Abi-Dargham A, van de Giessen E, Slifstein M, Kegeles LS, Laruelle M. Baseline and amphetamine-stimulated dopamine activity are related in drug-naive schizophrenic subjects. Biological Psychiatry. 2009;65:1091–3. https://doi.org/10.1016/j.biopsych.2008.12.007.
Article
CAS
PubMed
Google Scholar
Murnane KS, Howell LL. Neuroimaging and drug taking in primates. Psychopharmacology. 2011;216:153–71. https://doi.org/10.1007/s00213-011-2222-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kugaya A, Fujita M, Innis RB. Applications of SPECT imaging of dopaminergic neurotransmission in neuropsychiatric disorders. Ann Nucl Med. 2000;14:1–9.
Article
CAS
Google Scholar
Laruelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab. 2000;20:423–51. https://doi.org/10.1097/00004647-200003000-00001.
Article
CAS
PubMed
Google Scholar
de Paulis T. The discovery of epidepride and its analogs as high-affinity radioligands for imaging extrastriatal dopamine D(2) receptors in human brain. Curr Pharm Des. 2003;9:673–96.
Article
Google Scholar
Ichise M, Fujita M, Seibyl JP, Verhoeff NP, Baldwin RM, Zoghbi SS, et al. Graphical analysis and simplified quantification of striatal and extrastriatal dopamine D2 receptor binding with [123I]epidepride SPECT. J Nucl Med. 1999;40:1902–12.
CAS
PubMed
Google Scholar
Kessler RM, Ansari MS, de Paulis T, Schmidt DE, Clanton JA, Smith HE, et al. High affinity dopamine D2 receptor radioligands. 1. Regional rat brain distribution of iodinated benzamides. J Nucl Med. 1991;32:1593–600.
CAS
PubMed
Google Scholar
Leslie WD, Abrams DN, Greenberg CR, Hobson D. Comparison of iodine-123-epidepride and iodine-123-IBZM for dopamine D2 receptor imaging. J Nucl Med. 1996;37:1589–91.
CAS
PubMed
Google Scholar
Norbak-Emig H, Pinborg LH, Raghava JM, Svarer C, Baare WF, Allerup P, et al. Extrastriatal dopamine D2/3 receptors and cortical grey matter volumes in antipsychotic-naive schizophrenia patients before and after initial antipsychotic treatment. World J Biol Psychiatry. 2016:1–11. https://doi.org/10.1080/15622975.2016.1237042.
Nørbak-Emig H, Ebdrup BH, Fagerlund B, Svarer C, Rasmussen H, Friberg L, et al. Frontal D2/3receptor availability in schizophrenia patients before and after their first antipsychotic treatment: relation to cognitive functions and psychopathology. Int J Neuropsychopharmacol. 2016;19:pyw006. doi:https://doi.org/10.1093/ijnp/pyw006.
Fagerlund B, Pinborg LH, Mortensen EL, Friberg L, Baare WF, Gade A, et al. Relationship of frontal D(2/3) binding potentials to cognition: a study of antipsychotic-naive schizophrenia patients. Int J Neuropsychopharmacol. 2013;16:23–36. https://doi.org/10.1017/S146114571200003X.
Article
CAS
PubMed
Google Scholar
Tuppurainen H, Kuikka JT, Viinamaki H, Husso M, Tiihonen J. Dopamine D2/3 receptor binding potential and occupancy in midbrain and temporal cortex by haloperidol, olanzapine and clozapine. Psychiatry Clin Neurosci. 2009;63:529–37. https://doi.org/10.1111/j.1440-1819.2009.01982.x.
Article
CAS
PubMed
Google Scholar
Lehto SM, Kuikka J, Tolmunen T, Hintikka J, Viinamaki H, Vanninen R, et al. Altered hemispheric balance of temporal cortex dopamine D(2/3) receptor binding in major depressive disorder. Psychiatry Res. 2009;172:251. https://doi.org/10.1016/j.pscychresns.2009.02.004.
Article
PubMed
Google Scholar
Kegeles LS, Slifstein M, Frankle WG, Xu X, Hackett E, Bae SA, et al. Dose-occupancy study of striatal and extrastriatal dopamine D2 receptors by aripiprazole in schizophrenia with PET and [18F]fallypride. Neuropsychopharmacology. 2008;33:3111–25. https://doi.org/10.1038/npp.2008.33.
Article
CAS
PubMed
Google Scholar
Tuppurainen H, Kuikka JT, Laakso MP, Viinamaki H, Husso M, Tiihonen J. Midbrain dopamine D2/3 receptor binding in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2006;256:382–7. https://doi.org/10.1007/s00406-006-0649-3.
