Bisceglia I, Cartoni D, Petrolati S. Concepts in cardiac oncology. Eur Heart J Suppl. 2020;22:L19-l23. https://doi.org/10.1093/eurheartj/suaa127.
Article
PubMed
PubMed Central
Google Scholar
de Geus-Oei LF, Mavinkurve-Groothuis AM, Bellersen L, Gotthardt M, Oyen WJ, Kapusta L, van Laarhoven HW. Scintigraphic techniques for early detection of cancer treatment-induced cardiotoxicity. J Nucl Med Technol. 2013;41(3):170–81. https://doi.org/10.2967/jnumed.110.082784.
Article
CAS
PubMed
Google Scholar
Zaha VG, Meijers WC, Moslehi J. Cardio-immuno-oncology. Circulation. 2020;141:87–9. https://doi.org/10.1161/circulationaha.119.042276.
Article
PubMed
PubMed Central
Google Scholar
Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: an update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 2021;139: 111708. https://doi.org/10.1016/j.biopha.2021.111708.
Article
CAS
PubMed
Google Scholar
Čelutkienė J, Pudil R, López-Fernández T, Grapsa J, Nihoyannopoulos P, Bergler-Klein J, et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC). Eur J Heart Fail. 2020;22:1504–24. https://doi.org/10.1002/ejhf.1957.
Article
CAS
PubMed
Google Scholar
Altena R, Perik PJ, van Veldhuisen DJ, de Vries EG, Gietema JA. Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet Oncol. 2009;10:391–9. https://doi.org/10.1016/s1470-2045(09)70042-7.
Article
CAS
PubMed
Google Scholar
Soufer A, Liu C, Henry ML, Baldassarre LA. Nuclear cardiology in the context of multimodality imaging to detect cardiac toxicity from cancer therapeutics: Established and emerging methods. J Nucl Cardiol. 2020;27:1210–24. https://doi.org/10.1007/s12350-019-01671-6.
Article
PubMed
Google Scholar
Laursen AH, Ripa RS, Hasbak P, Kjær A, Elming MB, Køber L, et al. (123)I-MIBG for detection of subacute doxorubicin-induced cardiotoxicity in patients with malignant lymphoma. J Nucl Cardiol. 2020;27:931–9. https://doi.org/10.1007/s12350-018-01566-y.
Article
PubMed
Google Scholar
Bauckneht M, Ferrarazzo G, Fiz F, Morbelli S, Sarocchi M, Pastorino F, et al. Doxorubicin effect on myocardial metabolism as a prerequisite for subsequent development of cardiac toxicity: a translational (18)F-FDG PET/CT observation. J Nucl Med. 2017;58:1638–45. https://doi.org/10.2967/jnumed.117.191122.
Article
CAS
PubMed
Google Scholar
Bulten BF, Sollini M, Boni R, Massri K, de Geus-Oei LF, van Laarhoven HWM, et al. Cardiac molecular pathways influenced by doxorubicin treatment in mice. Sci Rep. 2019;9:2514. https://doi.org/10.1038/s41598-019-38986-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Cho SG, Kang SR, Yoo SW, Kwon SY, Min JJ, et al. Association between FDG uptake in the right ventricular myocardium and cancer therapy-induced cardiotoxicity. J Nucl Cardiol. 2020;27:2154–63. https://doi.org/10.1007/s12350-019-01617-y.
Article
PubMed
Google Scholar
Sarocchi M, Bauckneht M, Arboscello E, Capitanio S, Marini C, Morbelli S, et al. An increase in myocardial 18-fluorodeoxyglucose uptake is associated with left ventricular ejection fraction decline in Hodgkin lymphoma patients treated with anthracycline. J Transl Med. 2018;16:295. https://doi.org/10.1186/s12967-018-1670-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen LJ, Lu S, Zhou YH, Li L, Xing QM, Xu YL. Developing a rat model of dilated cardiomyopathy with improved survival. J Zhejiang Univ Sci B. 2016;17:975–83. https://doi.org/10.1631/jzus.B1600257.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauckneht M, Pastorino F, Castellani P, Cossu V, Orengo AM, Piccioli P, et al. Increased myocardial (18)F-FDG uptake as a marker of Doxorubicin-induced oxidative stress. J Nucl Cardiol. 2020;27:2183–94. https://doi.org/10.1007/s12350-019-01618-x.
