Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 2016;15(12):1257–72.
Article
PubMed
Google Scholar
Gumber A, Ramaswamy B, Thongchundee O. Effects of Parkinson’s on employment, cost of care, and quality of life of people with condition and family caregivers in the UK: a systematic literature review. Patient Relat Outcome Meas. 2019;10:321–33.
Article
PubMed Central
PubMed
Google Scholar
Pfeiffer HC, et al. Cognitive impairment in early-stage non-demented Parkinson’s disease patients. Acta Neurol Scand. 2014;129(5):307–18.
Article
CAS
PubMed
Google Scholar
Helmich RC, et al. The pathophysiology of essential tremor and Parkinson’s tremor. Curr Neurol Neurosci Rep. 2013;13(9):378.
Article
CAS
PubMed
Google Scholar
Buchert R, et al. Nuclear Imaging in the diagnosis of clinically uncertain parkinsonian syndromes. Dtsch Arztebl Int. 2019;116(44):747–54.
PubMed Central
PubMed
Google Scholar
Postuma RB, et al. MDS clinical diagnostic criteria for parkinson’s disease. Mov Disord. 2015;30(12):1591–601.
Article
PubMed
Google Scholar
Varrone A, et al. In vitro autoradiography and in vivo evaluation in cynomolgus monkey of [18F]FE-PE2I, a new dopamine transporter PET radioligand. Synapse. 2009;63(10):871–80.
Article
CAS
PubMed
Google Scholar
Schou M, et al. Synthesis, radiolabeling and preliminary in vivo evaluation of [18F]FE-PE2I, a new probe for the dopamine transporter. Bioorg Med Chem Lett. 2009;19(16):4843–5.
Article
CAS
PubMed
Google Scholar
Ziebell M. Evaluation of the superselective radioligand [123I]PE2I for imaging of the dopamine transporter in SPECT. Dan Med Bull. 2011;58(5):B4279.
PubMed
Google Scholar
Ziebell M, et al. Serotonin transporters in dopamine transporter imaging: a head-to-head comparison of dopamine transporter SPECT radioligands 123I-FP-CIT and 123I-PE2I. J Nucl Med. 2010;51(12):1885–91.
Article
PubMed
Google Scholar
Bang JI, et al. PET imaging of dopamine transporters with [(18)F]FE-PE2I: effects of anti-Parkinsonian drugs. Nucl Med Biol. 2016;43(2):158–64.
Article
CAS
PubMed
Google Scholar
Kim W, et al. In vivo activity of modafinil on dopamine transporter measured with positron emission tomography and [(1)(8)F]FE-PE2I. Int J Neuropsychopharmacol. 2014;17(5):697–703.
Article
CAS
PubMed
Google Scholar
Varrone A, et al. Kinetic analysis and quantification of the dopamine transporter in the nonhuman primate brain with 11C-PE2I and 18F-FE-PE2I. J Nucl Med. 2011;52(1):132–9.
Article
CAS
PubMed
Google Scholar
Seki C, et al. Quantitative analysis of dopamine transporters in human brain using [11C]PE2I and positron emission tomography: evaluation of reference tissue models. Ann Nucl Med. 2010;24(4):249–60.
Article
PubMed
Google Scholar
Kukk S, et al. In vitro ligand binding kinetics explains the pharmacokinetics of [(18)F]FE-PE2I in dopamine transporter PET imaging. ACS Med Chem Lett. 2018;9(12):1292–6.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sasaki T, et al. Quantification of dopamine transporter in human brain using PET with 18F-FE-PE2I. J Nucl Med. 2012;53(7):1065–73.
Article
CAS
PubMed
Google Scholar
Shingai Y, et al. Age-related decline in dopamine transporter in human brain using PET with a new radioligand [(1)(8)F]FE-PE2I. Ann Nucl Med. 2014;28(3):220–6.
Article
CAS
PubMed
Google Scholar
Suzuki M, et al. Reproducibility of PET measurement for presynaptic dopaminergic functions using L-[beta-(11)C]DOPA and [(18)F]FE-PE2I in humans. Nucl Med Commun. 2014;35(3):231–7.
Article
CAS
PubMed
Google Scholar
Kerstens VS, et al. Reliability of dopamine transporter PET measurements with [(18)F]FE-PE2I in patients with Parkinson’s disease. EJNMMI Res. 2020;10(1):95.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sonni I, et al. Optimal acquisition time window and simplified quantification of dopamine transporter availability using 18F-FE-PE2I in healthy controls and parkinson disease patients. J Nucl Med. 2016;57(10):1529–34.
