Yamauchi H, Higashi T, Kagawa S, Nishii R, Kudo T, Sugimoto K, et al. Is misery perfusion still a predictor of stroke in symptomatic major cerebral artery disease? Brain. 2012;135:2515–26. doi:10.1093/brain/aws131.
Article
PubMed
Google Scholar
Watabe T, Shimosegawa E, Watabe H, Kanai Y, Hanaoka K, Ueguchi T, et al. Quantitative evaluation of cerebral blood flow and oxygen metabolism in normal anesthetized rats: 15O-labeled gas inhalation PET with MRI Fusion. J Nucl Med. 2013;54:283–90. doi:10.2967/jnumed.112.109751.
Article
CAS
PubMed
Google Scholar
Hori Y, Hirano Y, Koshino K, Moriguchi T, Iguchi S, Yamamoto A, et al. Validity of using a 3-dimensional PET scanner during inhalation of 15O-labeled oxygen for quantitative assessment of regional metabolic rate of oxygen in man. Phys Med Biol. 2014;59:5593–609. doi10.1088/0031-9155/59/18/5593.
Article
CAS
PubMed
Google Scholar
Ibaraki M, Sugawara S, Nakamura K, Kinoshita F, Kinoshita T. The effect of activity outside the field-of-view on image signal-to-noise ratio for 3D PET with (15)O. Phys Med Biol. 2011;56:3061–72. doi:10.1088/0031-9155/56/10/011.
Article
PubMed
Google Scholar
Lasnon C, Dugue AE, Briand M, Blanc-Fournier C, Dutoit S, Louis MH, et al. NEMA NU 4-optimized reconstructions for therapy assessment in cancer research with the Inveon small animal PET/CT system. Mol Imaging Biol. 2015;17:403–12. doi:10.1007/s11307-014-0805-5.
Article
CAS
PubMed
Google Scholar
Chatziioannou A, Qi J, Moore A, Annala A, Nguyen K, Leahy R, et al. Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imaging. 2000;19:507–12. https://doi.org/10.1109/42.870260.
Article
CAS
PubMed
Google Scholar
Ram Yu A, Kim JS, Kang JH, Moo S. Comparison of reconstruction methods and quantitative accuracy in Siemens Inveon PET scanner. J Instrum. 2015;10:P04001.
Article
Google Scholar
Prasad R, Ratib O, Zaidi H. NEMA NU-04-based performance characteristics of the LabPET-8™ small animal PET scanner. Phys Med Biol. 2011;56:6649–64. doi:10.1088/0031-9155/56/20/009.
Article
PubMed
Google Scholar
Visser EP, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJ, et al. Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med. 2009;50:139–47. doi:10.2967/jnumed.108.055152.
Article
PubMed
Google Scholar
Inoue K, Moriya E, Suzuki T, Ohnuki Y, Sato T, Kitamura H, et al. The usefulness of fully three-dimensional OSEM algorithm on lymph node metastases from lung cancer with 18F-FDG PET/CT. Ann Nucl Med. 2011;25:277–87. doi:10.1007/s12149-010-0462-y.
Article
PubMed
Google Scholar
Disselhorst JA, Brom M, Laverman P, Slump CH, Boerman OC, Oyen WJ, et al. Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner. J Nucl Med. 2010;51:610–7. doi:10.2967/jnumed.109.068858.
Article
PubMed
Google Scholar
Ibaraki M, Miura S, Shimosegawa E, Sugawara S, Mizuta T, Ishikawa A, et al. Quantification of cerebral blood flow and oxygen metabolism with 3-dimensional PET and 15O: validation by comparison with 2-dimensional PET. J Nucl Med. 2008;49:50–9. doi:10.2967/jnumed.107.044008.
Article
PubMed
Google Scholar
Magata Y, Temma T, Iida H, Ogawa M, Mukai T, Iida Y, et al. Development of injectable O-15 oxygen and estimation of rat OEF. J Cereb Blood Flow Metab. 2003;23:671–6. doi:10.1097/01.WCB.0000066792.97069.B3.
Article
PubMed
Google Scholar
Kobayashi M, Mori T, Kiyono Y, Tiwari VN, Maruyama R, Kawai K, et al. Cerebral oxygen metabolism of rats using injectable (15)O-oxygen with a steady-state method. J Cereb Blood Flow Metab. 2012;32:33–40. doi:10.1038/jcbfm.2011.125.
