google Scholar
Lecocq Q, Zeven K, De Vlaeminck Y, et al. Noninvasive imaging of the immune checkpoint LAG-3 using nanobodies, from development to pre-clinical use. Biomolecules. 2019;9:548.
Article
PubMed Central
CAS
Google Scholar
Du Y, Jin Y, Sun W, Fang J, Zheng J, Tian J. Advances in molecular imaging of immune checkpoint targets in malignancies: current and future prospect. Eur Radiol. 2019;29:4294–302.
Article
PubMed
Google Scholar
Nimmagadda S. Quantifying PD-L1 expression to monitor immune checkpoint therapy: opportunities and challenges. Cancers (Basel). 2020;12:3173.
Article
CAS
Google Scholar
Teng MWL, Ngiow SF, Ribas A, Smyth MJ. Classifying cancers based on T-cell Infiltration and PD-L1. Cancer Res. 2015;75:2139–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Büttner R, Gosney JR, Skov BG, et al. Programmed death-ligand 1 immunohistochemistry testing: a review of analytical assays and clinical implementation in non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35:3867–76.
Article
Google Scholar
Bridoux J, Broos K, Lecocq Q, et al. Anti-human PD-L1 nanobody for immuno-PET imaging: validation of a conjugation strategy for clinical translation. Biomolecules. 2020;10:1388.
Article
CAS
PubMed Central
Google Scholar
Bensch F, van der Veen EL, Lub-de Hooge MN, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24:1852–8.
Article
CAS
PubMed
Google Scholar
Niemeijer AN, Leung D, Huisman MC, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat Commun. 2018;9:4664.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lecocq Q, Keyaerts M, Devoogdt N, Breckpot K. The Next-generation immune checkpoint LAG-3 and its therapeutic potential in oncology: third time’s a charm. Int J Mol Sci. 2021;22:75.
Article
CAS
Google Scholar
Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019;18:155.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chocarro L, Blanco E, Zuazo M, et al. Understanding LAG-3 signaling. Int J Mol Sci. 2021;22:5282.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zahm CD, Moseman JE, Delmastro LE, Mcneel DG. PD-1 and LAG-3 blockade improve anti-tumor vaccine efficacy. Oncoimmunology. 2021;10:1912892.
Article
PubMed
PubMed Central
Google Scholar
Mueller K. New immunotherapy drugs targeting LAG-3 show great promise. MRA. https://curemelanoma.org/blog/article/new-drugs-targeting-checkpoint-molecule-lag-3-show-great-promise-at-asco-2021?org=1459&lvl=100&ite=478&lea=8056&ctr=0&par=1&trk=a1N2M00000NEHYBUA5.
Lipson EJ, Tawbi HA-H, Schadendorf D, et al. Relatlimab (RELA) plus nivolumab (NIVO) versus NIVO in first-line advanced melanoma: primary phase III results from RELATIVITY-047 (CA224-047). J Clin Oncol. 2021;39:9503.
Article
Google Scholar
Clinical Trial Arena. ASCO 2021: LAG-3 is now a validated target in Melanoma. Clinical Trial Arena. https://www.clinicaltrialsarena.com/comment/asco-2021-validated-target-melanoma/.
Squibb BM. Bristol Myers Squibb announces LAG-3-blocking antibody relatlimab and nivolumab fixed-dose combination significantly improves progression-free survival vs. opdivo (nivolumab) in patients with previously untreated metastatic or unresectable melanoma. Bristol Myers Squibb. https://news.bms.com/news/corporate-financial/2021/Bristol-Myers-Squibb-Announces-LAG-3-Blocking-Antibody-Relatlimab-and-Nivolumab-Fixed-Dose-Combination-Significantly-Improves-Progression-Free-Survival-vs.-Opdivo-nivolumab-in-Patients-with-Previously-Unt.
Kelly MP, Tavare R, Giurleo JT, et al. Abstract 3033: Immuno-PET detection of LAG-3 expressing intratumoral lymphocytes using the zirconium-89 radiolabeled fully human anti-LAG-3 antibody REGN3767. Cancer Res. 2018;78:3033.
Google Scholar
Keyaerts M, Xavier C, Heemskerk J, et al. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. 2016;57:27–33.
Article
CAS
PubMed
Google Scholar
Gondry O, Xavier C, Heemskerk J, et al. 68GaNOTA-anti-MMR-Nb for PET/CT assessment of protumorigenic macrophages in patients with solid tumors: preliminary results of a phase I clinical trial. Abstract #195 EMIM 2020. https://eventclass.org/contxt_emim2020/online-program/session?s=PW17#e207.
Broos K, Lecocq Q, De Keersmaecker B, et al. Single domain antibody-mediated blockade of programmed death-ligand 1 on dendritic cells enhances CD8 T-cell activation and cytokine production. Vaccines. 2019;7:85.
