Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801. https://doi.org/10.1038/nrm3904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010;363:301–4. https://doi.org/10.1056/NEJMp1006304.
Article
CAS
PubMed
Google Scholar
Jung KH, Lee KH. Molecular imaging in the era of personalized medicine. J Pathol Trans Med. 2015;49:5–12. https://doi.org/10.4132/jptm.2014.10.24.
Article
Google Scholar
Herschman HR. Molecular imaging: looking at problems, seeing solutions. Science (New York, NY). 2003;302:605–8. https://doi.org/10.1126/science.1090585.
Article
CAS
Google Scholar
Baart VM, Boonstra MC, Sier CFM. uPAR directed-imaging of head-and-neck cancer. Oncotarget. 2017;8:20519–20. https://doi.org/10.18632/oncotarget.16240.
Article
PubMed
PubMed Central
Google Scholar
Ahn SB, Chan C, Dent OF, Mohamedali A, Kwun SY, Clarke C, et al. Epithelial and stromal cell urokinase plasminogen activator receptor expression differentially correlates with survival in rectal cancer stages B and C patients. PLoS One. 2015;10:e0117786. https://doi.org/10.1371/journal.pone.0117786.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov. 2008;7:591–607. https://doi.org/10.1038/nrd2290.
Article
CAS
PubMed
Google Scholar
Chen K, Chen X. Design and development of molecular imaging probes. Curr Top Med Chem. 2010;10:1227–36. https://doi.org/10.2174/156802610791384225.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boonstra MC, de Geus SW, Prevoo HA, Hawinkels LJ, van de Velde CJ, Kuppen PJ, et al. Selecting targets for tumor imaging: an overview of cancer-associated membrane proteins. Biomarkers in cancer. 2016;8:119–33. https://doi.org/10.4137/bic.S38542.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol. 2010;11:23–36. https://doi.org/10.1038/nrm2821.
Article
CAS
PubMed
Google Scholar
Boonstra MC, Verspaget HW, Ganesh S, Kubben FJ, Vahrmeijer AL, van de Velde CJ, et al. Clinical applications of the urokinase receptor (uPAR) for cancer patients. Curr Pharm Des. 2011;17:1890–910. https://doi.org/10.2174/138161211796718233.
Article
CAS
PubMed
Google Scholar
Mahmood N, Mihalcioiu C, Rabbani SA. Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): diagnostic, prognostic, and therapeutic applications. Front Oncol. 2018;8:24. https://doi.org/10.3389/fonc.2018.00024.
Article
PubMed
PubMed Central
Google Scholar
Persson M, Skovgaard D, Brandt-Larsen M, Christensen C, Madsen J, Nielsen CH, et al. First-in-human uPAR PET: imaging of cancer aggressiveness. Theranostics. 2015;5:1303–16. https://doi.org/10.7150/thno.12956.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skovgaard D, Persson M, Brandt-Larsen M, Christensen C, Madsen J, Klausen TL, et al. Safety, dosimetry, and tumor detection ability of (68)Ga-NOTA-AE105: first-in-human study of a novel radioligand for uPAR PET imaging. J Nucl Med. 2017;58:379–86. https://doi.org/10.2967/jnumed.116.178970.
Article
CAS
PubMed
Google Scholar
Bruneau N, Szepetowski P. The role of the urokinase receptor in epilepsy, in disorders of language, cognition, communication and behavior, and in the central nervous system. Curr Pharm Des. 2011;17:1914–23. https://doi.org/10.2174/138161211796718198.
Article
CAS
PubMed
Google Scholar
Liu Y, Pan YF, Xue YQ, Fang LK, Guo XH, Guo X, et al. uPAR promotes tumor-like biologic behaviors of fibroblast-like synoviocytes through PI3K/Akt signaling pathway in patients with rheumatoid arthritis. Cell Mol Immunol. 2018;15:171–81. https://doi.org/10.1038/cmi.2016.60.
Article
CAS
PubMed
Google Scholar
Stoppelli MP, Corti A, Soffientini A, Cassani G, Blasi F, Assoian RK. Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci U S A. 1985;82:4939–43. https://doi.org/10.1073/pnas.82.15.4939.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vassalli JD, Baccino D, Belin D. A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J Cell Biol. 1985;100:86–92. https://doi.org/10.1083/jcb.100.1.86.
Article
CAS
PubMed
Google Scholar
Asahina M, Yoshiyama Y, Hattori T. Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer’s disease brain. Clin Neuropathol. 2001;20:60–3.
CAS
PubMed
Google Scholar
Ploug M, Ellis V. Structure-function relationships in the receptor for urokinase-type plasminogen activator. Comparison to other members of the Ly-6 family and snake venom alpha-neurotoxins. FEBS Lett. 1994;349:163–8. https://doi.org/10.1016/0014-5793(94)00674-1.
Article
CAS
PubMed
Google Scholar
Huai Q, Mazar AP, Kuo A, Parry GC, Shaw DE, Callahan J, et al. Science (New York, NY). 2006;311:656–9. https://doi.org/10.1126/science.1121143.
Article
CAS
Google Scholar
Eden G, Archinti M, Furlan F, Murphy R, Degryse B. The urokinase receptor interactome. Curr Pharm Des. 2011;17:1874–89. https://doi.org/10.2174/138161211796718215.
Article
CAS
PubMed
Google Scholar
Huai Q, Zhou A, Lin L, Mazar AP, Parry GC, Callahan J, et al. Crystal structures of two human vitronectin, urokinase and urokinase receptor complexes. Nat Struct Mol Biol. 2008;15:422–3. https://doi.org/10.1038/nsmb.1404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ploug M, Ronne E, Behrendt N, Jensen AL, Blasi F, Dano K. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J Biol Chem. 1991;266:1926–33.
CAS
PubMed
Google Scholar
Mondino A, Blasi F. uPA and uPAR in fibrinolysis, immunity and pathology. Trends Immunol. 2004;25:450–5. https://doi.org/10.1016/j.it.2004.06.004.
Article
CAS
PubMed
Google Scholar
Ellis V, Behrendt N, Dano K. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Chem. 1991;266:12752–8.
CAS
PubMed
Google Scholar
Vassalli JD, Wohlwend A, Belin D. Urokinase-catalyzed plasminogen activation at the monocyte/macrophage cell surface: a localized and regulated proteolytic system. Curr Top Microbiol Immunol. 1992;181:65–86. https://doi.org/10.1007/978-3-642-77377-8_3.
Article
CAS
PubMed
Google Scholar
Wei Y, Waltz DA, Rao N, Drummond RJ, Rosenberg S, Chapman HA. Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem. 1994;269:32380–8.
CAS
PubMed
Google Scholar
Barinka C, Parry G, Callahan J, Shaw DE, Kuo A, Bdeir K, et al. Structural basis of interaction between urokinase-type plasminogen activator and its receptor. J Mol Biol. 2006;363:482–95. https://doi.org/10.1016/j.jmb.2006.08.063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardsvoll H, Jacobsen B, Kriegbaum MC, Behrendt N, Engelholm L, Ostergaard S, et al. Conformational regulation of urokinase receptor function: impact of receptor occupancy and epitope-mapped monoclonal antibodies on lamellipodia induction. J Biol Chem. 2011;286:33544–56. https://doi.org/10.1074/jbc.M111.220087.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao B, Gandhi S, Yuan C, Luo Z, Li R, Gardsvoll H, et al. Stabilizing a flexible interdomain hinge region harboring the SMB binding site drives uPAR into its closed conformation. J Mol Biol. 2015;427:1389–403. https://doi.org/10.1016/j.jmb.2015.01.022.
Article
CAS
PubMed
Google Scholar
Cunningham O, Andolfo A, Santovito ML, Iuzzolino L, Blasi F, Sidenius N. Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions. EMBO J. 2003;22:5994–6003. https://doi.org/10.1093/emboj/cdg588.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caiolfa VR, Zamai M, Malengo G, Andolfo A, Madsen CD, Sutin J, et al. Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies. J Cell Biol. 2007;179:1067–82. https://doi.org/10.1083/jcb.200702151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaus K, Le Lay S, Balasubramanian N, Schwartz MA. Integrin-mediated adhesion regulates membrane order. J Cell Biol. 2006;174:725–34. https://doi.org/10.1083/jcb.200603034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Madsen CD, Ferraris GM, Andolfo A, Cunningham O, Sidenius N. uPAR-induced cell adhesion and migration: vitronectin provides the key. J Cell Biol. 2007;177:927–39. https://doi.org/10.1083/jcb.200612058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Degryse B, Resnati M, Czekay RP, Loskutoff DJ, Blasi F. Domain 2 of the urokinase receptor contains an integrin-interacting epitope with intrinsic signaling activity: generation of a new integrin inhibitor. J Biol Chem. 2005;280:24792–803. https://doi.org/10.1074/jbc.M413954200.