Article
PubMed
Google Scholar
Fujita M, Seibyl JP, Verhoeff NP, Ichise M, Baldwin RM, Zoghbi SS, et al. Kinetic and equilibrium analyses of [(123)I]epidepride binding to striatal and extrastriatal dopamine D(2) receptors. Synapse. 1999;34:290–304. https://doi.org/10.1002/(SICI)1098-2396(19991215)34:4<290::AID-SYN5>3.0.CO;2-B.
Article
CAS
PubMed
Google Scholar
Varrone A, Fujita M, Verhoeff NP, Zoghbi SS, Baldwin RM, Rajeevan N, et al. Test-retest reproducibility of extrastriatal dopamine D2 receptor imaging with [123I]epidepride SPECT in humans. J Nucl Med. 2000;41:1343–51.
CAS
PubMed
Google Scholar
Fujita M, Verhoeff NP, Varrone A, Zoghbi SS, Baldwin RM, Jatlow PA, et al. Imaging extrastriatal dopamine D(2) receptor occupancy by endogenous dopamine in healthy humans. Eur J Pharmacol. 2000;387:179–88.
Article
CAS
Google Scholar
Meikle SR, Kench P, Kassiou M, Banati RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol. 2005;50:R45–61. https://doi.org/10.1088/0031-9155/50/22/R01.
Article
CAS
PubMed
Google Scholar
Pandey S, Venugopal A, Kant R, Coleman R, Mukherjee J. (1)(2)(4)I-Epidepride: a PET radiotracer for extended imaging of dopamine D2/D3 receptors. Nucl Med Biol. 2014;41:426-431. doi:https://doi.org/10.1016/j.nucmedbio.2014.01.011.
Delforge J, Spelle L, Bendriem B, Samson Y, Syrota A. Parametric images of benzodiazepine receptor concentration using a partial-saturation injection. J Cereb Blood Flow Metab. 1997;17:343–55. https://doi.org/10.1097/00004647-199703000-00011.
Article
CAS
PubMed
Google Scholar
Delforge J, Spelle L, Bendriem B, Samson Y, Bottlaender M, Papageorgiou S, et al. Quantitation of benzodiazepine receptors in human brain using the partial saturation method. J Nucl Med. 1996;37:5–11.
CAS
PubMed
Google Scholar
Tsartsalis S, Tournier BB, Aoun K, Habiby S, Pandolfo D, Dimiziani A, et al. A single-scan protocol for absolute D2/3 receptor quantification with [123I]IBZM SPECT. NeuroImage. 2017;147:461–72. https://doi.org/10.1016/j.neuroimage.2016.12.050.
Article
CAS
PubMed
Google Scholar
Wimberley CJ, Fischer K, Reilhac A, Pichler BJ, Gregoire MC. A data driven method for estimation of B and appK using a single injection protocol with [C]raclopride in the mouse. Neuroimage. 2014. https://doi.org/10.1016/j.neuroimage.2014.05.050.
Wimberley C, Angelis G, Boisson F, Callaghan P, Fischer K, Pichler BJ, et al. Simulation-based optimisation of the PET data processing for Partial Saturation Approach protocols. Neuroimage. 2014;97c:29–40. https://doi.org/10.1016/j.neuroimage.2014.04.010.
Article
Google Scholar
Delforge J, Syrota A, Mazoyer BM. Identifiability analysis and parameter identification of an in vivo ligand-receptor model from PET data. IEEE Trans Biomed Eng. 1990;37:653–61. https://doi.org/10.1109/10.55673.
Article
CAS
PubMed
Google Scholar
Tsartsalis S, Moulin-Sallanon M, Dumas N, Tournier BB, Ghezzi C, Charnay Y, et al. Quantification of GABAA receptors in the rat brain with [(123)I]Iomazenil SPECT from factor analysis-denoised images. Nucl Med Biol. 2014;41:186–95. https://doi.org/10.1016/j.nucmedbio.2013.11.008.
Article
CAS
PubMed
Google Scholar
Millet P, Moulin-Sallanon M, Tournier BB, Dumas N, Charnay Y, Ibanez V, et al. Quantification of dopamine D(2/3) receptors in rat brain using factor analysis corrected [18F]Fallypride images. Neuroimage. 2012;62:1455–68. https://doi.org/10.1016/j.neuroimage.2012.05.075.
Article
CAS
PubMed
Google Scholar
Zamek-Gliszczynski MJ, Bedwell DW, Bao JQ, Higgins JW. Characterization of SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats using loperamide, paclitaxel, sulfasalazine, and carboxydichlorofluorescein pharmacokinetics. Drug Metab Dispos. 2012;40:1825–33. https://doi.org/10.1124/dmd.112.046508.
