Bartus RT: On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 2000, 163: 495–529. 10.1006/exnr.2000.7397
Article
CAS
Google Scholar
Caulfield MP: Muscarinic receptors - characterization, coupling and function. Pharmacol Ther 1993, 58: 319–379. 10.1016/0163-7258(93)90027-B
Article
CAS
Google Scholar
Berstein G, Blank JL, Smrcka AV, Higashijima T, Sternweis PC, Exton JH, Ross EM: Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11, and phospholipase C-beta 1. J Biol Chem 1992, 267: 8081–8088.
CAS
Google Scholar
Mash DC, Potter LT: Autoradiographic localization of M1 and M2 muscarine receptors in the rat brain. Neuroscience 1986, 19: 551–564. 10.1016/0306-4522(86)90280-0
Article
CAS
Google Scholar
Bymaster FP, Felder C, Ahmed S, McKinzie D: Muscarinic receptors as a target for drugs treating schizophrenia. Cur Drug Targets-CNS Neurol Disord 2002, 1: 163–181. 10.2174/1568007024606249
Article
CAS
Google Scholar
Bymaster FP, Whitesitt CA, Shannon HE, DeLapp N, Ward JS, Calligaro DO, Shipley LA, BuelkeSam JL, Bodick NC, Farde L, Sheardown MJ, Olesen PH, Hansen KT, Suzdak PD, Swedberg MDB, Sauerberg P, Mitch CH: Xanomeline: a selective muscarinic agonist for the treatment of Alzheimer's disease. Drug Dev Res 1997, 40: 158–170. 10.1002/(SICI)1098-2299(199702)40:2<158::AID-DDR6>3.0.CO;2-K
Article
CAS
Google Scholar
Mirza NR, Peters D, Sparks RG: Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev 2003, 9: 159–186.
Article
CAS
Google Scholar
Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A, Shannon HE, Tollefson GD, Rasmussen K, Bymaster FP, Hurley DJ, Potter WZ, Paul SM: Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 1997, 54: 465–473. 10.1001/archneur.1997.00550160091022
Article
CAS
Google Scholar
Vora MM, Finn RD, Boothe TE, Liskwosky DR, Potter LT: [N-methyl-C-11]-scopolamine: synthesis and distribution in rat brain. J Labelled Comp Radiopharm 1983, 20: 1229–1236. 10.1002/jlcr.2580201103
Article
CAS
Google Scholar
Mulholland GK, Kilbourn MR, Sherman P, Carey JE, Frey KA, Koeppe RA, Kuhl DE: Synthesis, in vivo biodistribution and dosimetry of [11
C]N-methylpiperidyl benzilate ([11C]NMPB), a muscarinic acetylcholine receptor antagonist. Nuc Med Biol 1995, 22: 13–17. 10.1016/0969-8051(94)00082-U
Article
CAS
Google Scholar
Dewey SL, Macgregor RR, Brodie JD, Bendriem B, King PT, Volkow ND, Schlyer DJ, Fowler JS, Wolf AP, Gatley SJ, Hitzemann R: Mapping muscarinic receptors in human and baboon brain using [N-C-11-methyl]-benztropine. Synapse 1990, 5: 213–223. 10.1002/syn.890050307
Article
CAS
Google Scholar
Varastet M, Brouillet E, Chavoix C, Prenant C, Crouzel C, Stulzaft O, Bottlaender M, Cayla J, Mazière B, Mazière M: In vivo visualization of central muscarinic receptors using [11
C]quinuclidinyl benzilate and positron emission tomography in baboons. Eur J Pharmacol 1992, 213: 275–284. 10.1016/0014-2999(92)90692-W
Article
CAS
Google Scholar
Zubieta JK, Koeppe AR, Frey KA, Kilbourn MR, Mangner TJ, Foster NL, Kuhl DE: Assessment of muscarinic receptor concentrations in affinity and Alzheimer disease with [C-11]NMPB and PET. Synapse 2001, 39: 275–287. 10.1002/1098-2396(20010315)39:4<275::AID-SYN1010>3.0.CO;2-3
Article
CAS
Google Scholar
McPherson W: Targeting cerebral muscarinic acetylcholine receptors with radioligands for diagnostic nuclear medicine studies. In Ion Channel Localization: Methods and Protocols. Edited by: Lopatin AN, Nichols CG. Totowa (New York): Humana; 2001:17–38.