Article
CAS
PubMed
Google Scholar
Chaurasia P, Aguirre-Ghiso JA, Liang OD, Gardsvoll H, Ploug M, Ossowski L. A region in urokinase plasminogen receptor domain III controlling a functional association with alpha5beta1 integrin and tumor growth. J Biol Chem. 2006;281:14852–63. https://doi.org/10.1074/jbc.M512311200.
Article
CAS
PubMed
Google Scholar
Tang CH, Hill ML, Brumwell AN, Chapman HA, Wei Y. Signaling through urokinase and urokinase receptor in lung cancer cells requires interactions with beta1 integrins. J Cell Sci. 2008;121:3747–56. https://doi.org/10.1242/jcs.029769.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grove LM, Southern BD, Jin TH, White KE, Paruchuri S, Harel E, et al. Urokinase-type plasminogen activator receptor (uPAR) ligation induces a raft-localized integrin signaling switch that mediates the hypermotile phenotype of fibrotic fibroblasts. J Biol Chem. 2014;289:12791–804. https://doi.org/10.1074/jbc.M113.498576.
Article
CAS
PubMed
PubMed Central
Google Scholar
May AE, Kanse SM, Lund LR, Gisler RH, Imhof BA, Preissner KT. Urokinase receptor (CD87) regulates leukocyte recruitment via beta 2 integrins in vivo. J Exp Med. 1998;188:1029–37. https://doi.org/10.1084/jem.188.6.1029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simon DI, Rao NK, Xu H, Wei Y, Majdic O, Ronne E, et al. Mac-1 (CD11b/CD18) and the urokinase receptor (CD87) form a functional unit on monocytic cells. Blood. 1996;88:3185–94.
Article
CAS
Google Scholar
Sitrin RG, Todd RF 3rd, Albrecht E, Gyetko MR. The urokinase receptor (CD87) facilitates CD11b/CD18-mediated adhesion of human monocytes. J Clin Invest. 1996;97:1942–51. https://doi.org/10.1172/jci118626.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ross GD. Role of the lectin domain of mac-1/CR3 (CD11b/CD18) in regulating intercellular adhesion. Immunol Res. 2002;25:219–27. https://doi.org/10.1385/ir:25:3:219.
Article
CAS
PubMed
Google Scholar
Simon DI, Wei Y, Zhang L, Rao NK, Xu H, Chen Z, et al. Identification of a urokinase receptor-integrin interaction site. Promiscuous regulator of integrin function. J Biol Chem. 2000;275:10228–34. https://doi.org/10.1074/jbc.275.14.10228.
Article
CAS
PubMed
Google Scholar
Pliyev BK, Antonova OA, Menshikov M. Participation of the urokinase-type plasminogen activator receptor (uPAR) in neutrophil transendothelial migration. Mol Immunol. 2011;48:1168–77. https://doi.org/10.1016/j.molimm.2011.02.011.
Article
CAS
PubMed
Google Scholar
Pliyev BK, Arefieva TI, Menshikov MY. Urokinase receptor (uPAR) regulates complement receptor 3 (CR3)-mediated neutrophil phagocytosis. Biochem Biophys Res Commun. 2010;397:277–82. https://doi.org/10.1016/j.bbrc.2010.05.100.
Article
CAS
PubMed
Google Scholar
Xu X, Cai Y, Wei Y, Donate F, Juarez J, Parry G, et al. Identification of a new epitope in uPAR as a target for the cancer therapeutic monoclonal antibody ATN-658, a structural homolog of the uPAR binding integrin CD11b (alphaM). PLoS One. 2014;9:e85349. https://doi.org/10.1371/journal.pone.0085349.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell. 2001;12:863–79. https://doi.org/10.1091/mbc.12.4.863.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguirre Ghiso JA, Kovalski K, Ossowski L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol. 1999;147:89–104. https://doi.org/10.1083/jcb.147.1.89.
Article
CAS
PubMed
Google Scholar
Ghosh S, Johnson JJ, Sen R, Mukhopadhyay S, Liu Y, Zhang F, et al. Functional relevance of urinary-type plasminogen activator receptor-alpha3beta1 integrin association in proteinase regulatory pathways. J Biol Chem. 2006;281:13021–9. https://doi.org/10.1074/jbc.M508526200.
Article
CAS
PubMed
Google Scholar
Wei Y, Tang CH, Kim Y, Robillard L, Zhang F, Kugler MC, et al. Urokinase receptors are required for alpha 5 beta 1 integrin-mediated signaling in tumor cells. J Biol Chem. 2007;282:3929–39. https://doi.org/10.1074/jbc.M607989200.
Article
CAS
PubMed
Google Scholar
Wei Y, Czekay RP, Robillard L, Kugler MC, Zhang F, Kim KK, et al. Regulation of alpha5beta1 integrin conformation and function by urokinase receptor binding. J Cell Biol. 2005;168:501–11. https://doi.org/10.1083/jcb.200404112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferraris GM, Schulte C, Buttiglione V, De Lorenzi V, Piontini A, Galluzzi M, et al. The interaction between uPAR and vitronectin triggers ligand-independent adhesion signalling by integrins. EMBO J. 2014;33:2458–72. https://doi.org/10.15252/embj.201387611.
Article
CAS
PubMed
PubMed Central
Google Scholar
Margheri F, Luciani C, Taddei ML, Giannoni E, Laurenzana A, Biagioni A, et al. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style. Oncotarget. 2014;5:1538–53. https://doi.org/10.18632/oncotarget.1754.
Article
PubMed
PubMed Central
Google Scholar
Smith HW, Marra P, Marshall CJ. uPAR promotes formation of the p130Cas-Crk complex to activate Rac through DOCK180. J Cell Biol. 2008;182:777–90. https://doi.org/10.1083/jcb.200712050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adachi Y, Lakka SS, Chandrasekar N, Yanamandra N, Gondi CS, Mohanam S, et al. Down-regulation of integrin alpha(v)beta(3) expression and integrin-mediated signaling in glioma cells by adenovirus-mediated transfer of antisense urokinase-type plasminogen activator receptor (uPAR) and sense p16 genes. J Biol Chem. 2001;276:47171–7. https://doi.org/10.1074/jbc.M104334200.
Article
CAS
PubMed
Google Scholar
Xiong JP, Mahalingham B, Alonso JL, Borrelli LA, Rui X, Anand S, et al. Crystal structure of the complete integrin alphaVbeta3 ectodomain plus an alpha/beta transmembrane fragment. J Cell Biol. 2009;186:589–600. https://doi.org/10.1083/jcb.200905085.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahn SB, Mohamedali A, Anand S, Cheruku HR, Birch D, Sowmya G, et al. Characterization of the interaction between heterodimeric alphavbeta6 integrin and urokinase plasminogen activator receptor (uPAR) using functional proteomics. J Proteome Res. 2014;13:5956–64. https://doi.org/10.1021/pr500849x.
Article
CAS
PubMed
Google Scholar
Conese M, Nykjaer A, Petersen CM, Cremona O, Pardi R, Andreasen PA, et al. Alpha-2 macroglobulin receptor/Ldl receptor-related protein(Lrp)-dependent internalization of the urokinase receptor. J Cell Biol. 1995;131:1609–22. https://doi.org/10.1083/jcb.131.6.1609.
Article
CAS
PubMed
Google Scholar
Czekay RP, Kuemmel TA, Orlando RA, Farquhar MG. Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity. Mol Biol Cell. 2001;12:1467–79. https://doi.org/10.1091/mbc.12.5.1467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Degryse B, Sier CF, Resnati M, Conese M, Blasi F. PAI-1 inhibits urokinase-induced chemotaxis by internalizing the urokinase receptor. FEBS Lett. 2001;505:249–54. https://doi.org/10.1016/s0014-5793(01)02797-1.
Article
CAS
PubMed
Google Scholar
Nykjaer A, Conese M, Christensen EI, Olson D, Cremona O, Gliemann J, et al. Recycling of the urokinase receptor upon internalization of the uPA: serpin complexes. EMBO J. 1997;16:2610–20. https://doi.org/10.1093/emboj/16.10.2610.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sidenius N, Sier CF, Blasi F. Shedding and cleavage of the urokinase receptor (uPAR): identification and characterisation of uPAR fragments in vitro and in vivo. FEBS Lett. 2000;475:52–6. https://doi.org/10.1016/s0014-5793(00)01624-0.
