Gregoire C, Briquet A, Pirenne C, Lechanteur C, Louis E, Beguin Y. Allogeneic mesenchymal stromal cells for refractory luminal Crohn’s disease: a phase I–II study. Dig Liver Dis. 2018;50:1251–5.
PubMed
Google Scholar
Ma F, Li R, Tang H, Zhu T, Xu F, Zhu J. Regulation of autophagy in mesenchymal stem cells modulates therapeutic effects on spinal cord injury. Brain Res. 2019;1721:146321.
CAS
PubMed
Google Scholar
Calonge M, Pérez I, Galindo S, Nieto-Miguel T, López-Paniagua M, Fernández I, et al. A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency. Transl Res. 2019;206:18–40.
PubMed
Google Scholar
Satué M, Schüler C, Ginner N, Erben RG. Intra-articularly injected mesenchymal stem cells promote cartilage regeneration, but do not permanently engraft in distant organs. Sci Rep. 2019;9:10153.
PubMed
PubMed Central
Google Scholar
Hoogduijn MJ, Lombardo E. Mesenchymal stromal cells anno 2019: dawn of the therapeutic era? Concise Review. Stem Cells Transl Med. 2019;8:1126–34.
Krueger TEG, Thorek DLJ, Denmeade SR, Isaacs JT, Brennen WN. Concise review: mesenchymal stem cell-based drug delivery: the good, the bad, the ugly, and the promise. Stem Cells Transl Med. 2018;7:651–63.
PubMed
PubMed Central
Google Scholar
Serakinci N, Christensen R, Fahrioglu U, Sorensen FB, Dagnæs-Hansen F, Hajek M, et al. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma. Cancer Biother Radiopharm. 2011;26:767–73.
CAS
PubMed
Google Scholar
Kalamegam G, Memic A, Budd E, Abbas M, Mobasheri A. A comprehensive review of stem cells for cartilage regeneration in osteoarthritis. In: Turksen K (ed) Adv Exp Med Biol. Cham: Springer; 2018. p. 23–36.
Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ. The life and fate of mesenchymal stem cells. Front Immunol. 2014;5:148.
PubMed
PubMed Central
Google Scholar
Holvoet B, Quattrocelli M, Belderbos S, et al. Sodium iodide symporter PET and BLI noninvasively reveal mesoangioblast survival in dystrophic mice. Stem cell reports. 2015;5:1183–95.
CAS
PubMed
PubMed Central
Google Scholar
Leten C, Trekker J, Struys T, Dresselaers T, Gijsbers R, Vande VG, et al. Assessment of bystander killing-mediated therapy of malignant brain tumors using a multimodal imaging approach. Stem Cell Res Ther. 2015;6:163.
PubMed
PubMed Central
Google Scholar
Holvoet B, Leten C, Deroose CM, Himmelreich U. Noninvasive monitoring of suicide gene therapy by using multimodal molecular imaging. In: Methods Mol. Biol. New York: Springer New York; 2019. p. 123–34.
Google Scholar
Kim MH, Lee YJ, Kang JH. Stem cell monitoring with a direct or indirect labeling method. Nucl Med Mol Imaging (2010). 2016;50:275–83.
CAS
Google Scholar
Himmelreich U, Dresselaers T. Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods. 2009;48:112–24.
CAS
PubMed
Google Scholar
Srivastava AK, Bulte JWM. Seeing stem cells at work in vivo. Stem Cell Rev Reports. 2014;10:127–44.
Google Scholar
Tietze R, Zaloga J, Unterweger H, Lyer S, Friedrich RP, Janko C, et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun. 2015;468:463–70.
CAS
PubMed
Google Scholar
Luong TT, Knoppe S, Bloemen M, Brullot W, Strobbe R, Locquet J-P, et al. Magnetothermal release of payload from iron oxide/silica drug delivery agents. J Magn Magn Mater. 2016;416:194–9.
CAS
Google Scholar
Debbage P, Jaschke W. Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol. 2008;130:845–75.
CAS
PubMed
Google Scholar
Terreno E, Castelli DD, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chem Rev. 2010;110:3019–42.
CAS
PubMed
Google Scholar
Wolfs E, Struys T, Notelaers T, et al. 18F-FDG labeling of mesenchymal stem cells and multipotent adult progenitor cells for PET imaging: effects on ultrastructure and differentiation capacity. J Nucl Med. 2013;54:447–54.
CAS
PubMed
Google Scholar
MacAskill MG, Tavares AS, Wu J, Lucatelli C, Mountford JC, Baker AH, et al. PET cell tracking using 18F-FLT is not limited by local reuptake of free radiotracer. Sci Rep. 2017;7:44233.
CAS
PubMed
PubMed Central
Google Scholar
Lanfranca MP, Lazarus J, Shao X, Nathan H, Di Magliano MP, Zou W, et al. Tracking macrophage infiltration in a mouse model of pancreatic cancer with the positron emission tomography tracer [11C]PBR28. J Surg Res. 2018;232:570–7.