Article
CAS
PubMed
Google Scholar
Tsartsalis S, Tournier BB, Huynh-Gatz T, Dumas N, Ginovart N, Moulin-Sallanon M, et al. 5-HT2A receptor SPECT imaging with [(1)(2)(3)I]R91150 under P-gp inhibition with tariquidar: more is better? Nucl Med Biol. 2016;43:81–8. https://doi.org/10.1016/j.nucmedbio.2015.09.003.
Article
CAS
PubMed
Google Scholar
Piel M, Schmitt U, Bausbacher N, Buchholz HG, Grunder G, Hiemke C, et al. Evaluation of P-glycoprotein (abcb1a/b) modulation of [F]fallypride in MicroPET imaging studies. Neuropharmacology. 2013. https://doi.org/10.1016/j.neuropharm.2013.04.062.
Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Progress Neurobiol. 2005;76:22–76. https://doi.org/10.1016/j.pneurobio.2005.04.006.
Article
CAS
Google Scholar
Dumas N, Moulin-Sallanon M, Fender P, Tournier BB, Ginovart N, Charnay Y, et al. In vivo quantification of 5-HT2A brain receptors in Mdr1a KO rats with 123I-R91150 single-photon emission computed tomography. Molecular imaging. 2015;14. https://doi.org/10.2310/7290.2015.00006.
Dumas N, Moulin-Sallanon M, Ginovart N, Tournier BB, Suzanne P, Cailly T, et al. Small-animal single-photon emission computed tomographic imaging of the brain serotoninergic systems in wild-type and mdr1a knockout rats. Molecular imaging. 2014;13. https://doi.org/10.2310/7290.2013.00072.
Tsartsalis S, Tournier BB, Graf CE, Ginovart N, Ibanez V, Millet P. Dynamic image denoising for voxel-wise quantification with statistical parametric mapping in molecular neuroimaging. PLoS One. 2018;13:e0203589. https://doi.org/10.1371/journal.pone.0203589.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Paola R, Bazin JP, Aubry F, Aurengo A, Cavailloles F, Herry JY, et al. Handling of dynamic sequences in nuclear medicine. IEEE Trans on Nuclear Science. 1982;NS29:1310-21.
Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL. Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods. 2006;155:272–84. https://doi.org/10.1016/j.jneumeth.2006.01.027.
Article
CAS
PubMed
Google Scholar
Millet P, Graf C, Moulin M, Ibanez V. SPECT quantification of benzodiazepine receptor concentration using a dual-ligand approach. J Nucl Med. 2006;47:783–92.
PubMed
Google Scholar
Millet P, Delforge J, Mauguiere F, Pappata S, Cinotti L, Frouin V, et al. Parameter and index images of benzodiazepine receptor concentration in the brain. J Nucl Med. 1995;36:1462–71.
CAS
PubMed
Google Scholar
Ginovart N, Wilson AA, Meyer JH, Hussey D, Houle S. Positron emission tomography quantification of [(11)C]-DASB binding to the human serotonin transporter: modeling strategies. J Cereb Blood Flow Metab. 2001;21:1342–53. https://doi.org/10.1097/00004647-200111000-00010.
Article
CAS
PubMed
Google Scholar
Millet P, Ibanez V, Delforge J, Pappata S, Guimon J. Wavelet analysis of dynamic PET data: application to the parametric imaging of benzodiazepine receptor concentration. Neuroimage. 2000;11:458–72. https://doi.org/10.1006/nimg.2000.0563.
Article
CAS
PubMed
Google Scholar
Delforge J, Bottlaender M, Loc'h C, Guenther I, Fuseau C, Bendriem B, et al. Quantitation of extrastriatal D2 receptors using a very high-affinity ligand (FLB 457) and the multi-injection approach. J Cereb Blood Flow Metab. 1999;19:533–46. https://doi.org/10.1097/00004647-199905000-00008.
Article
CAS
PubMed
Google Scholar
Tsartsalis S, Dumas N, Tournier BB, Pham T, Moulin-Sallanon M, Gregoire MC, et al. SPECT imaging of glioma with radioiodinated CLINDE: evidence from a mouse GL26 glioma model. EJNMMI Res. 2015;5:9. https://doi.org/10.1186/s13550-015-0092-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Millet P, Moulin M, Bartoli A, Del Guerra A, Ginovart N, Lemoucheux L, et al. In vivo quantification of 5-HT1A-[18F]MPPF interactions in rats using the YAP-(S)PET scanner and a beta-microprobe. Neuroimage. 2008;41:823–34. https://doi.org/10.1016/j.neuroimage.2008.02.062.