Article
CAS
PubMed
Google Scholar
Wilhelm O, Weidle U, Hohl S, Rettenberger P, Schmitt M, Graeff H. Recombinant soluble urokinase receptor as a scavenger for urokinase-type plasminogen activator (uPA). Inhibition of proliferation and invasion of human ovarian cancer cells. FEBS Lett. 1994;337:131–4. https://doi.org/10.1016/0014-5793(94)80259-9.
Article
CAS
PubMed
Google Scholar
Thuno M, Macho B, Eugen-Olsen J. suPAR: the molecular crystal ball. Dis Markers. 2009;27:157–72. https://doi.org/10.3233/dma-2009-0657.
Article
PubMed
PubMed Central
Google Scholar
Montuori N, Carriero MV, Salzano S, Rossi G, Ragno P. The cleavage of the urokinase receptor regulates its multiple functions. J Biol Chem. 2002;277:46932–9. https://doi.org/10.1074/jbc.M207494200.
Article
CAS
PubMed
Google Scholar
Resnati M, Pallavicini I, Wang JM, Oppenheim J, Serhan CN, Romano M, et al. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci U S A. 2002;99:1359–64. https://doi.org/10.1073/pnas.022652999.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Paulis A, Montuori N, Prevete N, Fiorentino I, Rossi FW, Visconte V, et al. Urokinase induces basophil chemotaxis through a urokinase receptor epitope that is an endogenous ligand for formyl peptide receptor-like 1 and -like 2. J Immun (Baltimore, Md: 1950). 2004;173:5739–48. https://doi.org/10.4049/jimmunol.173.9.5739.
Article
Google Scholar
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139:e56–e528. https://doi.org/10.1161/cir.0000000000000659.
Article
PubMed
Google Scholar
Tavakoli S, Vashist A, Sadeghi MM. Molecular imaging of plaque vulnerability. J Nucl Cardiol. 2014;21:1112–28quiz 29. https://doi.org/10.1007/s12350-014-9959-4.
Article
PubMed
PubMed Central
Google Scholar
Anwaier G, Chen C, Cao Y, Qi R. A review of molecular imaging of atherosclerosis and the potential application of dendrimer in imaging of plaque. Int J Nanomedicine. 2017;12:7681–93. https://doi.org/10.2147/ijn.s142385.
Article
CAS
PubMed
PubMed Central
Google Scholar
Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8. https://doi.org/10.1016/j.jacc.2005.10.065.
Article
CAS
PubMed
Google Scholar
Tarkin JM, Dweck MR, Evans NR, Takx RA, Brown AJ, Tawakol A, et al. Imaging atherosclerosis. Circ Res. 2016;118:750–69. https://doi.org/10.1161/circresaha.115.306247.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bala G, Broisat A, Lahoutte T, Hernot S. Translating molecular imaging of the vulnerable plaque-a vulnerable project? Mol Imaging and Biology. 2018;20:337–9. https://doi.org/10.1007/s11307-017-1147-x.
Article
Google Scholar
Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med. 2014;5:927–46.
PubMed
PubMed Central
Google Scholar
Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17:1410–22. https://doi.org/10.1038/nm.2538.
Article
CAS
PubMed
Google Scholar
Fuhrman B. The urokinase system in the pathogenesis of atherosclerosis. Atherosclerosis. 2012;222:8–14. https://doi.org/10.1016/j.atherosclerosis.2011.10.044.
Article
CAS
PubMed
Google Scholar
Larmann J, Jurk K, Janssen H, Muller M, Herzog C, Lorenz A, et al. Hepatic overexpression of soluble urokinase receptor (uPAR) suppresses diet-induced atherosclerosis in low-density lipoprotein receptor-deficient (LDLR-/-) mice. PLoS One. 2015;10:e0131854. https://doi.org/10.1371/journal.pone.0131854.
Article
CAS
PubMed
PubMed Central
Google Scholar
May AE, Schmidt R, Kanse SM, Chavakis T, Stephens RW, Schomig A, et al. Urokinase receptor surface expression regulates monocyte adhesion in acute myocardial infarction. Blood. 2002;100:3611–7. https://doi.org/10.1182/blood-2002-03-0778.
Article
CAS
PubMed
Google Scholar
Gu JM, Johns A, Morser J, Dole WP, Greaves DR, Deng GG. Urokinase plasminogen activator receptor promotes macrophage infiltration into the vascular wall of ApoE deficient mice. J Cell Physiol. 2005;204:73–82. https://doi.org/10.1002/jcp.20262.
Article
CAS
PubMed
Google Scholar
Fuhrman B, Nitzan O, Karry R, Volkova N, Dumler I, Aviram M. Urokinase plasminogen activator (uPA) stimulates cholesterol biosynthesis in macrophages through activation of SREBP-1 in a PI3-kinase and MEK-dependent manner. Atherosclerosis. 2007;195:e108–16. https://doi.org/10.1016/j.atherosclerosis.2007.06.025.
Article
CAS
PubMed
Google Scholar
Ohwaki K, Bujo H, Jiang M, Yamazaki H, Schneider WJ, Saito Y. A secreted soluble form of LR11, specifically expressed in intimal smooth muscle cells, accelerates formation of lipid-laden macrophages. Arterioscler Thromb Vasc Biol. 2007;27:1050–6. https://doi.org/10.1161/atvbaha.106.137091.
Article
CAS
PubMed
Google Scholar
Yu H, Maurer F, Medcalf RL. Plasminogen activator inhibitor type 2: a regulator of monocyte proliferation and differentiation. Blood. 2002;99:2810–8. https://doi.org/10.1182/blood.v99.8.2810.
Article
CAS
PubMed
Google Scholar
Mukhina S, Stepanova V, Traktouev D, Poliakov A, Beabealashvilly R, Gursky Y, et al. The chemotactic action of urokinase on smooth muscle cells is dependent on its kringle domain. Characterization of interactions and contribution to chemotaxis. J Biol Chem. 2000;275:16450–8. https://doi.org/10.1074/jbc.M909080199.
Article
CAS
PubMed
Google Scholar
Stepanova V, Jerke U, Sagach V, Lindschau C, Dietz R, Haller H, et al. Urokinase-dependent human vascular smooth muscle cell adhesion requires selective vitronectin phosphorylation by ectoprotein kinase CK2. J Biol Chem. 2002;277:10265–72. https://doi.org/10.1074/jbc.M109057200.
Article
CAS
PubMed
Google Scholar
Kunigal S, Kusch A, Tkachuk N, Tkachuk S, Jerke U, Haller H, et al. Monocyte-expressed urokinase inhibits vascular smooth muscle cell growth by activating Stat1. Blood. 2003;102:4377–83. https://doi.org/10.1182/blood-2002-12-3872.
Article
CAS
PubMed
Google Scholar
Kusch A, Tkachuk S, Lutter S, Haller H, Dietz R, Lipp M, et al. Monocyte-expressed urokinase regulates human vascular smooth muscle cell migration in a coculture model. Biol Chem. 2002;383:217–21. https://doi.org/10.1515/bc.2002.022.
Article
CAS
PubMed
Google Scholar
Kiyan Y, Tkachuk S, Hilfiker-Kleiner D, Haller H, Fuhrman B, Dumler I. oxLDL induces inflammatory responses in vascular smooth muscle cells via urokinase receptor association with CD36 and TLR4. J Mol Cell Cardiol. 2014;66:72–82. https://doi.org/10.1016/j.yjmcc.2013.11.005.
Article
CAS
PubMed
Google Scholar
Kiyan Y, Limbourg A, Kiyan R, Tkachuk S, Limbourg FP, Ovsianikov A, et al. Urokinase receptor associates with myocardin to control vascular smooth muscle cells phenotype in vascular disease. Arterioscler Thromb Vasc Biol. 2012;32:110–22. https://doi.org/10.1161/atvbaha.111.234369.
Article
CAS
PubMed
Google Scholar
Vallabhaneni KC, Tkachuk S, Kiyan Y, Shushakova N, Haller H, Dumler I, et al. Urokinase receptor mediates mobilization, migration, and differentiation of mesenchymal stem cells. Cardiovasc Res. 2011;90:113–21. https://doi.org/10.1093/cvr/cvq362.
Article
CAS
PubMed
Google Scholar
Kiyan J, Smith G, Haller H, Dumler I. Urokinase-receptor-mediated phenotypic changes in vascular smooth muscle cells require the involvement of membrane rafts. Biochem J. 2009;423:343–51. https://doi.org/10.1042/bj20090447.