CAS
PubMed
PubMed Central
Google Scholar
Neyrinck K, Breuls N, Holvoet B, et al. The human somatostatin receptor type 2 as an imaging and suicide reporter gene for pluripotent stem cell-derived therapy of myocardial infarction. Theranostics. 2018;8:2799–813.
CAS
PubMed
PubMed Central
Google Scholar
Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17:545–80.
CAS
PubMed
Google Scholar
Kiani A, Esquevin A, Lepareur N, Bourguet P, Le Jeune F, Gauvrit J. Main applications of hybrid PET-MRI contrast agents: a review. Contrast Media Mol Imaging. 2016;11:92–8.
CAS
PubMed
Google Scholar
Lahooti A, Sarkar S, Laurent S, Shanehsazzadeh S. Dual nano-sized contrast agents in PET/MRI: a systematic review. Contrast Media Mol Imaging. 2016;11:428–47.
CAS
PubMed
Google Scholar
Abou DS, Thorek DLJ, Ramos NN, Pinkse MWH, Wolterbeek HT, Carlin SD, et al. 89Zr-labeled paramagnetic octreotide-liposomes for PET-MR imaging of cancer. Pharm Res. 2013;30:878–88.
CAS
PubMed
Google Scholar
Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, et al. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials. 2010;31:3016–22.
CAS
PubMed
PubMed Central
Google Scholar
Fernández-Barahona I, Muñoz-Hernando M, Pellico J, Ruiz-Cabello J, Herranz F. Molecular imaging with 68Ga radio-nanomaterials: shedding light on nanoparticles. Appl Sci. 2018;8:1098.
Google Scholar
Lee SB, Kumar D, Li Y, Lee I-K, Cho SJ, Kim SK, et al. PEGylated crushed gold shell-radiolabeled core nanoballs for in vivo tumor imaging with dual positron emission tomography and Cerenkov luminescent imaging. J Nanobiotechnology. 2018;16:41.
PubMed
PubMed Central
Google Scholar
Cui X, Belo S, Krüger D, et al. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging. Biomaterials. 2014;35:5840–6.
CAS
PubMed
PubMed Central
Google Scholar
Thomas G, Boudon J, Maurizi L, et al. Innovative magnetic nanoparticles for PET/MRI bimodal imaging. ACS Omega. 2019;4:2637–48.
CAS
PubMed
PubMed Central
Google Scholar
McBride WJ, Sharkey RM, Goldenberg DM. Radiofluorination using aluminum-fluoride (Al18F). EJNMMI Res. 2013;3:36.
PubMed
PubMed Central
Google Scholar
Li L. The biochemistry and physiology of metallic fluoride: action, mechanism, and implications. Crit Rev Oral Biol Med. 2003;14:100–14.
PubMed
Google Scholar
González-Gómez MA, Belderbos S, Yañez-Vilar S, Piñeiro Y, Cleeren F, Bormans G, et al. Development of superparamagnetic nanoparticles coated with polyacrylic acid and aluminum hydroxide as an efficient contrast agent for multimodal imaging. Nanomaterials. 2019;9:1626.
PubMed Central
Google Scholar
Leten C. Multi-modal small animal imaging of brain tumor therapy assessment. PhD Thesis. Leuven: KU Leuven; 2014.
Park E-J, Oh SY, Kim Y, Yoon C, Lee B-S, Kim SD, et al. Distribution and immunotoxicity by intravenous injection of iron nanoparticles in a murine model. J Appl Toxicol. 2016;36:414–23.
CAS
PubMed
Google Scholar
Park E-J, Lee G-H, Yoon C, Jeong U, Kim Y, Cho M-H, et al. Biodistribution and toxicity of spherical aluminum oxide nanoparticles. J Appl Toxicol. 2016;36:424–33.
CAS
PubMed
Google Scholar
Cleeren F, Lecina J, Ahamed M, et al. Al18F-labeling of heat-sensitive biomolecules for positron emission tomography imaging. Theranostics. 2017;7:2924–39.
CAS
PubMed
PubMed Central
Google Scholar
Thonon D, Goblet D, Goukens E, Kaisin G, Paris J, Aerts J, et al. Fully automated preparation and conjugation of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) with RGD peptide using a GE FASTlabTM synthesizer. Mol Imaging Biol. 2011;13:1088–95.
PubMed
Google Scholar
Olberg DE, Arukwe JM, Grace D, Hjelstuen OK, Solbakken M, Kindberg GM, et al. One step radiosynthesis of 6-[18 F]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ([18F]F-Py-TFP): a new prosthetic group for efficient labeling of biomolecules with fluorine-18. J Med Chem. 2010;53:1732–40.
CAS
PubMed
Google Scholar
Stéen EJL, Edem PE, Nørregaard K, Jørgensen JT, Shalgunov V, Kjaer A, et al. Pretargeting in nuclear imaging and radionuclide therapy: improving efficacy of theranostics and nanomedicines. Biomaterials. 2018;179:209–45.