Article
CAS
PubMed Central
Google Scholar
Chigoho DM, Lecocq Q, Awad RM, et al. Site-specific radiolabeling of a human PD-L1 nanobody via maleimide-cysteine chemistry. Pharmaceuticals (Basel). 2021;14:550.
Article
CAS
Google Scholar
Lecocq Q, Awad RM, De Vlaeminck Y, et al. Nanobody nuclear imaging allows noninvasive quantification of LAG-3 expression by tumor-infiltrating leukocytes and predicts response of immune checkpoint blockade. J Nucl Med. 2021. https://doi.org/10.2967/jnumed.120.258871.
Article
PubMed
PubMed Central
Google Scholar
Broisat A, Hernot S, Toczek J, et al. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res. 2012;110:927–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breckpot K, Emeagi P, Dullaers M, Michiels A, Heirman C, Thielemans K. Activation of immature monocyte-derived dendritic cells after transduction with high doses of lentiviral vectors. Hum Gene Ther. 2007;18:536–46.
Article
CAS
PubMed
Google Scholar
Lemaire M, D’Huyvetter M, Lahoutte T, et al. Imaging and radioimmunotherapy of multiple myeloma with anti-idiotypic Nanobodies. Leukemia. 2014;28:444–7.
Article
CAS
PubMed
Google Scholar
Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381:1535–46.
Article
CAS
PubMed
Google Scholar
Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A. 2010;107:7875–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zuazo M, Arasanz H, Fernandez-Hinojal G, et al. Functional systemic CD4 immunity is required for clinical responses to PD-L1/PD-1 blockade therapy. EMBO Mol Med. 2019;11:e10293.
Article
PubMed
PubMed Central
CAS
Google Scholar
Du H, Yi Z, Wang L, Li Z, Niu B, Ren G. The co-expression characteristics of LAG3 and PD-1 on the T cells of patients with breast cancer reveal a new therapeutic strategy. Int Immunopharmacol. 2020;78:106113.
Article
CAS
PubMed
Google Scholar
Krasniqi A, D’Huyvetter M, Devoogdt N, et al. Same-day imaging using small proteins: clinical experience and translational prospects in oncology. J Nucl Med. 2018;59:885–91.
Article
CAS
PubMed
Google Scholar
Hu F-F, Liu C-J, Liu L-L, Zhang Q, Guo A-Y. Expression profile of immune checkpoint genes and their roles in predicting immunotherapy response. Brief Bioinform. 2021;22:bbaa176.
Article
PubMed
Google Scholar
Ackaert C, Smiejkowska N, Xavier C, et al. Immunogenicity risk profile of nanobodies. Front Immunol. 2021;12:632687.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xavier C, Blykers A, Laoui D, et al. Clinical translation of [(68)Ga]Ga-NOTA-anti-MMR-sdAb for PET/CT imaging of protumorigenic macrophages. Mol Imaging Biol MIB Off Publ Acad Mol Imaging. 2019;21(5):898–906.
Article
CAS
Google Scholar
Xavier C, Devoogdt N, Hernot S, et al. Site-specific labeling of his-tagged nanobodies with 99mTc: a practical guide. Methods Mol Biol. 2012;911:485–90.
Article
CAS
PubMed
Google Scholar
Cleeren F, Lecina J, Ahamed M, et al. Al(18)F-labeling of heat-sensitive biomolecules for positron emission tomography imaging. Theranostics. 2017;7:2924–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blykers A, Schoonooghe S, Xavier C, et al. PET imaging of macrophage mannose receptor-expressing macrophages in tumor stroma using 18F-radiolabeled camelid single-domain antibody fragments. J Nucl Med. 2015;56:1265–71.
Article
CAS
PubMed
Google Scholar
Xavier C, Vaneycken I, D’huyvetter M, et al. Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med. 2013;54:776–84.
Article
CAS
PubMed
Google Scholar
Massa S, Vikani N, Betti C, et al. Sortase A-mediated site-specific labeling of camelid single-domain antibody-fragments: a versatile strategy for multiple molecular imaging modalities. Contrast Media Mol Imaging. 2016;11:328–39.
Article
CAS
PubMed
Google Scholar
Massa S, Xavier C, De Vos J, et al. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjug Chem. 2014;25:979–88.
Article
CAS
PubMed
Google Scholar
Zhou Z, Zalutsky MR, Vaidyanathan G. Labeling a TCO-functionalized single domain antibody fragment with (18)F via inverse electron demand Diels Alder cycloaddition using a fluoronicotinyl moiety-bearing tetrazine derivative. Bioorg Med Chem. 2020;28:115634.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rashidian M, Wang L, Edens JG, et al. Enzyme-mediated modification of single-domain antibodies for imaging modalities with different characteristics. Angew Chem Int Ed Engl. 2016;55:528–33.
Article
CAS
PubMed
Google Scholar