Article
CAS
PubMed
Google Scholar
Kiyan J, Kusch A, Tkachuk S, Kramer J, Haller H, Dietz R, et al. Rosuvastatin regulates vascular smooth muscle cell phenotypic modulation in vascular remodeling: role for the urokinase receptor. Atherosclerosis. 2007;195:254–61. https://doi.org/10.1016/j.atherosclerosis.2006.12.030.
Article
CAS
PubMed
Google Scholar
Noda-Heiny H, Daugherty A, Sobel BE. Augmented urokinase receptor expression in atheroma. Arterioscler Thromb Vasc Biol. 1995;15:37–43.
Article
CAS
Google Scholar
Kalbasi Anaraki P, Patecki M, Tkachuk S, Kiyan Y, Haller H, Dumler I. Urokinase receptor mediates osteoclastogenesis via M-CSF release from osteoblasts and the c-Fms/PI3K/Akt/NF-kappaB pathway in osteoclasts. J Bone Min Res. 2015;30:379–88. https://doi.org/10.1002/jbmr.2350.
Article
CAS
Google Scholar
Kalbasi Anaraki P, Patecki M, Larmann J, Tkachuk S, Jurk K, Haller H, et al. Urokinase receptor mediates osteogenic differentiation of mesenchymal stem cells and vascular calcification via the complement C5a receptor. Stem Cells Dev. 2014;23:352–62. https://doi.org/10.1089/scd.2013.0318.
Article
CAS
PubMed
Google Scholar
Farris SD, Hu JH, Krishnan R, Emery I, Chu T, Du L, et al. Mechanisms of urokinase plasminogen activator (uPA)-mediated atherosclerosis: role of the uPA receptor and S100A8/A9 proteins. J Biol Chem. 2011;286:22665–77. https://doi.org/10.1074/jbc.M110.202135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salame MY, Samani NJ. Masood I, deBono DP. Expression of the plasminogen activator system in the human vascular wall. Atherosclerosis. 2000;152:19–28. https://doi.org/10.1016/s0021-9150(99)00441-4.
Article
CAS
PubMed
Google Scholar
Svensson PA, Olson FJ, Hagg DA, Ryndel M, Wiklund O, Karlstrom L, et al. Urokinase-type plasminogen activator receptor is associated with macrophages and plaque rupture in symptomatic carotid atherosclerosis. Int J Mol Med. 2008;22:459–64.
PubMed
Google Scholar
Chen W, Jin WQ, Chen LF, Williams T, Zhu WL, Fang Q. Urokinase receptor surface expression regulates monocyte migration and is associated with accelerated atherosclerosis. Int J Cardiol. 2012;161:103–10. https://doi.org/10.1016/j.ijcard.2011.12.094.
Article
PubMed
Google Scholar
Raghunath PN, Tomaszewski JE, Brady ST, Caron RJ, Okada SS, Barnathan ES. Plasminogen activator system in human coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 1995;15:1432–43.
Article
CAS
Google Scholar
Okada SS, Golden MA, Raghunath PN, Tomaszewski JE, David ML, Kuo A, et al. Native atherosclerosis and vein graft arterialization: association with increased urokinase receptor expression in vitro and in vivo. Thromb Haemost. 1998;80:140–7.
Article
CAS
Google Scholar
Steins MB, Padro T, Schwaenen C, Ruiz S, Mesters RM, Berdel WE, et al. Overexpression of urokinase receptor and cell surface urokinase-type plasminogen activator in the human vessel wall with different types of atherosclerotic lesions. Blood Coagul Fibrinolysis. 2004;15:383–91.
Article
CAS
Google Scholar
Quax PH, Lamfers ML, Lardenoye JH, Grimbergen JM, de Vries MR, Slomp J, et al. Adenoviral expression of a urokinase receptor-targeted protease inhibitor inhibits neointima formation in murine and human blood vessels. Circulation. 2001;103:562–9. https://doi.org/10.1161/01.cir.103.4.562.
Article
CAS
PubMed
Google Scholar
Lamfers ML, Grimbergen JM, Aalders MC, Havenga MJ, de Vries MR, Huisman LG, et al. Gene transfer of the urokinase-type plasminogen activator receptor-targeted matrix metalloproteinase inhibitor TIMP-1.ATF suppresses neointima formation more efficiently than tissue inhibitor of metalloproteinase-1. Circ Res. 2002;91:945–52. https://doi.org/10.1161/01.res.0000041418.51906.57.
Article
CAS
PubMed
Google Scholar
Eefting D, de Vries MR, Grimbergen JM, Karper JC, van Bockel JH, Quax PH. In vivo suppression of vein graft disease by nonviral, electroporation-mediated, gene transfer of tissue inhibitor of metalloproteinase-1 linked to the amino terminal fragment of urokinase (TIMP-1.ATF), a cell-surface directed matrix metalloproteinase inhibitor. J Vasc Surg. 2010;51:429–37. https://doi.org/10.1016/j.jvs.2009.09.026.
Article
PubMed
Google Scholar
Lamfers ML, Lardenoye JH, de Vries MR, Aalders MC, Engelse MA, Grimbergen JM, et al. In vivo suppression of restenosis in balloon-injured rat carotid artery by adenovirus-mediated gene transfer of the cell surface-directed plasmin inhibitor ATF.BPTI. Gene Ther. 2001;8:534–41. https://doi.org/10.1038/sj.gt.3301437.
Article
CAS
PubMed
Google Scholar
Eefting D, Seghers L, Grimbergen JM, de Vries MR, de Boer HC, Lardenoye JW, et al. A novel urokinase receptor-targeted inhibitor for plasmin and matrix metalloproteinases suppresses vein graft disease. Cardiovasc Res. 2010;88:367–75. https://doi.org/10.1093/cvr/cvq203.
Article
CAS
PubMed
Google Scholar
Crowson CS, Matteson EL, Myasoedova E, Michet CJ, Ernste FC, Warrington KJ, et al. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum. 2011;63:633–9. https://doi.org/10.1002/art.30155.
Article
PubMed
PubMed Central
Google Scholar
Colebatch AN, Edwards CJ, Ostergaard M, van der Heijde D, Balint PV, D’Agostino MA, et al. EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis. Ann Rheum Dis. 2013;72:804–14. https://doi.org/10.1136/annrheumdis-2012-203158.
Article
PubMed
Google Scholar
Wunder A, Straub RH, Gay S, Funk J, Muller-Ladner U. Molecular imaging: novel tools in visualizing rheumatoid arthritis. Rheumatology (Oxford). 2005;44:1341–9. https://doi.org/10.1093/rheumatology/keh709.
Article
CAS
Google Scholar
Put S, Westhovens R, Lahoutte T, Matthys P. Molecular imaging of rheumatoid arthritis: emerging markers, tools, and techniques. Arthritis Res Ther. 2014;16:208. https://doi.org/10.1186/ar4542.
Article
PubMed
PubMed Central
Google Scholar
Malviya G, Conti F, Chianelli M, Scopinaro F, Dierckx RA, Signore A. Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies. Eur J Nucl Med Mol Imaging. 2010;37:386–98. https://doi.org/10.1007/s00259-009-1272-0.
Article
CAS
PubMed
Google Scholar
McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017;389:2328–37. https://doi.org/10.1016/s0140-6736(17)31472-1.
Article
CAS
PubMed
Google Scholar
Dinesh P, Rasool M. uPA/uPAR signaling in rheumatoid arthritis: shedding light on its mechanism of action. Pharmacol Res. 2018;134:31–9. https://doi.org/10.1016/j.phrs.2018.05.016.
Article
CAS
PubMed
Google Scholar
Serrati S, Margheri F, Chilla A, Neumann E, Muller-Ladner U, Benucci M, et al. Reduction of in vitro invasion and in vivo cartilage degradation in a SCID mouse model by loss of function of the fibrinolytic system of rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 2011;63:2584–94. https://doi.org/10.1002/art.30439.
Article
CAS
PubMed
Google Scholar
Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone research. 2018;6:15. https://doi.org/10.1038/s41413-018-0016-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szekanecz Z, Haines GK, Koch AE. Differential expression of the urokinase receptor (CD87) in arthritic and normal synovial tissues. J Clin Pathol. 1997;50:314–9. https://doi.org/10.1136/jcp.50.4.314.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almholt K, Hebsgaard JB, Nansen A, Andersson C, Pass J, Rono B, et al. Antibody-mediated neutralization of uPA proteolytic function reduces disease progression in mouse arthritis models. J Immunol. 2018;200:957–65. https://doi.org/10.4049/jimmunol.1701317.
Article
CAS
PubMed
Google Scholar
Pliyev BK, Menshikov MY. Release of the soluble urokinase-type plasminogen activator receptor (suPAR) by activated neutrophils in rheumatoid arthritis. Inflammation. 2010;33:1–9. https://doi.org/10.1007/s10753-009-9152-0.