Article
PubMed
Google Scholar
Courteau A, McGrath J, Walker PM, Pegg R, Martin G, Garipov R, et al. Performance evaluation and compatibility studies of a compact preclinical scanner for simultaneous PET/MR imaging at 7 tesla. IEEE Trans Med Imaging. 2021;40:205–17. https://doi.org/10.1109/tmi.2020.3024722.
Article
PubMed
Google Scholar
Bulten BF, Verberne HJ, Bellersen L, Oyen WJ, Sabaté-Llobera A, Mavinkurve-Groothuis AM, et al. Relationship of promising methods in the detection of anthracycline-induced cardiotoxicity in breast cancer patients. Cancer Chemother Pharmacol. 2015;76:957–67. https://doi.org/10.1007/s00280-015-2874-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carrió I, Estorch M, Berná L, López-Pousa J, Tabernero J, Torres G. Indium-111-antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity. J Nucl Med. 1995;36:2044–9.
PubMed
Google Scholar
Lekakis J, Prassopoulos V, Athanassiadis P, Kostamis P, Moulopoulos S. Doxorubicin-induced cardiac neurotoxicity: study with iodine 123-labeled metaiodobenzylguanidine scintigraphy. J Nucl Cardiol. 1996;3:37–41. https://doi.org/10.1016/s1071-3581(96)90022-7.
Article
CAS
PubMed
Google Scholar
Jeon TJ, Lee JD, Ha JW, Yang WI, Cho SH. Evaluation of cardiac adrenergic neuronal damage in rats with doxorubicin-induced cardiomyopathy using iodine-131 MIBG autoradiography and PGP 9.5 immunohistochemistry. Eur J Nucl Med. 2000;27:686–93. https://doi.org/10.1007/s002590050563.
Article
CAS
PubMed
Google Scholar
Wakasugi S, Fischman AJ, Babich JW, Aretz HT, Callahan RJ, Nakaki M, Wilkinson R, Strauss HW. Metaiodobenzylguanidine: evaluation of its potential as a tracer for monitoring doxorubicin cardiomyopathy. J Nucl Med. 1993;34:1283–6.
CAS
PubMed
Google Scholar
Wakasugi S, Inoue M, Tazawa S. Assessment of adrenergic neuron function altered with progression of heart failure. J Nucl Med. 1995;36:2069–74.
CAS
PubMed
Google Scholar
Gimelli A, Liga R, Agostini D, Bengel FM, Ernst S, Hyafil F, et al. The role of myocardial innervation imaging in different clinical scenarios: an expert document of the European Association of Cardiovascular Imaging and Cardiovascular Committee of the European Association of Nuclear Medicine. Eur Heart J Cardiovasc Imaging. 2021;22:480–90. https://doi.org/10.1093/ehjci/jeab007.
Article
PubMed
Google Scholar
Kobayashi R, Chen X, Werner RA, Lapa C, Javadi MS, Higuchi T. New horizons in cardiac innervation imaging: introduction of novel (18)F-labeled PET tracers. Eur J Nucl Med Mol Imaging. 2017;44:2302–9. https://doi.org/10.1007/s00259-017-3828-8.
Article
PubMed
Google Scholar
Higuchi T, Yousefi BH, Kaiser F, Gärtner F, Rischpler C, Reder S, et al. Assessment of the 18F-labeled PET tracer LMI1195 for imaging norepinephrine handling in rat hearts. J Nucl Med. 2013;54:1142–6. https://doi.org/10.2967/jnumed.112.104232.
Article
CAS
PubMed
Google Scholar
Werner RA, Rischpler C, Onthank D, Lapa C, Robinson S, Samnick S, et al. Retention kinetics of the 18F-labeled sympathetic nerve PET tracer LMI1195: comparison with 11C-hydroxyephedrine and 123I-MIBG. J Nucl Med. 2015;56:1429–33. https://doi.org/10.2967/jnumed.115.158493.