Article
CAS
PubMed
Google Scholar
Weber AW, Haubner R, Wolf B, Ziegler SI. Effect of different reconstruction algorithms on the dynamics and modeling parameters of 18F-Galacto-RGD in mice. 2007 IEEE Nuclear Science Symposium Conference Record. 2007;6:4521–3. doi:10.1109/NSSMIC.2007.4437114.
Suk J, Cheng JC, Shoghi K, Laforest R. Quantitative accuracy of MAP reconstruction for dynamic PET imaging in small animals. Med Phys. 2012;39:1029–41. doi:10.1118/1.3678489.
Article
Google Scholar
Watson CC, Newport D, Casey ME. A single scatter simulation technique for scatter correction in 3D PET. In: Grangeat P, Amans J-L, editors. Three-dimensional image reconstruction in radiology and nuclear medicine. Dordrecht: Springer Netherlands. 1996;4:255–68. doi:10.1007/978-94-015-8749-5_18.
Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci. 2000;47:1587–94. https://doi.org/10.1109/23.873020.
Article
Google Scholar
Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL. Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods. 2006;155:272–84. doi:10.1016/j.jneumeth.2006.01.027.
Ibaraki M, Shimosegawa E, Miura S, Takahashi K, Ito H, Kanno I, et al. PET measurements of CBF, OEF, and CMRO2 without arterial sampling in hyperacute ischemic stroke: method and error analysis. Ann Nucl Med. 2004;18:35–44.
Article
PubMed
Google Scholar
Jiang TT, Videen TO, Grubb RL, Powers WJ, Derdeyn CP. Cerebellum as the normal reference for the detection of increased cerebral oxygen extraction. J Cereb Blood Flow Metab. 2010;30:1767–76. doi:10.1038/jcbfm.2010.43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kemp BJ, Kim C, Williams JJ, Ganin A, Lowe VJ. NEMA NU 2-2001 performance measurements of an LYSO-based PET/CT system in 2D and 3D acquisition modes. J Nucl Med. 2006;47:1960–7.
PubMed
Google Scholar
Mawlawi O, Podoloff DA, Kohlmyer S, Williams JJ, Stearns CW, Culp RF, et al. Performance characteristics of a newly developed PET/CT scanner using NEMA standards in 2D and 3D modes. J Nucl Med. 2004;45:1734–42.
PubMed
Google Scholar
Teräs M, Tolvanen T, Johansson JJ, Williams JJ, Knuuti J. Performance of the new generation of whole-body PET/CT scanners: Discovery STE and Discovery VCT. Eur J Nucl Med Mol Imaging. 2007;34:1683–92. doi:10.1007/s00259-007-0493-3.
Article
PubMed
Google Scholar
Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF. Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med. 2009;50:401–8. doi:10.2967/jnumed.108.056374.
Article
PubMed
PubMed Central
Google Scholar
Konik A, Madsen MT, Sunderland JJ. GATE simulations of human and small animal PET for determination of scatter fraction as a function of object size. IEEE Trans Nucl Sci. 2010;57:2558–63. doi:10.1109/TNS.2010.2065240.
Article
CAS
Google Scholar
Mannheim JG, Schmid AM, Pichler BJ. Influence of co-57 and CT transmission measurements on the quantification accuracy and partial volume effect of a small animal PET scanner. Mol Imaging Biol. 2017; doi:10.1007/s11307-017-1074-x.
Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980;4:727–36.
Article
CAS
PubMed
Google Scholar
Riddell C, Carson RE, Carrasquillo JA, Libutti SK, Danforth DN, Whatley M, et al. Noise reduction in oncology FDG PET images by iterative reconstruction: a quantitative assessment. J Nucl Med. 2001;42:1316–23.
CAS
PubMed
Google Scholar
Kim HS, Lee BI, Han Kim J, Bom HS, Kim DY, Min JJ. Comparison of reconstruction methods in a small animal cardiac positron emission tomography study using a 18F-labeled myocardial agent, [18F] FPTP. Iran J Radiol. 2017;14(1):e26806. doi:10.5812/iranjradiol.26806.
Bahri MA, Plenevaux A, Warnock G, Luxen A, Seret A. NEMA NU4-2008 image quality performance report for the microPET focus 120 and for various transmission and reconstruction methods. J Nucl Med. 2009;50:1730–8. doi:10.2967/jnumed.109.063974.
Article
PubMed
Google Scholar
Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, et al. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging. 2004;31:635–43. doi:10.1007/s00259-003-1430-8.
Article
PubMed
Google Scholar