Article
CAS
PubMed
Google Scholar
Fibbi G, Pucci M, Serni U, Cerinic MM, Del Rosso M. Antisense targeting of the urokinase receptor blocks urokinase-dependent proliferation, chemoinvasion, and chemotaxis of human synovial cells and chondrocytes in vitro. Proc Assoc Am Physicians. 1998;110:340–50.
CAS
PubMed
Google Scholar
Baran M, Mollers LN, Andersson S, Jonsson IM, Ekwall AK, Bjersing J, et al. Survivin is an essential mediator of arthritis interacting with urokinase signalling. J Cell Mol Med. 2009;13:3797–808. https://doi.org/10.1111/j.1582-4934.2009.00721.x.
Article
PubMed
PubMed Central
Google Scholar
Kirchheimer JC. Modulation of receptor bound urokinase-type plasminogen activator on human monocytes by non-steroidal antiinflammatory drugs. Scand J Rheumatol. 1993;22:53–7.
Article
CAS
Google Scholar
Nonaka T, Kikuchi H, Ikeda T, Okamoto Y, Hamanishi C, Tanaka S. Hyaluronic acid inhibits the expression of u-PA, PAI-1, and u-PAR in human synovial fibroblasts of osteoarthritis and rheumatoid arthritis. J Rheumatol. 2000;27:997–1004.
CAS
PubMed
Google Scholar
Nonaka T, Kikuchi H, Sohen S, Fukuda K, Hamanishi C, Tanaka S. Comparison of the inhibitory effects of two types (90 kDa and 190 kDa) of hyaluronic acid on the expression of fibrinolytic factors in human synovial fibroblasts. Mod Rheumatol. 2002;12:160–6. https://doi.org/10.3109/s101650200027.
Article
CAS
PubMed
Google Scholar
Guiducci S, Del Rosso A, Cinelli M, Margheri F, D’Alessio S, Fibbi G, et al. Rheumatoid synovial fibroblasts constitutively express the fibrinolytic pattern of invasive tumor-like cells. Clin Exp Rheumatol. 2005;23:364–72.
CAS
PubMed
Google Scholar
Del Rosso M, Fibbi G, Magnelli L, Pucci M, Dini G, Grappone C, et al. Modulation of urokinase receptors on human synovial cells and osteoarthritic chondrocytes by diacetylrhein. Int J Tissue React. 1990;12:91–100.
PubMed
Google Scholar
Kirchheimer JC, Remold HG, Wanivenhaus A, Binder BR. Increased proteolytic activity on the surface of monocytes from patients with rheumatoid arthritis. Arthritis Rheum. 1991;34:1430–3.
Article
CAS
Google Scholar
Belcher C, Fawthrop F, Bunning R, Doherty M. Plasminogen activators and their inhibitors in synovial fluids from normal, osteoarthritis, and rheumatoid arthritis knees. Ann Rheum Dis. 1996;55:230–6. https://doi.org/10.1136/ard.55.4.230.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ronday HK, Smits HH, Van Muijen GN, Pruszczynski MS, Dolhain RJ, Van Langelaan EJ, et al. Difference in expression of the plasminogen activation system in synovial tissue of patients with rheumatoid arthritis and osteoarthritis. Br J Rheumatol. 1996;35:416–23.
Article
CAS
Google Scholar
Busso N, Peclat V, So A, Sappino AP. Plasminogen activation in synovial tissues: differences between normal, osteoarthritis, and rheumatoid arthritis joints. Ann Rheum Dis. 1997;56:550–7. https://doi.org/10.1136/ard.56.9.550.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cerinic MM, Generini S, Partsch G, Pignone A, Dini G, Konttinen YT, et al. Synoviocytes from osteoarthritis and rheumatoid arthritis produce plasminogen activators and plasminogen activator inhibitor-1 and display u-PA receptors on their surface. Life Sci. 1998;63:441–53. https://doi.org/10.1016/s0024-3205(98)00293-8.
Article
CAS
PubMed
Google Scholar
Thornton S, Raghu H, Cruz C, Frederick MD, Palumbo JS, Mullins ES, et al. Urokinase plasminogen activator and receptor promote collagen-induced arthritis through expression in hematopoietic cells. Blood advances. 2017;1:545–56. https://doi.org/10.1182/bloodadvances.2016004002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin T, Tarkowski A, Carmeliet P, Bokarewa M. Urokinase, a constitutive component of the inflamed synovial fluid, induces arthritis. Arthritis Res Ther. 2003;5:R9–r17.
Article
CAS
Google Scholar
Kanno Y, Ishisaki A, Miyashita M, Matsuo O. The blocking of uPAR suppresses lipopolysaccharide-induced inflammatory osteoclastogenesis and the resultant bone loss through attenuation of integrin beta3/Akt pathway. Immunity, inflammation and disease. 2016;4:338–49. https://doi.org/10.1002/iid3.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanno Y, Maruyama C, Matsuda A, Ishisaki A. uPA-derived peptide, A6 is involved in the suppression of lipopolysaccaride-promoted inflammatory osteoclastogenesis and the resultant bone loss. Immunity, inflammation and disease. 2017;5:289–99. https://doi.org/10.1002/iid3.169.
Article
CAS
PubMed
PubMed Central
Google Scholar
Apparailly F, Bouquet C, Millet V, Noel D, Jacquet C, Opolon P, et al. Adenovirus-mediated gene transfer of urokinase plasminogen inhibitor inhibits angiogenesis in experimental arthritis. Gene Ther. 2002;9:192–200. https://doi.org/10.1038/sj.gt.3301628.
Article
CAS
PubMed
Google Scholar
van der Laan WH, Pap T, Ronday HK, Grimbergen JM, Huisman LG, TeKoppele JM, et al. Cartilage degradation and invasion by rheumatoid synovial fibroblasts is inhibited by gene transfer of a cell surface-targeted plasmin inhibitor. Arthritis Rheum. 2000;43:1710–8. https://doi.org/10.1002/1529-0131(200008)43:8<1710::AID-ANR6>3.0.CO;2-Y.
Article
PubMed
Google Scholar
Del Rosso A, Cinelli M, Guiducci S, Pignone A, Fibbi G, Margheri F, et al. Deflazacort modulates the fibrinolytic pattern and reduces uPA-dependent chemioinvasion and proliferation in rheumatoid arthritis synoviocytes. Rheumatology (Oxford). 2005;44:1255–62. https://doi.org/10.1093/rheumatology/kei006.
Article
CAS
Google Scholar
Koga T, Okada A, Kawashiri S, Kita J, Suzuki T, Nakashima Y, et al. Soluble urokinase plasminogen activator receptor as a useful biomarker to predict the response to adalimumab in patients with rheumatoid arthritis in a Japanese population. Clin Exp Rheumatol. 2011;29:811–5.
PubMed
Google Scholar
Buckley BJ, Ali U, Kelso MJ, Ranson M. The urokinase plasminogen activation system in rheumatoid arthritis: pathophysiological roles and prospective therapeutic targets. Curr Drug Targets. 2019;20:970–81. https://doi.org/10.2174/1389450120666181204164140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim E, Howes OD, Kapur S. Molecular imaging as a guide for the treatment of central nervous system disorders. Dialogues Clin Neurosci. 2013;15:315–28.
PubMed
PubMed Central
Google Scholar
Lu FM, Yuan Z. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant Imaging Med Surg. 2015;5:433–47. https://doi.org/10.3978/j.issn.2223-4292.2015.03.16.
Article
PubMed
PubMed Central
Google Scholar
Hargreaves RJ, Hoppin J, Sevigny J, Patel S, Chiao P, Klimas M, et al. Optimizing central nervous system drug development using molecular imaging. Clin Pharmacol Ther. 2015;98:47–60. https://doi.org/10.1002/cpt.132.
Article
CAS
PubMed
Google Scholar
Bohnen NI, Kanel P, Muller M. Molecular imaging of the cholinergic system in Parkinson’s disease. Int Rev Neurobiol. 2018;141:211–50. https://doi.org/10.1016/bs.irn.2018.07.027.
Article
PubMed
PubMed Central
Google Scholar
Merino P, Diaz A, Jeanneret V, Wu F, Torre E, Cheng L, et al. Urokinase-type plasminogen activator (uPA) binding to the uPA receptor (uPAR) promotes axonal regeneration in the central nervous system. J Biol Chem. 2017;292:2741–53. https://doi.org/10.1074/jbc.M116.761650.
