Betz MJ, Enerback S. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat Rev Endocrinol. 2018;14:77–87. https://doi.org/10.1038/nrendo.2017.132.
Article
CAS
PubMed
Google Scholar
Fedorenko A, Lishko PV, Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012;151:400–13. https://doi.org/10.1016/j.cell.2012.09.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicholls DG. The hunt for the molecular mechanism of brown fat thermogenesis. Biochimie. 2017;134:9–18. https://doi.org/10.1016/j.biochi.2016.09.003.
Article
CAS
PubMed
Google Scholar
Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5. https://doi.org/10.1038/nm.2297.
Article
CAS
PubMed
Google Scholar
Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S, et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes. 2014;63:4089–99. https://doi.org/10.2337/db14-0746.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker AS, Nagel HW, Wolfrum C, Burger IA. Anatomical grading for metabolic activity of brown adipose tissue. PLoS One. 2016;11:e0149458. https://doi.org/10.1371/journal.pone.0149458.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perdikari A, Leparc GG, Balaz M, Pires ND, Lidell ME, Sun W, et al. BATLAS: deconvoluting brown adipose tissue. Cell reports. 2018;25:784–97 e4. https://doi.org/10.1016/j.celrep.2018.09.044.
Article
CAS
PubMed
Google Scholar
Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol. 2013;15:659–67. https://doi.org/10.1038/ncb2740.
Article
CAS
PubMed
Google Scholar
Senn JR, Maushart CI, Gashi G, Michel R, Lalive d’Epinay M, Vogt R, et al. Outdoor temperature influences cold induced thermogenesis in humans. Frontiers in Physiology. 2018;9. https://doi.org/10.3389/fphys.2018.01184.
Betz MJ, Slawik M, Lidell ME, Osswald A, Heglind M, Nilsson D, et al. Presence of brown adipocytes in retroperitoneal fat from patients with benign adrenal tumors: relationship with outdoor temperature. J Clin Endocrinol Metab. 2013;98:4097–104. https://doi.org/10.1210/jc.2012-3535.
Article
CAS
PubMed
Google Scholar
Yoneshiro T, Matsushita M, Nakae S, Kameya T, Sugie H, Tanaka S, et al. Brown adipose tissue is involved in the seasonal variation of cold-induced thermogenesis in humans. Am J Physiol Regul Integr Comp Physiol. 2016;310:R999–R1009. https://doi.org/10.1152/ajpregu.00057.2015.
Article
PubMed
Google Scholar
Chen KY, Cypess AM, Laughlin MR, Haft CR, Hu HH, Bredella MA, et al. Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. 2016;24:210–22. https://doi.org/10.1016/j.cmet.2016.07.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holstila M, Pesola M, Saari T, Koskensalo K, Raiko J, Borra RJ, et al. MR signal-fat-fraction analysis and T2* weighted imaging measure BAT reliably on humans without cold exposure. Metabolism. 2017;70:23–30. https://doi.org/10.1016/j.metabol.2017.02.001.
Article
CAS
PubMed
Google Scholar
Hamilton G, Smith DL Jr, Bydder M, Nayak KS, Hu HH. MR properties of brown and white adipose tissues. J Magn Reson Imaging. 2011;34:468–73. https://doi.org/10.1002/jmri.22623.
Article
PubMed
PubMed Central
Google Scholar
McCallister A, Zhang L, Burant A, Katz L, Branca RT. A pilot study on the correlation between fat fraction values and glucose uptake values in supraclavicular fat by simultaneous PET/MRI. Magn Reson Med. 2017;78:1922–32. https://doi.org/10.1002/mrm.26589.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng J, Schoeneman SE, Zhang H, Kwon S, Rigsby CK, Shore RM, et al. MRI characterization of brown adipose tissue in obese and normal-weight children. Pediatr Radiol. 2015;45:1682–9. https://doi.org/10.1007/s00247-015-3391-z.
Article
PubMed
Google Scholar
Franz D, Karampinos DC, Rummeny EJ, Souvatzoglou M, Beer AJ, Nekolla SG, et al. Discrimination between brown and white adipose tissue using a 2-point Dixon water-fat separation method in simultaneous PET/MRI. J Nucl Med. 2015;56:1742–7. https://doi.org/10.2967/jnumed.115.160770.
Article
CAS
PubMed
Google Scholar
van Rooijen BD, van der Lans AA, Brans B, Wildberger JE, Mottaghy FM, Schrauwen P, et al. Imaging cold-activated brown adipose tissue using dynamic T2*-weighted magnetic resonance imaging and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography. Invest Radiol. 2013;48:708–14. https://doi.org/10.1097/RLI.0b013e31829363b8.
Article
CAS
PubMed
Google Scholar
Gashi G, Madoerin P, Maushart CI, Michel R, Senn JR, Bieri O, et al. MRI characteristics of supraclavicular brown adipose tissue in relation to cold-induced thermogenesis in healthy human adults. J Magn Reson Imaging. 2019. https://doi.org/10.1002/jmri.26733.