Chapter
Google Scholar
Christopoulos A, Kenakin T: G protein-coupled receptor allosterism and complexing. Pharmacol Rev 2002, 54: 323–374. 10.1124/pr.54.2.323
Article
CAS
Google Scholar
Flynn DD, Mash DC: Distinct kinetic binding-properties of N-[H-3]-methylscopolamine afford differential labeling and localization of M1, M2, and M3-muscarinic receptor subtypes in primate brain. Synapse 1993, 14: 283–296. 10.1002/syn.890140406
Article
CAS
Google Scholar
Potter LT, Ferrendelli CA, Hanchett HE: Two affinity states of M1 muscarine receptors. Cell Mol Neurobiol 1988, 8: 181–191. 10.1007/BF00711244
Article
CAS
Google Scholar
Ginovart N, Galineau L, Willeit M, Mizrahi R, Bloomfield PM, Seeman P, Houle S, Kapur S, Wilson AA: Binding characteristics and sensitivity to endogenous dopamine of [C-11]-(+)-PHNO, a new agonist radiotracer for imaging the high-affinity state of D-2 receptors in vivo using positron emission tomography. J Neurochem 2006, 97: 1089–1103. 10.1111/j.1471-4159.2006.03840.x
Article
CAS
Google Scholar
Finnema SJ, Seneca N, Farde L, Shchukin E, Sovago J, Gulyas B, Wikström HV, Innis RB, Neumeyer JL, Halldin C: A preliminary PET evaluation of the new dopamine D-2 receptor agonist [C-11]MNPA in cynomolgus monkey. Nuc Med Biol 2005, 32: 353–360. 10.1016/j.nucmedbio.2005.01.007
Article
CAS
Google Scholar
Mukherjee J, Narayanan TK, Christian BT, Shi BZ, Yang ZY: Binding characteristics of high-affinity dopamine D2/D3 receptor agonists, C-11-PPHT and C-11-ZYY-339 in rodents and imaging in non-human primates by PET. Synapse 2004, 54: 83–91. 10.1002/syn.20068
Article
CAS
Google Scholar
Shi B, Narayanan TK, Christian BT, Chattopadhyay S, Mukherjee J: Synthesis and biological evaluation of the binding of dopamine D2/D3 receptor agonist, (R, S)-5-hydroxy-2-(N-propyl-N-(5'-18F-fluoropentyl)aminotetralin (18F–5-OH-FPPAT) in rodents and nonhuman primates. Nuc Med Biol 2004, 31: 303–311. 10.1016/j.nucmedbio.2003.10.004
Article
CAS
Google Scholar
Wilson AA, McCormick P, Kapur S, Willeit M, Garcia A, Hussey D, Houle S, Seeman P, Ginovart N: Radiosynthesis and evaluation of [11
C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem 2005, 48: 4153–4160. 10.1021/jm050155n
Article
CAS
Google Scholar
Frost JJ, Wagner HNJ, Dannals RF, Ravert HT, Links JM, Wilson AA, Burns HD, Wong DF, McPherson RW, Rosenbaum AE, Kuhar MJ, Snyder SH: Imaging opiate receptors in the human brain by positron tomography. J Comp Ass Tomogr 1985, 9: 231–236. 10.1097/00004728-198503000-00001
Article
CAS
Google Scholar
Farde L, Suhara T, Halldin C, Nyback H, Nakashima Y, Swahn CG, Karlsson P, Ginovart N, Bymaster FP, Shannon HE, Foged C, Suzdak PD, Sauerberg P: PET study of the M(1)-agonists [C-11]xanomeline and [C-11]butylthio-TZTP in monkey and man. Dementia 1996, 7: 187–195.
CAS
Google Scholar
Fisher A, Heldman E, Gurwitz D, Haring R, Meshulam H, Brandeis R, Sapir M, Marciano D, Barak D, Vogel Z, Karton Y: AF150(S) and AF151(S): new M1 agonists mediate m1 selective signaling, neurotrophic-like effects and restore AF64A cognitive deficits in rats [abstract]. Soc Neurosci Abstr 1993, 19: 1767.