Article
CAS
PubMed
Google Scholar
Lino N, Fiore L, Rapacioli M, Teruel L, Flores V, Scicolone G, et al. uPA-uPAR molecular complex is involved in cell signaling during neuronal migration and neuritogenesis. Developmental Dynamics. 2014;243:676–89. https://doi.org/10.1002/dvdy.24114.
Article
CAS
PubMed
Google Scholar
Farias-Eisner R, Vician L, Silver A, Reddy S, Rabbani SA, Herschman HR. The urokinase plasminogen activator receptor (UPAR) is preferentially induced by nerve growth factor in PC12 pheochromocytoma cells and is required for NGF-driven differentiation. J Neurosci. 2000;20:230–9.
Article
CAS
Google Scholar
Semina E, Rubina K, Sysoeva V, Rysenkova K, Klimovich P, Plekhanova O, et al. Urokinase and urokinase receptor participate in regulation of neuronal migration, axon growth and branching. Eur J Cell Biol. 2016;95:295–310. https://doi.org/10.1016/j.ejcb.2016.05.003.
Article
CAS
PubMed
Google Scholar
Del Bigio MR, Hosain S, Altumbabic M. Localization of urokinase-type plasminogen activator, its receptor, and inhibitors in mouse forebrain during postnatal development. Int J Dev Neurosci. 1999;17:387–99.
Article
Google Scholar
Hayden SM, Seeds NW. Modulated expression of plasminogen activator system components in cultured cells from dissociated mouse dorsal root ganglia. J Neurosci. 1996;16:2307–17.
Article
CAS
Google Scholar
Campbell DB, D’Oronzio R, Garbett K, Ebert PJ, Mirnics K, Levitt P, et al. Disruption of cerebral cortex MET signaling in autism spectrum disorder. Ann Neurol. 2007;62:243–50. https://doi.org/10.1002/ana.21180.
Article
PubMed
Google Scholar
Campbell DB, Li C, Sutcliffe JS, Persico AM, Levitt P. Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder. Autism Research. 2008;1:159–68. https://doi.org/10.1002/aur.27.
Article
PubMed
PubMed Central
Google Scholar
Lahtinen L, Huusko N, Myohanen H, Lehtivarjo AK, Pellinen R, Turunen MP, et al. Expression of urokinase-type plasminogen activator receptor is increased during epileptogenesis in the rat hippocampus. Neuroscience. 2009;163:316–28. https://doi.org/10.1016/j.neuroscience.2009.06.019.
Article
CAS
PubMed
Google Scholar
Powell EM, Campbell DB, Stanwood GD, Davis C, Noebels JL, Levitt P. Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci. 2003;23:622–31.
Article
CAS
Google Scholar
Levitt P. Disruption of interneuron development. Epilepsia. 2005;46(Suppl 7):22–8. https://doi.org/10.1111/j.1528-1167.2005.00305.x.
Article
CAS
PubMed
Google Scholar
Roll P, Rudolf G, Pereira S, Royer B, Scheffer IE, Massacrier A, et al. SRPX2 mutations in disorders of language cortex and cognition. Hum Mol Genet. 2006;15:1195–207. https://doi.org/10.1093/hmg/ddl035.
Article
CAS
PubMed
Google Scholar
Royer-Zemmour B, Ponsole-Lenfant M, Gara H, Roll P, Leveque C, Massacrier A, et al. Epileptic and developmental disorders of the speech cortex: ligand/receptor interaction of wild-type and mutant SRPX2 with the plasminogen activator receptor uPAR. Hum Mol Genet. 2008;17:3617–30. https://doi.org/10.1093/hmg/ddn256.
Article
CAS
PubMed
Google Scholar
Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology. 2014;76 Pt A:27-50. doi:10.1016/j.neuropharm.2013.07.004.
Kumar A, Singh A. Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67:195–203. https://doi.org/10.1016/j.pharep.2014.09.004.
Article
CAS
PubMed
Google Scholar
Deininger MH, Trautmann K, Magdolen V, Luther T, Schluesener HJ, Meyermann R. Cortical neurons of Creutzfeldt-Jakob disease patients express the urokinase-type plasminogen activator receptor. Neurosci Lett. 2002;324:80–2. https://doi.org/10.1016/s0304-3940(02)00168-4.
Article
CAS
PubMed
Google Scholar
Davis J, Wagner MR, Zhang W, Xu F, Van Nostrand WE. Amyloid beta-protein stimulates the expression of urokinase-type plasminogen activator (uPA) and its receptor (uPAR) in human cerebrovascular smooth muscle cells. J Biol Chem. 2003;278:19054–61. https://doi.org/10.1074/jbc.M301398200.
Article
CAS
PubMed
Google Scholar
Walker DG, Lue LF, Beach TG. Increased expression of the urokinase plasminogen-activator receptor in amyloid beta peptide-treated human brain microglia and in AD brains. Brain Res. 2002;926:69–79. https://doi.org/10.1016/s0006-8993(01)03298-x.
Article
CAS
PubMed
Google Scholar
Pocchiari M, Puopolo M, Croes EA, Budka H, Gelpi E, Collins S, et al. Predictors of survival in sporadic Creutzfeldt-Jakob disease and other human transmissible spongiform encephalopathies. Brain : a journal of neurology. 2004;127:2348–59. https://doi.org/10.1093/brain/awh249.
Article
CAS
Google Scholar
Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15:545–58. https://doi.org/10.1038/nri3871.
Article
CAS
PubMed
Google Scholar
Washington R, Burton J, Todd RF 3rd, Newman W, Dragovic L, Dore-Duffy P. Expression of immunologically relevant endothelial cell activation antigens on isolated central nervous system microvessels from patients with multiple sclerosis. Ann Neurol. 1994;35:89–97. https://doi.org/10.1002/ana.410350114.
Article
CAS
PubMed
Google Scholar
Dore-Duffy P, Washington R, Dragovic L. Expression of endothelial cell activation antigens in microvessels from patients with multiple sclerosis. Adv Exp Med Biol. 1993;331:243–8. https://doi.org/10.1007/978-1-4615-2920-0_38.
Article
CAS
PubMed
Google Scholar
Gveric D, Hanemaaijer R, Newcombe J, van Lent NA, Sier CF, Cuzner ML. Plasminogen activators in multiple sclerosis lesions: implications for the inflammatory response and axonal damage. Brain. 2001;124:1978–88. https://doi.org/10.1093/brain/124.10.1978.
Article
CAS
PubMed
Google Scholar
Archinti M, Britto M, Eden G, Furlan F, Murphy R, Degryse B. The urokinase receptor in the central nervous system. CNS Neurol Disord Drug Targets. 2011;10:271–94.
Article
CAS
Google Scholar
Cox MB, Bowden NA, Scott RJ, Lechner-Scott J. Altered expression of the plasminogen activation pathway in peripheral blood mononuclear cells in multiple sclerosis: possible pathomechanism of matrix metalloproteinase activation. Multiple sclerosis (Houndmills, Basingstoke, England). 2013;19:1268–74. https://doi.org/10.1177/1352458513475493.
Article
CAS
Google Scholar
Washington RA, Becher B, Balabanov R, Antel J, Dore-Duffy P. Expression of the activation marker urokinase plasminogen-activator receptor in cultured human central nervous system microglia. J Neurosci Res. 1996;45:392–9. https://doi.org/10.1002/(sici)1097-4547(19960815)45:4<392::Aid-jnr8>3.0.Co;2-4.
Article
CAS
PubMed
Google Scholar
Teesalu T, Hinkkanen AE, Vaheri A. Coordinated induction of extracellular proteolysis systems during experimental autoimmune encephalomyelitis in mice. Am J Pathol. 2001;159:2227–37. https://doi.org/10.1016/s0002-9440(10)63073-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cunningham O, Campion S, Perry VH, Murray C, Sidenius N, Docagne F, et al. Microglia and the urokinase plasminogen activator receptor/uPA system in innate brain inflammation. Glia. 2009;57:1802–14. https://doi.org/10.1002/glia.20892.
Article
PubMed
PubMed Central
Google Scholar
East E, Baker D, Pryce G, Lijnen HR, Cuzner ML, Gveric D. A role for the plasminogen activator system in inflammation and neurodegeneration in the central nervous system during experimental allergic encephalomyelitis. Am J Pathol. 2005;167:545–54. https://doi.org/10.1016/s0002-9440(10)62996-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gur-Wahnon D, Mizrachi T, Maaravi-Pinto FY, Lourbopoulos A, Grigoriadis N, Higazi AA, et al. The plasminogen activator system: involvement in central nervous system inflammation and a potential site for therapeutic intervention. J Neuroinflammation. 2013;10:124. https://doi.org/10.1186/1742-2094-10-124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gobel K, Pankratz S, Asaridou CM, Herrmann AM, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626. https://doi.org/10.1038/ncomms11626.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brew BJ, Chan P. Update on HIV dementia and HIV-associated neurocognitive disorders. Current neurology and neuroscience reports. 2014;14:468. https://doi.org/10.1007/s11910-014-0468-2.