PubMed
Google Scholar
Billaud EMF, Belderbos S, Cleeren F, Maes W, Van de Wouwer M, Koole M, et al. Pretargeted PET imaging using a bioorthogonal 18F-labeled trans-cyclooctene in an ovarian carcinoma model. Bioconjug Chem. 2017;28:2915–20.
CAS
PubMed
Google Scholar
Sun Y, Yu M, Liang S, et al. Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials. 2011;32:2999–3007.
CAS
PubMed
Google Scholar
Keliher EJ, Yoo J, Nahrendorf M, Lewis JS, Marinelli B, Newton A, et al. 89 Zr-labeled dextran nanoparticles allow in vivo macrophage imaging. Bioconjug Chem. 2011;22:2383–9.
CAS
PubMed
PubMed Central
Google Scholar
Wilks M, Reeves P, Yuan H, Kools F, Takahashi K, Kaittanis C, et al. In vivo PET imaging of T-cell trafficking by 89Zr-radiolabeled nanoparticles; 2017. Society of Nuclear Medicine.
Google Scholar
Wilks M, Albrecht D, Yuan H, El Fakhri G, Brugarolas P, Normandin M. 89Zr-nanoparticle based PET imaging of B-cell trafficking in a murine model of multiple sclerosis. In: J. Nucl. Med. Society of nuclear medicine; 2018. p. 264.
Google Scholar
Hinds KA, Hill JM, Shapiro EM, Laukkanen MO, Silva AC, Combs CA, et al. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood. 2003;102:867–72.
CAS
PubMed
Google Scholar
Heyn C, Ronald JA, Ramadan SS, et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med. 2006;56:1001–10.
PubMed
Google Scholar
Struys T, Ketkar-Atre A, Gervois P, et al. Magnetic resonance imaging of human dental pulp stem cells in vitro and in vivo. Cell Transplant. 2013;22:1813–29.
CAS
PubMed
Google Scholar
Garcia Ribeiro RS, Gysemans C, da Cunha JPMCM, et al. Magnetoliposomes as contrast agents for longitudinal in vivo assessment of transplanted pancreatic islets in a diabetic rat model. Sci Rep. 2018;8:11487.
PubMed
PubMed Central
Google Scholar
Himmelreich U, Hoehn M. Stem cell labeling for magnetic resonance imaging. Minim Invasive Ther Allied Technol. 2008;17:132–42.
PubMed
Google Scholar
Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol. 2010;188:759–68.
CAS
PubMed
PubMed Central
Google Scholar
Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol. 2012;3:297.
CAS
PubMed
PubMed Central
Google Scholar
Lu W, Fu C, Song L, Yao Y, Zhang X, Chen Z, et al. Exposure to supernatants of macrophages that phagocytized dead mesenchymal stem cells improves hypoxic cardiomyocytes survival. Int J Cardiol. 2013;165:333–40.
PubMed
Google Scholar
Wang H, Sebrié C, Ruaud J-P, Guillot G, Bouazizi-Verdier K, Willoquet G, et al. Aerosol deposition in the lungs of spontaneously breathing rats using Gd-DOTA-based contrast agents and ultra-short echo time MRI at 1.5 tesla. Magn Reson Med. 2016;75:594–605.
PubMed
Google Scholar
Hong W, He Q, Fan S, Carl M, Shao H, Chen J, et al. Imaging and quantification of iron-oxide nanoparticles (IONP) using MP-RAGE and UTE based sequences. Magn Reson Med. 2017;78:226–32.
CAS
PubMed
Google Scholar
Jadvar H, Desai B, Conti PS. Sodium 18F-fluoride PET/CT of bone, joint, and other disorders. Semin Nucl Med. 2015;45:58–65.
PubMed
PubMed Central
Google Scholar
Cleeren F, Lecina J, Billaud EMF, Ahamed M, Verbruggen A, Bormans GM. New chelators for low temperature Al 18 F-labeling of biomolecules. Bioconjug Chem. 2016;27:790–8.
CAS
PubMed
Google Scholar
Elsasser-Beile U, Reischl G, Wiehr S, Buhler P, Wolf P, Alt K, et al. PET imaging of prostate cancer xenografts with a highly specific antibody against the prostate-specific membrane antigen. J Nucl Med. 2009;50:606–11.
PubMed
Google Scholar
Rolle A-M, Hasenberg M, Thornton CR, et al. ImmunoPET/MR imaging allows specific detection of aspergillus fumigatus lung infection in vivo. Proc Natl Acad Sci. 2016;113:E1026–33.
CAS
PubMed
Google Scholar
Manshian BB, Munck S, Agostinis P, Himmelreich U, Soenen SJ. High content analysis at single cell level identifies different cellular responses dependent on nanomaterial concentrations. Sci Rep. 2015;5:13890.
PubMed
PubMed Central
Google Scholar