Jansen RW, van Amstel P, Martens RM, Kooi IE, Wesseling P, de Langen AJ, et al. Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget. 2018;9:20134–55. https://doi.org/10.18632/oncotarget.24893.
Article
PubMed
PubMed Central
Google Scholar
Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25:675–80. https://doi.org/10.1038/nbt1306.
Article
CAS
PubMed
Google Scholar
Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman M, Liang Y, et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci U S A. 2008;105:5213–8. https://doi.org/10.1073/pnas.0801279105.
Article
PubMed
PubMed Central
Google Scholar
Moon SH, Kim J, Joung JG, Cha H, Park WY, Ahn JS, et al. Correlations between metabolic texture features, genetic heterogeneity, and mutation burden in patients with lung cancer. Eur J Nucl Med Mol Imaging. 2019;46:446–54. https://doi.org/10.1007/s00259-018-4138-5.
Article
CAS
PubMed
Google Scholar
Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508. https://doi.org/10.2967/jnumed.107.047787.
Article
PubMed
Google Scholar
Lodge MA. Repeatability of SUV in oncologic. J Nucl Med. 2017;58:523–32. https://doi.org/10.2967/jnumed.116.186353.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med. 2004;45:1431–4.
PubMed
Google Scholar
Ahn KS, Kang KJ, Kim YH, Kim TS, Song BI, Kim HW, et al. Genetic features associated with 18F-FDG uptake in intrahepatic cholangiocarcinoma. Ann Surg Treat Res. 2019;96:153–61. https://doi.org/10.4174/astr.2019.96.4.153.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol. 2019;30:44–56. https://doi.org/10.1093/annonc/mdy495.
Article
CAS
PubMed
Google Scholar
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–212. https://doi.org/10.1126/science.aaa1348.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99. https://doi.org/10.1056/NEJMoa1406498.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16:2598–608. https://doi.org/10.1158/1535-7163.MCT-17-0386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodman AM, Kato S, Chattopadhyay R, Okamura R, Saunders IM, Montesion M, et al. Phenotypic and genomic determinants of immunotherapy response associated with squamousness. Cancer Immunol Res. 2019. https://doi.org/10.1158/2326-6066.CIR-18-0716.
Article
PubMed
PubMed Central
Google Scholar
Maleki VS. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J Immunother Cancer. 2018;6:157. https://doi.org/10.1186/s40425-018-0479-7.
Article
Google Scholar
Na KJ, Choi H. Tumor metabolic features identified by 18F-FDG PET correlate with gene networks of immune cell microenvironment in head and neck cancer. J Nucl Med. 2018;59:31–7. https://doi.org/10.2967/jnumed.117.194217.
Article
CAS
PubMed
Google Scholar
Park C, Na KJ, Choi H, Ock CY, Ha S, Kim M, et al. Tumor immune profiles noninvasively estimated by FDG PET with deep learning correlate with immunotherapy response in lung adenocarcinoma. Theranostics. 2020;10:10838–48. https://doi.org/10.7150/thno.50283.
Article
CAS
PubMed
PubMed Central
Google Scholar
Togo M, Yokobori T, Shimizu K, Handa T, Kaira K, Sano T, et al. Diagnostic value of 18 F-FDG-PET to predict the tumour immune status defined by tumoural PD-L1 and CD8 + tumour-infiltrating lymphocytes in oral squamous cell carcinoma. Br J Cancer. 2020;122:1686–94. https://doi.org/10.1038/s41416-020-0820-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi H, Na KJ. Pan-cancer analysis of tumor metabolic landscape associated with genomic alterations. Mol Cancer. 2018;17:150. https://doi.org/10.1186/s12943-018-0895-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zikou A, Sioka C, Alexiou GA, Fotopoulos A, Voulgaris S, Argyropoulou MI. Radiation necrosis, pseudoprogression, pseudoresponse, and tumor recurrence: imaging challenges for the evaluation of treated gliomas. Contrast Media Mol Imaging. 2018;2018:6828396. https://doi.org/10.1155/2018/6828396.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mouw KW, Goldberg MS, Konstantinopoulos PA, D’Andrea AD. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov. 2017;7:675–93. https://doi.org/10.1158/2159-8290.CD-17-0226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otto G. Kidney cancer: PBRM1 loss promotes tumour response to immunotherapy. Nat Rev Clin Oncol. 2018;15:134–5. https://doi.org/10.1038/nrclinonc.2018.12.
Article
PubMed
Google Scholar
Boichard A, Pham TV, Yeerna H, Goodman A, Tamayo P, Lippman S, et al. APOBEC-related mutagenesis and neo-peptide hydrophobicity: implications for response to immunotherapy. Oncoimmunology. 2019;8:1550341. https://doi.org/10.1080/2162402X.2018.1550341.
Article
PubMed
Google Scholar
Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34. https://doi.org/10.1186/s13073-017-0424-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21. https://doi.org/10.1038/nature12477.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol. 2017;14:203–20. https://doi.org/10.1038/nrclinonc.2016.168.
Article
CAS
PubMed
Google Scholar
Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51:202–6. https://doi.org/10.1038/s41588-018-0312-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378:2093–104. https://doi.org/10.1056/NEJMoa1801946.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aide N, Hicks RJ, Le Tourneau C, Lheureux S, Fanti S, Lopci E. FDG PET/CT for assessing tumour response to immunotherapy : Report on the EANM symposium on immune modulation and recent review of the literature. Eur J Nucl Med Mol Imaging. 2019;46:238–50. https://doi.org/10.1007/s00259-018-4171-4.
Article
PubMed
Google Scholar
Chang GH, Kurzrock R, Tran L, Schwaederle M, Hoh CK. mutations and number of alterations correlate with maximum standardized uptake value (SUVmax) determined by positron emission tomography/computed tomography (PET/CT). Oncotarget. 2018;9:14306–10. https://doi.org/10.18632/oncotarget.24508.
Article
PubMed
PubMed Central
Google Scholar
Haghighat Jahromi A, Chang C, Hoh CK, Kurzrock R. Standardized uptake value (SUVmax) in 18F-FDG PET/CT is correlated with the total number of main oncogenic anomalies in cancer patients. Cancer Biol Ther. 2020. https://doi.org/10.1080/15384047.2020.1834793.
Article
PubMed
PubMed Central
Google Scholar
Kim SK, Ahn SG, Mun JY, Jeong MS, Bae SJ, Lee JS, et al. Genomic signature of the standardized uptake value in 18F-Fluorodeoxyglucose positron emission tomography in breast cancer. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12020497.
Article
PubMed Central
Google Scholar
Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31:1023–31. https://doi.org/10.1038/nbt.2696.
Article
CAS
PubMed
PubMed Central
Google Scholar