Article
CAS
PubMed
Google Scholar
Cinque P, Nebuloni M, Santovito ML, Price RW, Gisslen M, Hagberg L, et al. The urokinase receptor is overexpressed in the AIDS dementia complex and other neurological manifestations. Ann Neurol. 2004;55:687–94. https://doi.org/10.1002/ana.20076.
Article
CAS
PubMed
Google Scholar
Sidenius N, Nebuloni M, Sala S, Zerbi P, Price RW, Gisslen M, et al. Expression of the urokinase plasminogen activator and its receptor in HIV-1-associated central nervous system disease. J Neuroimmunol. 2004;157:133–9. https://doi.org/10.1016/j.jneuroim.2004.08.038.
Article
CAS
PubMed
Google Scholar
Sidenius N, Sier CF, Ullum H, Pedersen BK, Lepri AC, Blasi F, et al. Serum level of soluble urokinase-type plasminogen activator receptor is a strong and independent predictor of survival in human immunodeficiency virus infection. Blood. 2000;96:4091–5.
Article
CAS
Google Scholar
Idro R, Jenkins NE, Newton CR. Pathogenesis, clinical features, and neurological outcome of cerebral malaria. The Lancet Neurology. 2005;4:827–40. https://doi.org/10.1016/s1474-4422(05)70247-7.
Article
PubMed
Google Scholar
Fauser S, Deininger MH, Kremsner PG, Magdolen V, Luther T, Meyermann R, et al. Lesion associated expression of urokinase-type plasminogen activator receptor (uPAR, CD87) in human cerebral malaria. J Neuroimmunol. 2000;111:234–40. https://doi.org/10.1016/s0165-5728(00)00368-4.
Article
CAS
PubMed
Google Scholar
Piguet PF, Da Laperrousaz C, Vesin C, Tacchini-Cottier F, Senaldi G, Grau GE. Delayed mortality and attenuated thrombocytopenia associated with severe malaria in urokinase- and urokinase receptor-deficient mice. Infect Immun. 2000;68:3822–9. https://doi.org/10.1128/iai.68.7.3822-3829.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wassmer SC, Combes V, Grau GE. Pathophysiology of cerebral malaria: role of host cells in the modulation of cytoadhesion. Ann N Y Acad Sci. 2003;992:30–8. https://doi.org/10.1111/j.1749-6632.2003.tb03135.x.
Article
CAS
PubMed
Google Scholar
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474:307–17. https://doi.org/10.1038/nature10209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caobelli F, Evangelista L, Quartuccio N, Familiari D, Altini C, Castello A, et al. Role of molecular imaging in the management of patients affected by inflammatory bowel disease: state-of-the-art. World journal of radiology. 2016;8:829–45. https://doi.org/10.4329/wjr.v8.i10.829.
Article
PubMed
PubMed Central
Google Scholar
Catalano O, Maccioni F, Lauri C, Auletta S, Dierckx R, Signore A. Hybrid imaging in Crohn’s disease: from SPECT/CT to PET/MR and new image interpretation criteria. Q J Nucl Med Mol Imaging. 2018;62:40–55. https://doi.org/10.23736/s1824-4785.17.03053-9.
Article
PubMed
Google Scholar
Meijer MJ, Mieremet-Ooms MA, Sier CF, van Hogezand RA, Lamers CB, Hommes DW, et al. Matrix metalloproteinases and their tissue inhibitors as prognostic indicators for diagnostic and surgical recurrence in Crohn’s disease. Inflamm Bowel Dis. 2009;15:84–92. https://doi.org/10.1002/ibd.20581.
Article
PubMed
Google Scholar
Birch GP, Campbell T, Bradley M, Dhaliwal K. Optical molecular imaging of inflammatory cells in interventional medicine-an emerging strategy. Frontiers in oncology. 2019;9:882. https://doi.org/10.3389/fonc.2019.00882.
Article
PubMed
PubMed Central
Google Scholar
de Bruin PA, Crama-Bohbouth G, Verspaget HW, Verheijen JH, Dooijewaard G, Weterman IT, et al. Plasminogen activators in the intestine of patients with inflammatory bowel disease. Thromb Haemost. 1988;60:262–6.
Article
Google Scholar
de Jong E, Porte RJ, Knot EA, Verheijen JH, Dees J. Disturbed fibrinolysis in patients with inflammatory bowel disease. A study in blood plasma, colon mucosa, and faeces. Gut. 1989;30:188–94. https://doi.org/10.1136/gut.30.2.188.
Article
PubMed
PubMed Central
Google Scholar
Ravi A, Garg P, Sitaraman SV. Matrix metalloproteinases in inflammatory bowel disease: boon or a bane? Inflamm Bowel Dis. 2007;13:97–107. https://doi.org/10.1002/ibd.20011.
Article
PubMed
Google Scholar
Laerum OD, Illemann M, Skarstein A, Helgeland L, Ovrebo K, Dano K, et al. Crohn’s disease but not chronic ulcerative colitis induces the expression of PAI-1 in enteric neurons. Am J Gastroenterol. 2008;103:2350–8. https://doi.org/10.1111/j.1572-0241.2008.01930.x.
Article
PubMed
Google Scholar
Genua M, D’Alessio S, Cibella J, Gandelli A, Sala E, Correale C, et al. The urokinase plasminogen activator receptor (uPAR) controls macrophage phagocytosis in intestinal inflammation. Gut. 2015;64:589–600. https://doi.org/10.1136/gutjnl-2013-305933.
Article
CAS
PubMed
Google Scholar
Weber B, Saurer L, Schenk M, Dickgreber N, Mueller C. CX3CR1 defines functionally distinct intestinal mononuclear phagocyte subsets which maintain their respective functions during homeostatic and inflammatory conditions. Eur J Immunol. 2011;41:773–9. https://doi.org/10.1002/eji.201040965.
Article
CAS
PubMed
Google Scholar
Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019;16:531–43. https://doi.org/10.1038/s41575-019-0172-4.
Article
CAS
PubMed
Google Scholar
Yousif AM, Minopoli M, Bifulco K, Ingangi V, Di Carluccio G, Merlino F, et al. Cyclization of the urokinase receptor-derived ser-arg-ser-arg-tyr peptide generates a potent inhibitor of trans-endothelial migration of monocytes. PLoS One. 2015;10:e0126172. https://doi.org/10.1371/journal.pone.0126172.
Article
CAS
PubMed
PubMed Central
Google Scholar
Genua M, Ingangi V, Fonteyne P, Piontini A, Yousif AM, Merlino F, et al. Treatment with a urokinase receptor-derived cyclized peptide improves experimental colitis by preventing monocyte recruitment and macrophage polarization. Inflamm Bowel Dis. 2016;22:2390–401. https://doi.org/10.1097/mib.0000000000000896.
Article
PubMed
Google Scholar
Yang L, Peng XH, Wang YA, Wang X, Cao Z, Ni C, et al. Receptor-targeted nanoparticles for in vivo imaging of breast cancer. Clinical cancer research. 2009;15:4722–32. https://doi.org/10.1158/1078-0432.Ccr-08-3289.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang L, Mao H, Cao Z, Wang YA, Peng X, Wang X, et al. Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology. 2009;136:1514–25.e2. https://doi.org/10.1053/j.gastro.2009.01.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdalla MO, Karna P, Sajja HK, Mao H, Yates C, Turner T, et al. Enhanced noscapine delivery using uPAR-targeted optical-MR imaging trackable nanoparticles for prostate cancer therapy. Journal of controlled release. 2011;149:314–22. https://doi.org/10.1016/j.jconrel.2010.10.030.
Article
CAS
PubMed
Google Scholar
Liu D, Overbey D, Watkinson L, Giblin MF. Synthesis and characterization of an (111)in-labeled peptide for the in vivo localization of human cancers expressing the urokinase-type plasminogen activator receptor (uPAR). Bioconjug Chem. 2009;20:888–94. https://doi.org/10.1021/bc800433y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xi L, Zhou G, Gao N, Yang L, Gonzalo DA, Hughes SJ, et al. Photoacoustic and fluorescence image-guided surgery using a multifunctional targeted nanoprobe. Ann Surg Oncol. 2014;21:1602–9. https://doi.org/10.1245/s10434-014-3541-9.