Ter Voert EEGW, Svirydenka H, Müller J, Becker AS, Balaz M, Efthymiou V, et al. Low-dose (18)F-FDG TOF-PET/MR for accurate quantification of brown adipose tissue in healthy volunteers. EJNMMI Res. 2020;10:5. https://doi.org/10.1186/s13550-020-0592-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30:1323–41. https://doi.org/10.1016/j.mri.2012.05.001.
Article
PubMed
PubMed Central
Google Scholar
R-Core-Team. R: a language and environment for statistical computing. 3.4.1 ed: R Foundation for Statistical Computing, Vienna, Austria.; 2017.
Jose Pinheiro DB, Saikat DebRoy, Deepayan Sarkar and R-Core-Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-131 ed; 2017.
Koskensalo K, Raiko J, Saari T, Saunavaara V, Eskola O, Nuutila P, et al. Human brown adipose tissue temperature and fat fraction are related to its metabolic activity. J Clin Endocrinol Metab. 2017;102:1200–7. https://doi.org/10.1210/jc.2016-3086.
Article
PubMed
Google Scholar
Andersson J, Lundström E, Engström M, Lubberink M, Ahlström H, Kullberg J. Estimating the cold-induced brown adipose tissue glucose uptake rate measured by (18)F-FDG PET using infrared thermography and water-fat separated MRI. Sci Rep. 2019;9:12358. https://doi.org/10.1038/s41598-019-48879-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun L, Verma S, Michael N, Chan SP, Yan J, Sadananthan SA, et al. Brown adipose tissue: multimodality evaluation by PET, MRI, infrared thermography, and whole-body calorimetry (TACTICAL-II). Obesity (Silver Spring, Md). 2019;27:1434–42. https://doi.org/10.1002/oby.22560.
Article
Google Scholar
Deng J, Neff LM, Rubert NC, Zhang B, Shore RM, Samet JD, et al. MRI characterization of brown adipose tissue under thermal challenges in normal weight, overweight, and obese young men. J Magn Reson Imaging. 2018;47:936–47. https://doi.org/10.1002/jmri.25836.
Article
PubMed
Google Scholar
Borga M, Virtanen KA, Romu T, Leinhard OD, Persson A, Nuutila P, et al. Brown adipose tissue in humans: detection and functional analysis using PET (positron emission tomography), MRI (magnetic resonance imaging), and DECT (dual energy computed tomography). Methods Enzymol. 2014;537:141–59. https://doi.org/10.1016/b978-0-12-411619-1.00008-2.
Article
CAS
PubMed
Google Scholar
van der Lans AAJJ, Wierts R, Vosselman MJ, Schrauwen P, Brans B, van Marken Lichtenbelt WD. Cold-activated brown adipose tissue in human adults: methodological issues. Am J Physiol Regul Integr Comp Physiol. 2014;307:R103–R13. https://doi.org/10.1152/ajpregu.00021.2014.
Article
CAS
PubMed
Google Scholar
Lundstrom E, Strand R, Forslund A, Bergsten P, Weghuber D, Ahlstrom H, et al. Automated segmentation of human cervical-supraclavicular adipose tissue in magnetic resonance images. Sci Rep. 2017;7:3064. https://doi.org/10.1038/s41598-017-01586-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu HH, Börnert P, Hernando D, Kellman P, Ma J, Reeder S, et al. ISMRM workshop on fat–water separation: insights, applications and progress in MRI. Magn Reson Med. 2012;68:378–88.
Article
Google Scholar
Jones TA, Wayte SC, Reddy NL, Adesanya O, Dimitriadis GK, Barber TM, et al. Identification of an optimal threshold for detecting human brown adipose tissue using receiver operating characteristic analysis of IDEAL MRI fat fraction maps. Magn Reson Imaging. 2018;51:61–8. https://doi.org/10.1016/j.mri.2018.04.013.
Article
PubMed
Google Scholar
Vijgen GHEJ, Sparks LM, Bouvy ND, Schaart G, Hoeks J, van Marken Lichtenbelt WD, et al. Increased oxygen consumption in human adipose tissue from the “brown adipose tissue” region. J Clin Endocrinol Metab. 2013;98:E1230–E4. https://doi.org/10.1210/jc.2013-1348.
Article
CAS
PubMed
Google Scholar
Blondin DP, Labbe SM, Phoenix S, Guerin B, Turcotte EE, Richard D, et al. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. J Physiol. 2015;593:701–14. https://doi.org/10.1113/jphysiol.2014.283598.
Article
CAS
PubMed
Google Scholar
Bertholet AM, Chouchani ET, Kazak L, Angelin A, Fedorenko A, Long JZ, et al. H+ transport is an integral function of the mitochondrial ADP/ATP carrier. Nature. 2019;571:515–20.
Article
CAS
Google Scholar