Article
CAS
PubMed
Google Scholar
Brumberg J, et al. Simplified quantification of [(18)F]FE-PE2I PET in Parkinson’s disease: Discriminative power, test-retest reliability and longitudinal validity during early peak and late pseudo-equilibrium. J Cereb Blood Flow Metab. 2020;41(6):1291–300. https://doi.org/10.1177/0271678X20958755.
Article
PubMed Central
PubMed
Google Scholar
Delva A, et al. Loss of presynaptic terminal integrity in the substantia Nigra in early parkinson’s disease. Mov Disord. 2020;35(11):1977–86.
Article
CAS
PubMed
Google Scholar
Fazio P, et al. Nigrostriatal dopamine transporter availability in early parkinson’s disease. Mov Disord. 2018;33(4):592–9.
Article
CAS
PubMed
Google Scholar
Kawaguchi H, et al. Principal component analysis of multimodal neuromelanin MRI and dopamine transporter PET data provides a specific metric for the Nigral dopaminergic neuronal density. PLoS ONE. 2016;11(3):e0151191.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jakobson Mo S, et al. Dopamine transporter imaging with [(18)F]FE-PE2I PET and [(123)I]FP-CIT SPECT-a clinical comparison. EJNMMI Res. 2018;8(1):100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stepanov V, et al. An efficient one-step radiosynthesis of [18F]FE-PE2I, a PET radioligand for imaging of dopamine transporters. J Label Compd Radiopharm. 2012;55(6):206–10.
Article
CAS
Google Scholar
Bratteby K, et al. Fully automated GMP-compliant synthesis of [18F]FE-PE2I. Pharmaceuticals. 2021;14(7):601.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lokkegaard A, Werdelin LM, Friberg L. Clinical impact of diagnostic SPET investigations with a dopamine re-uptake ligand. Eur J Nucl Med Mol Imaging. 2002;29(12):1623–9.
Article
CAS
PubMed
Google Scholar
Booij J, et al. Imaging of dopamine transporters with iodine-123-FP-CIT SPECT in healthy controls and patients with parkinson’s disease. J Nucl Med. 1998;39(11):1879–84.
CAS
PubMed
Google Scholar
Booij J, et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62(2):133–40.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hall H, et al. Whole hemisphere autoradiography of the postmortem human brain. Nucl Med Biol. 1998;25(8):715–9.
Article
CAS
PubMed
Google Scholar
Wang H, et al. Multi-Atlas segmentation with joint label fusion. IEEE Trans Pattern Anal Mach Intell. 2013;35(3):611–23.
Article
PubMed
Google Scholar
Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774–81.
Article
PubMed
Google Scholar
Popescu V, et al. Optimizing parameter choice for FSL-brain extraction tool (BET) on 3D T1 images in multiple sclerosis. Neuroimage. 2012;61(4):1484–94.
Article
CAS
PubMed
Google Scholar
Jenkinson M, et al. FSL. Neuroimage. 2012;62(2):782–90.
Article
PubMed
Google Scholar
Muschelli J, et al. Validated automatic brain extraction of head CT images. Neuroimage. 2015;114:379–85.
Article
PubMed
Google Scholar
Jorge Cardoso M, et al. STEPS: similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation. Med Image Anal. 2013;17(6):671–84.
Article
CAS
PubMed
Google Scholar
Morbelli S, et al. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging. 2020;47(8):1885–912.
Article
PubMed Central
PubMed
Google Scholar
Darcourt J, et al. EANM procedure guidelines for brain neurotransmission SPECT using (123)I-labelled dopamine transporter ligands, version 2. Eur J Nucl Med Mol Imaging. 2010;37(2):443–50.
Article
CAS
PubMed
Google Scholar
Booij J, et al. Diagnostic performance of the visual reading of (123)I-Ioflupane SPECT images with or without quantification in patients with movement disorders or dementia. J Nucl Med. 2017;58(11):1821–6.
Article
CAS
PubMed
Google Scholar
Piatkova Y, et al. Prospective paired comparison of 123I-FP-CIT SPECT images obtained with a 360 degrees -CZT and a conventional camera. Clin Nucl Med. 2022;47(1):14–20.
Article
PubMed
Google Scholar
Bani Sadr A, et al. Reduced scan time in 123I-FP-CIT SPECT imaging using a large-field cadmium-zinc-telluride camera. Clin Nucl Med. 2019;44(7):568–9.
Article
PubMed
Google Scholar
Kaasinen V, Vahlberg T. Striatal dopamine in parkinson disease: a meta-analysis of imaging studies. Ann Neurol. 2017;82(6):873–82.
Article
CAS
PubMed
Google Scholar
Lizana H, et al. Whole-body biodistribution and dosimetry of the dopamine transporter radioligand (18)F-FE-PE2I in human subjects. J Nucl Med. 2018;59(8):1275–80.
Article
CAS
PubMed
Google Scholar