Article
PubMed
Google Scholar
Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol. 1984;15:217–27. https://doi.org/10.1002/ana.410150302.
Article
CAS
PubMed
Google Scholar
Gandelman MS, Baldwin RM, Zoghbi SS, Zea-Ponce Y, Innis RB. Evaluation of ultrafiltration for the free-fraction determination of single photon emission computed tomography (SPECT) radiotracers: beta-CIT, IBF, and iomazenil. J Pharm Sci. 1994;83:1014–9.
Article
CAS
Google Scholar
Delforge J, Syrota A, Bendriem B. Concept of reaction volume in the in vivo ligand-receptor model. J Nucl Med. 1996;37:118–25.
CAS
PubMed
Google Scholar
Delforge J, Bottlaender M, Loc'h C, Dolle F, Syrota A. Parametric images of the extrastriatal D2 receptor density obtained using a high-affinity ligand (FLB 457) and a double-saturation method. J Cereb Blood Flow Metab. 2001;21:1493–503. https://doi.org/10.1097/00004647-200112000-00014.
Article
CAS
PubMed
Google Scholar
Pinborg LH, Videbaek C, Ziebell M, Mackeprang T, Friberg L, Rasmussen H, et al. [123I]Epidepride binding to cerebellar dopamine D2/D3 receptors is displaceable: implications for the use of cerebellum as a reference region. NeuroImage. 2007;34:1450–3. https://doi.org/10.1016/j.neuroimage.2006.11.003.
Article
PubMed
Google Scholar
Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9. https://doi.org/10.1038/sj.jcbfm.9600493.
Article
CAS
PubMed
Google Scholar
Turrone P, Remington G, Kapur S, Nobrega JN. Differential effects of within-day continuous vs. transient dopamine D2 receptor occupancy in the development of vacuous chewing movements (VCMs) in rats. Neuropsychopharmacology. 2003;28:1433–9. https://doi.org/10.1038/sj.npp.1300233.
Article
CAS
PubMed
Google Scholar
Ginovart N, Wilson AA, Hussey D, Houle S, Kapur S. D2-Receptor upregulation is dependent upon temporal course of D2-occupancy: a longitudinal [11C]-raclopride PET study in cats. Neuropsychopharmacology. 2008;34:662–71. https://doi.org/10.1038/npp.2008.116.
Article
CAS
PubMed
Google Scholar
Morris ED, Yoder KK. Positron emission tomography displacement sensitivity: predicting binding potential change for positron emission tomography tracers based on their kinetic characteristics. J Cereb Blood Flow Metab. 2007;27:606–17. https://doi.org/10.1038/sj.jcbfm.9600359.
Article
CAS
PubMed
Google Scholar
Caravaggio F, Iwata Y, Kim J, Shah P, Gerretsen P, Remington G, et al. What proportion of striatal D2 receptors are occupied by endogenous dopamine at baseline? A meta-analysis with implications for understanding antipsychotic occupancy. Neuropharmacology. 2019. https://doi.org/10.1016/j.neuropharm.2019.03.034.
Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB, Slifstein M, et al. Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry. 2010;67:231–9. https://doi.org/10.1001/archgenpsychiatry.2010.10.
Article
CAS
PubMed
Google Scholar
Lehto SM, Kuikka J, Tolmunen T, Hintikka J, Viinamaki H, Vanninen R, et al. Temporal cortex dopamine D2/3 receptor binding in major depression. Psychiatry Clin Neurosci. 2008;62:345–8. https://doi.org/10.1111/j.1440-1819.2008.01814.x.
Article
PubMed
Google Scholar
Tuppurainen H, Kuikka J, Viinamaki H, Husso-Saastamoinen M, Bergstrom K, Tiihonen J. Extrastriatal dopamine D 2/3 receptor density and distribution in drug-naive schizophrenic patients. Molecular Psychiatry. 2003;8:453–5. https://doi.org/10.1038/sj.mp.4001334.
Article
CAS
PubMed
Google Scholar
Glenthoj BY, Mackeprang T, Svarer C, Rasmussen H, Pinborg LH, Friberg L, et al. Frontal dopamine D(2/3) receptor binding in drug-naive first-episode schizophrenic patients correlates with positive psychotic symptoms and gender. Biological psychiatry. 2006;60:621–9. https://doi.org/10.1016/j.biopsych.2006.01.010.
Article
CAS
PubMed
Google Scholar
Ginovart N, Kapur S. Role of dopamine D(2) receptors for antipsychotic activity. Handb Exp Pharmacol. 2012:27–52. https://doi.org/10.1007/978-3-642-25761-2_2.