Article
PubMed
PubMed Central
Google Scholar
Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, et al. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 2013;7:2078–89. https://doi.org/10.1021/nn3043463.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang L, Sajja HK, Cao Z, Qian W, Bender L, Marcus AI, et al. uPAR-targeted optical imaging contrasts as theranostic agents for tumor margin detection. Theranostics. 2013;4:106–18. https://doi.org/10.7150/thno.7409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Tian YE, Sun F, Feng H, Yang C, Gong X, et al. Imaging of human pancreatic cancer xenografts by single-photon emission computed tomography with (99 m)Tc-Hynic-PEG-AE105. Oncol Lett. 2015;10:2253–8. https://doi.org/10.3892/ol.2015.3504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Persson M, Nedergaard MK, Brandt-Larsen M, Skovgaard D, Jørgensen JT, Michaelsen SR, et al. Urokinase-type plasminogen activator receptor as a potential PET biomarker in glioblastoma. Journal of Nuclear Medicine. 2016;57:272–8. https://doi.org/10.2967/jnumed.115.161703.
Article
CAS
PubMed
Google Scholar
Juhl K, Christensen A, Persson M, Ploug M, Kjaer A. Peptide-based optical uPAR imaging for surgery: in vivo testing of ICG-Glu-Glu-AE105. PLoS One. 2016;11:e0147428. https://doi.org/10.1371/journal.pone.0147428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christensen A, Juhl K, Persson M, Charabi BW, Mortensen J, Kiss K, et al. uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer: proof-of-concept in orthotopic xenograft model. Oncotarget. 2017;8:15407–19. https://doi.org/10.18632/oncotarget.14282.
Article
PubMed
Google Scholar
Juhl K, Christensen A, Rubek N, Karnov KKS, von Buchwald C, Kjaer A, et al. Oncotarget. 2019;10:6308–16. https://doi.org/10.18632/oncotarget.27220.
Article
PubMed
PubMed Central
Google Scholar
Kurbegovic S, Juhl K, Chen H, Qu C, Ding B, Leth JM, et al. Molecular targeted NIR-II probe for image-guided brain tumor surgery. Bioconjug Chem. 2018;29:3833–40. https://doi.org/10.1021/acs.bioconjchem.8b00669.
Article
CAS
PubMed
PubMed Central
Google Scholar
LeBeau AM, Duriseti S, Murphy ST, Pepin F, Hann B, Gray JW, et al. Targeting uPAR with antagonistic recombinant human antibodies in aggressive breast cancer. Cancer Res. 2013;73:2070–81. https://doi.org/10.1158/0008-5472.Can-12-3526.
Article
CAS
PubMed
PubMed Central
Google Scholar
LeBeau AM, Sevillano N, King ML, Duriseti S, Murphy ST, Craik CS, et al. Imaging the urokinase plasminongen activator receptor in preclinical breast cancer models of acquired drug resistance. Theranostics. 2014;4:267–79. https://doi.org/10.7150/thno.7323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boonstra MC, Van Driel P, Keereweer S, Prevoo H, Stammes MA, Baart VM, et al. Preclinical uPAR-targeted multimodal imaging of locoregional oral cancer. Oral Oncol. 2017;66:1–8. https://doi.org/10.1016/j.oraloncology.2016.12.026.
Article
CAS
PubMed
Google Scholar
Boonstra MC, van Driel PB, van Willigen DM, Stammes MA, Prevoo HA, Tummers QR, et al. uPAR-targeted multimodal tracer for pre- and intraoperative imaging in cancer surgery. Oncotarget. 2015;6:14260-14273. doi:10.18632/oncotarget.3680.
Appella E, Blasi F. The growth factor module of urokinase is the binding sequence for its receptor. Ann N Y Acad Sci. 1987;511:192–5. https://doi.org/10.1111/j.1749-6632.1987.tb36247.x.
Article
CAS
PubMed
Google Scholar
Lwin TM, Hoffman RM, Bouvet M. The development of fluorescence guided surgery for pancreatic cancer: from bench to clinic. Expert Rev Anticancer Ther. 2018;18:651–62. https://doi.org/10.1080/14737140.2018.1477593.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodson RJ, Doyle MV, Kaufman SE, Rosenberg S. High-affinity urokinase receptor antagonists identified with bacteriophage peptide display. Proc Natl Acad Sci U S A. 1994;91:7129–33. https://doi.org/10.1073/pnas.91.15.7129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ploug M, Østergaard S, Gårdsvoll H, Kovalski K, Holst-Hansen C, Holm A, et al. Peptide-derived antagonists of the urokinase receptor. affinity maturation by combinatorial chemistry, identification of functional epitopes, and inhibitory effect on cancer cell intravasation. Biochemistry. 2001;40:12157–68. https://doi.org/10.1021/bi010662g..
Article
CAS
PubMed
Google Scholar
Persson M, El Ali HH, Binderup T, Pfeifer A, Madsen J, Rasmussen P, et al. Dosimetry of 64Cu-DOTA-AE105, a PET tracer for uPAR imaging. Nucl Med Biol. 2014;41:290–5. https://doi.org/10.1016/j.nucmedbio.2013.12.007.
Article
CAS
PubMed
Google Scholar
Persson M, Hosseini M, Madsen J, Jørgensen TJ, Jensen KJ, Kjaer A, et al. Improved PET imaging of uPAR expression using new (64)cu-labeled cross-bridged peptide ligands: comparative in vitro and in vivo studies. Theranostics. 2013;3:618–32. https://doi.org/10.7150/thno.6810.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li ZB, Niu G, Wang H, He L, Yang L, Ploug M, et al. Imaging of urokinase-type plasminogen activator receptor expression using a 64Cu-labeled linear peptide antagonist by microPET. Clinical Cancer Research. 2008;14:4758–66. https://doi.org/10.1158/1078-0432.Ccr-07-4434.
Article
CAS
PubMed
Google Scholar
Persson M, Madsen J, Østergaard S, Jensen MM, Jørgensen JT, Juhl K, et al. Quantitative PET of human urokinase-type plasminogen activator receptor with 64Cu-DOTA-AE105: implications for visualizing cancer invasion. J Nuclear Medicine. 2012;53:138–45. https://doi.org/10.2967/jnumed.110.083386.
Article
CAS
Google Scholar
Skovgaard D, Persson M, Kjaer A. Imaging of prostate cancer using urokinase-type plasminogen activator receptor PET. PET Clin. 2017;12:243–55. https://doi.org/10.1016/j.cpet.2016.12.005.
Article
PubMed
Google Scholar
Pedersen SF, Petersen LR, Skovgaard DC, Persson M, Johannesen HH, Brandt-Larsen M, et al. Feasibility of 64Cu-DOTA-AE105 for arterial wall in vivo PET of the urokinase-plasminogen-activator-receptor (uPAR). J Nucl Med. 2016;57:1632.
Schmitt M, Mengele K, Napieralski R, Magdolen V, Reuning U, Gkazepis A, et al. Clinical utility of level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn. 2010;10:1051–67. https://doi.org/10.1586/erm.10.71.
Article
CAS
PubMed
Google Scholar
Duriseti S, Goetz DH, Hostetter DR, LeBeau AM, Wei Y, Craik CS. Antagonistic anti-urokinase plasminogen activator receptor (uPAR) antibodies significantly inhibit uPAR-mediated cellular signaling and migration. J Biol Chem. 2010;285:26878–88. https://doi.org/10.1074/jbc.M109.077677.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauer TW, Liu W, Fan F, Camp ER, Yang A, Somcio RJ, et al. Targeting of urokinase plasminogen activator receptor in human pancreatic carcinoma cells inhibits c-met- and insulin-like growth factor-I receptor-mediated migration and invasion and orthotopic tumor growth in mice. Cancer Res. 2005;65:7775–81. https://doi.org/10.1158/0008-5472.Can-05-0946.
Article
CAS
PubMed
Google Scholar
Rabbani SA, Ateeq B, Arakelian A, Valentino ML, Shaw DE, Dauffenbach LM, et al. An anti-urokinase plasminogen activator receptor antibody (ATN-658) blocks prostate cancer invasion, migration, growth, and experimental skeletal metastasis in vitro and in vivo. Neoplasia. 2010;12:778–88. https://doi.org/10.1593/neo.10296.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahmood N, Arakelian A, Khan HA, Tanvir I, Mazar AP, Rabbani SA. uPAR antibody (huATN-658) and Zometa reduce breast cancer growth and skeletal lesions. Bone Res. 2020;8:18. https://doi.org/10.1038/s41413-020-0094-3.
Article
CAS
PubMed
PubMed Central
Google Scholar