Google Scholar
Fisher A, Bar-Ner N, Karton Y: Methods and compositions for treatment of central and peripheral nervous system disorders and novel compounds useful therefore. 2003. (patent: WO 03/092580 A2)
Google Scholar
Brandeis R, Sapir M, Hafif N, Abraham S, Oz N, Stein E, Fisher A: AF150(S): a new functionally selective M1 agonist improves cognitive performance in rats. Pharmacol Biochem Behav 1995, 51: 667–674. 10.1016/0091-3057(94)00435-L
Article
CAS
Google Scholar
Beach TG, Walker DG, Potter PE, Sue LI, Fisher A: Reduction of cerebrospinal fluid amyloid β after systemic administration of M1 muscarinic agonists. Brain Res 2001, 905: 220–223. 10.1016/S0006-8993(01)02484-2
Article
CAS
Google Scholar
Fisher A, Brandeis R, Bar-Ner R, Kliger-Spatz M, Natan N, Sonego H, Marcovitch I, Pittel Z: AF150(S) and AF267B, M1 muscarinic agonists as innovative therapies for Alzheimer's disease. J Mol Neurosci 2002, 19: 145–153. 10.1007/s12031-002-0025-3
Article
CAS
Google Scholar
Fisher A: Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer's disease. J Neurochem 2012, 120: 22–33.
Article
CAS
Google Scholar
Buiter HJC, Leysen JE, Schuit RC, Fisher A, Lammertsma AA, Windhorst AD: Radiosynthesis and biological evaluation of the M1 muscarinic acetylcholine receptor agonist ligand [11C]AF150(S). J Labelled Comp Radiopharm 2012, 55: 264–273. 10.1002/jlcr.2932
Article
CAS
Google Scholar
Czernin J, Satyamurthy N, Schiepers C: Molecular mechanisms of bone 18
F-NaF deposition. J Nucl Med 2010, 51: 1826–1829. 10.2967/jnumed.110.077933
Article
PubMed Central
CAS
Google Scholar
De Jong HWAM, van Velden FHP, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA: Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol 2007, 52: 1505–1526. 10.1088/0031-9155/52/5/019
Article
Google Scholar
Van Velden FHP, Kloet RW, van Berckel BNM, Lammertsma AA, Boellaard R: Accuracy of 3-dimensional reconstruction algorithms for the high-resolution research tomograph. J Nucl Med 2009, 50: 72–80.
Article
Google Scholar
Shannon HE, Rasmussen K, Bymaster FP, Hart JC, Peters SC, Swedberg MDB, Jeppesen L, Sheardown MJ, Sauerberg P, Fink-Jensen A: Xanomeline, an M1/M4 preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res 2000, 42: 249–259. 10.1016/S0920-9964(99)00138-3
Article
CAS
Google Scholar
Watson M, Yamamura HI, Roeske WR: A unique regulatory profile and regional distribution of [3
H]pirenzepine binding in the rat provide evidence for distinct M1 and M2 muscarinic receptor subtypes. Life Sci 1983, 32: 3001–3011. 10.1016/0024-3205(83)90652-5
Article
CAS
Google Scholar
Hudkins RL, DeHaven-Hudkins DL: M1 muscarinic antagonists interact with sigma recognition sites. Life Sci 1991, 49:1229–1235. Life Sci 1992, 50: 245. Erratum
Article
CAS
Google Scholar
Maruyama S, Tsukada H, Nishiyama S, Kakiuchi T, Fukumoto D, Oku N, Yamada S: In vivo quantitative autoradiographic analysis of brain muscarinic receptor occupancy by antimuscarinic agents for overactive bladder treatment. J Pharmacol Exp Ther 2008, 325: 774–781. 10.1124/jpet.108.136390
Article
CAS
Google Scholar
Su TP: Evidence for sigma opioid receptor: binding of [3
H]SKF-10047 to etorphine-inaccessible sites in guinea-pig brain. J Pharmacol Exp Ther 1982, 223: 284–290.
CAS
Google Scholar
Vannucchi MG, Scali C, Kopf SR, Pepeu G, Casamenti F: Selective muscarinic antagonists differentially affect in vivo acetylcholine release and memory performances of young and aged rats. Neuroscience 1997, 79: 837–846. 10.1016/S0306-4522(97)00091-2
Article
CAS
Google Scholar
Wang RH, Bejar C, Weinstock M: Gender differences in the effect of rivastigmine on brain cholinesterase activity and cognitive function in rats. Neuropharmacology 2000, 39: 497–506. 10.1016/S0028-3908(99)00157-4
Article
CAS
Google Scholar
Buiter HJC, van Velden FHP, Leysen JE, Fisher A, Windhorst AD, Lammertsma AA, Huisman MC: Reproducible analysis of rat brain PET studies using an additional [18F]NaF scan and an MR based ROI template. Mol Imaging: Int J; 2012.