Article
CAS
PubMed
Google Scholar
Farhad H, Staziaki PV, Addison D, Coelho-Filho OR, Shah RV, Mitchell RN, et al. Characterization of the changes in cardiac structure and function in mice treated with anthracyclines using serial cardiac magnetic resonance imaging. Circ Cardiovasc Imaging. 2016. https://doi.org/10.1161/circimaging.115.003584.
Article
PubMed
PubMed Central
Google Scholar
Galán-Arriola C, Lobo M, Vílchez-Tschischke JP, López GJ, de Molina-Iracheta A, Pérez-Martínez C, et al. Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity. J Am Coll Cardiol. 2019;73:779–91. https://doi.org/10.1016/j.jacc.2018.11.046.
Article
PubMed
Google Scholar
Migrino RQ, Aggarwal D, Konorev E, Brahmbhatt T, Bright M, Kalyanaraman B. Early detection of doxorubicin cardiomyopathy using two-dimensional strain echocardiography. Ultrasound Med Biol. 2008;34:208–14. https://doi.org/10.1016/j.ultrasmedbio.2007.07.018.
Article
PubMed
Google Scholar
O’Connell JL, Romano MM, Campos Pulici EC, Carvalho EE, de Souza FR, Tanaka DM, et al. Short-term and long-term models of doxorubicin-induced cardiomyopathy in rats: a comparison of functional and histopathological changes. Exp Toxicol Pathol. 2017;69:213–9. https://doi.org/10.1016/j.etp.2017.01.004.
Article
CAS
PubMed
Google Scholar
Spivak M, Bubnov R, Yemets I, Lazarenko L, Timoshok N, Vorobieva A, et al. Doxorubicin dose for congestive heart failure modeling and the use of general ultrasound equipment for evaluation in rats. Longitudinal in vivo study. Med Ultrason. 2013;15:23–8. https://doi.org/10.11152/mu.2013.2066.151.ms1ddc2.
Article
PubMed
Google Scholar
Wakasugi S, Fischman AJ, Babich JW, Callahan RJ, Elmaleh DR, Wilkinson R, Strauss HW. Myocardial substrate utilization and left ventricular function in adriamycin cardiomyopathy. J Nucl Med. 1993;34:1529–35.
CAS
PubMed
Google Scholar
Arola OJ, Saraste A, Pulkki K, Kallajoki M, Parvinen M, Voipio-Pulkki LM. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res. 2000;60(7):1789–92.
CAS
PubMed
Google Scholar
Bennink RJ, van den Hoff MJ, van Hemert FJ, de Bruin KM, Spijkerboer AL, Vanderheyden JL, Steinmetz N, van Eck-Smit BL. Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J Nucl Med. 2004;45(5):842–8.
CAS
PubMed
Google Scholar
Upshaw JN, Finkelman B, Hubbard RA, Smith AM, Narayan HK, Arndt L, et al. Comprehensive assessment of changes in left ventricular diastolic function with contemporary breast cancer therapy. JACC Cardiovasc Imaging. 2020;13:198–210. https://doi.org/10.1016/j.jcmg.2019.07.018.
Article
PubMed
Google Scholar
Borde C, Kand P, Basu S. Enhanced myocardial fluorodeoxyglucose uptake following Adriamycin-based therapy: evidence of early chemotherapeutic cardiotoxicity? World J Radiol. 2012;4:220–3. https://doi.org/10.4329/wjr.v4.i5.220.
Article
PubMed
PubMed Central
Google Scholar
Gorla AK, Sood A, Prakash G, Parmar M, Mittal BR. Substantial increase in myocardial FDG uptake on interim PET/CT may be an early sign of adriamycin-induced cardiotoxicity. Clin Nucl Med. 2016;41:462–3. https://doi.org/10.1097/rlu.0000000000001194.
Article
PubMed
Google Scholar