Google Scholar
Bergstrom M, Grahnen A, Langstrom B: Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur J Clin Pharmacol 2003, 59: 357–366. 10.1007/s00228-003-0643-x
Article
Google Scholar
Lammertsma AA, Hume SP: Simplified reference tissue model for PET receptor studies. Neuroimage 1996, 4: 153–158. 10.1006/nimg.1996.0066
Article
CAS
Google Scholar
Jakubik J, Michal P, Machova E, Dolezal V: Importance and prospects for design of selective muscarinic agonists. Physiol Res 2008, 57: S39-S47.
CAS
Google Scholar
Machova E, El-Fakahany EE, Dolezal V: Xanomeline quasi-irreversibly bound to an ectopic site can stimulate presynaptic M2 receptors via the orthosteric binding site. J Neurochem 2005, 94: 90.
Google Scholar
Oki T, Takagi Y, Inagaki S, Taketo MM, Manabe T, Matsui M, Yamada S: Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Mol Brain Res 2005, 133: 6–11. 10.1016/j.molbrainres.2004.09.012
Article
CAS
Google Scholar
Tzavara ET, Bymaster FP, Felder CC, Wade M, Gomeza J, Wess J, McKinzie DL, Nomikos GG: Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2//M4 muscarinic receptor knockout mice. Mol Psychiatry 2003, 8: 673–679. 10.1038/sj.mp.4001270
Article
CAS
Google Scholar
Flynn DD, Reever CM, FerrariDiLeo G: Pharmacological strategies to selectively label and localize muscarinic receptor subtypes. Drug Dev Res 1997, 40: 104–116. 10.1002/(SICI)1098-2299(199702)40:2<104::AID-DDR2>3.0.CO;2-P
Article
CAS
Google Scholar
Saller CF, Czupryna MJ, Salama AI: 5-Ht2 receptor blockade by Ici-169,369 and other 5-Ht2 antagonists modulates the effects of D-2 dopamine receptor blockade. J Pharmacol Exp Ther 1990, 253: 1162–1170.
CAS
Google Scholar
Damsma G, De Boer P, Westerink BHC, Fibiger HC: Dopaminergic regulation of striatal cholinergic interneurons: an in vivo microdialysis study. Naunyn Schmiedebergs Arch Pharmacol 1990, 342: 523–527.
Article
CAS
Google Scholar
DeBoer P, Abercrombie ED: Physiological release of striatal acetylcholine in vivo: modulation by D1 and D2 dopamine receptor subtypes. J Pharmacol Exp Ther 1996, 277: 775–783.
CAS
Google Scholar
Billard W, Binch H, Crosby G, McQuade RD: Identification of the primary muscarinic autoreceptor subtype in rat striatum as M2 through a correlation of in vivo microdialysis and in vitro receptor binding data. J Pharmacol Exp Ther 1995, 273: 273–279.
CAS
Google Scholar
Hume SP, Opacka-Juffry J, Myers R, Ahier RG, Ashworth S, Brooks DJ, Lammertsma AA: Effect of L-dopa and 6-hydroxydopamine lesioning on [11
C]raclopride binding in rat striatum, quantified using PET. Synapse 1995, 21: 45–53. 10.1002/syn.890210107
Article
CAS
Google Scholar
Hwang DR, Narendran R, Laruelle M: Positron-labeled dopamine agonists for probing the high affinity states of dopamine subtype 2 receptors. Bioconj Chem 2005, 16: 27–31. 10.1021/bc049834n
Article
CAS
Google Scholar
Narendran R, Mason NS, Laymon CM, Lopresti BJ, Velasquez ND, May MA, Kendro S, Martinez D, Mathis CA, Frankle WG: A comparative evaluation of the dopamine D(2/3) agonist radiotracer [11
C](−)-N-propyl-norapomorphine and antagonist [11
C]raclopride to measure amphetamine-induced dopamine release in the human striatum. J Pharmacol Exp Ther 2010, 333: 533–539. 10.1124/jpet.109.163501
Article
PubMed Central
CAS
Google Scholar
Seneca N, Finnema SJ, Farde L, Gulyas B, Wikström HV, Halldin C, Innis RB: Effect of amphetamine on dopamine D2 receptor binding in nonhuman primate brain: a comparison of the agonist radioligand [11
C]MNPA and antagonist [C-11]raclopride. Synapse 2006, 59: 260–269. 10.1002/syn.20238
Article
CAS
Google Scholar
Hall JM, Caulfield MP, Watson SP, Guard S: Receptor subtypes or species homologs - relevance to drug discovery. Trend Pharmacol Sci 1993, 14: 376–383. 10.1016/0165-6147(93)90096-3
Article
CAS
Google Scholar