Insel TR. Rethinking schizophrenia. Nature. 2010;468(7321):187–93.
Article
CAS
PubMed
Google Scholar
Lally J, MacCabe JH. Antipsychotic medication in schizophrenia: a review. Br Med Bull. 2015;114(1):169–79.
Article
CAS
PubMed
Google Scholar
Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophrenia Bull. 2009;35(3):549–62.
Article
Google Scholar
Rice MW, Roberts RC, Melendez-Ferro M, Perez-Costas E. Mapping dopaminergic deficiencies in the substantia nigra/ventral tegmental area in schizophrenia. Brain Struct Funct. 2016;221(1):185–201.
Article
CAS
PubMed
Google Scholar
Lodge DJ, Grace AA. Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J Neurosci. 2007;27(42):11424–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grace AA. Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress. Neurotoxicity Res. 2010;18(3):367–76.
Article
CAS
Google Scholar
Zimmerman EC, Grace AA. The nucleus reuniens of the didline thalamus gates prefrontal-hippocampal modulation of ventral tegmental area dopamine neuron activity. J Neurosci. 2016;36(34):8977–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17(8):524–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry. 1991;48:996–1001.
Article
CAS
PubMed
Google Scholar
Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6(4):312–24.
Article
CAS
PubMed
Google Scholar
Boley AM, Perez SM, Lodge DJ. A fundamental role for hippocampal parvalbumin in the dopamine hyperfunction associated with schizophrenia. Schizophrenia Res. 2014;157(1):238–43.
Article
Google Scholar
Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA. A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol Psychiatry. 2006;60(3):253–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lipska BK, Jaskiw GE, Weinberger DR. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology. 1993;9(1):67–75.
Article
CAS
PubMed
Google Scholar
Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci. 2010;13(1):76–83.
Article
CAS
PubMed
Google Scholar
del Pino I, García-Frigola C, Dehorter N, Brotons-Mas Jorge R, Alvarez-Salvado E, Martínez de Lagrán M, et al. Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron. 2013;79(6):1152–68.
Article
PubMed
CAS
Google Scholar
Tomasella E, Bechelli L, Ogando MB, Mininni C, Di Guilmi MN, De Fino F, et al. Deletion of dopamine D2 receptors from parvalbumin interneurons in mouse causes schizophrenia-like phenotypes. Proc Natl Acad Sci. 2018;115(13):3476–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitelman SA, Bralet M-C, Mehmet Haznedar M, Hollander E, Shihabuddin L, Hazlett EA, et al. Positron emission tomography assessment of cerebral glucose metabolic rates in autism spectrum disorder and schizophrenia. Brain Imaging Behav. 2018;12(2):532–46.
Article
PubMed
PubMed Central
Google Scholar
Bralet M-C, Buchsbaum MS, DeCastro A, Shihabuddin L, Mitelman SA. FDG-PET scans in patients with Kraepelinian and non-Kraepelinian schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2016;266(6):481–94.
Article
PubMed
Google Scholar
Lehrer DS, Christian BT, Mantil J, Murray AC, Buchsbaum BR, Oakes TR, et al. Thalamic and prefrontal FDG uptake in never medicated patients with schizophrenia. Am J Psychiatry. 2005;162(5):931–8.
Article
PubMed
Google Scholar
Buchsbaum MS, DeLisi LE, Holcomb HH, Cappelletti J, King AC, Johnson J, et al. Anteroposterior gradients in cerebral glucose use in schizophrenia and affective disorders. JAMA Psychiatry. 1984;41(12):1159–66.
CAS
Google Scholar
Elkashef AM, Doudet D, Bryant T, Cohen RM, Li S-H, Wyatt RJ. 6-18F-DOPA PET study in patients with schizophrenia. Psychiatry Res. 2000;100(1):1–11.
Article
CAS
PubMed
Google Scholar
Howes OD, Montgomery AJ, Asselin M, Mutrray M, Valli I, Tabraham P, et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry. 2009;66(1):13–20.
Article
PubMed
Google Scholar
Egerton A, Chaddock CA, Winton-Brown TT, Bloomfield MAP, Bhattacharyya S, Allen P, et al. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: findings in a second cohort. Biological Psychiatry. 2013;74(2):106–12.
Article
CAS
PubMed
Google Scholar
Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle DR, et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 2005;3(5):e159.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bello EP, Mateo Y, Gelman DM, Noain D, Shin JH, Low MJ, et al. Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors. Nat Neurosci. 2011;14(8):1033–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruifrok A, Johnston D. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol. 2001;23(4):291–9.
CAS
PubMed
Google Scholar
Fuhrich DG, Lessey BA, Savaris RF. Comparison of HSCORE assessment of endometrial beta3 integrin subunit expression with digital HSCORE using computerized image analysis (ImageJ). Anal Quant Cytopathol Histpathol. 2013;35(4):210–6.
PubMed
PubMed Central
Google Scholar
Buschsbaum M, Hazlett EA. Positron emission tomography studies of abnormal glucose metabolism in schizophrenia. Schizophrenia Bulletin. 1998;24(3):346–64.
Google Scholar
Patton MH, Bizup BT, Grace AA. The infralimbic cortex bidirectionally modulates mesolimbic dopamine neuron activity via distinct neural pathways. J Neurosci. 2013;33(43):16865–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Volkow ND, Chang L, Wang G-J, Fowler JS, Ding Y-S, Sedler M, et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry. 2001;158(12):2015–21.
Article
CAS
PubMed
Google Scholar
Smith SK, Lee CA, Dausch ME, Horman BM, Patisaul HB, McCarty GS, et al. Simultaneous voltammetric measurements of glucose and dopamine demonstrate the coupling of glucose availability with increased metabolic demand in the rat striatum. ACS Chem Neurosci. 2017;8(2):272–80.
Article
CAS
PubMed
Google Scholar
Mitelman SA, Buchsbaum MS, Christian BT, Merrill BM, Buchsbaum BR, Mukherjee J, et al. Positive association between cerebral grey matter metabolism and dopamine D2/D3 receptor availability in healthy and schizophrenia subjects: an 18F-fluorodeoxyglucose and 18F-fallypride positron emission tomography study. World J Biol Psychiatry. 2019:1–15.
De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: therapeutic implications. Progress Neurobiol. 2017;151:175–236.
Article
CAS
Google Scholar
Navailles S, Bioulac B, Gross C, De Deurwaerdère P. Serotonergic neurons mediate ectopic release of dopamine induced by l-DOPA in a rat model of Parkinson’s disease. Neurobiol Dis. 2010;38(1):136–43.
Article
CAS
PubMed
Google Scholar
Dimming P, Boyes BE, Martin WRW, Adam M, Grierson J, Ruth T, et al. The metabolism of [18F]6-Fluoro-l-3,4-dihydroxyphenylalanine in the hooded rat. J Neurochemistry. 1987;48(2):601–8.
Article
Google Scholar
Lidow MS, Goldman-Rakic PS, Rakic P, Innis RB. Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride. Proc Natl Acad Sci. 1989;86(16):6412–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown RM, Crane AM, Goldman PS. Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res. 1979;168(1):133–50.
Article
CAS
PubMed
Google Scholar
Jacob SN, Nienborg H. Monoaminergic neuromodulation of sensory processing. Front Neural Circuits. 2018;(51):12.
Howes OD, Williams M, Ibrahim K, Leung G, Egerton A, McGuire PK, et al. Midbrain dopamine function in schizophrenia and depression: a post-mortem and positron emission tomographic imaging study. Brain. 2013;136(11):3242–51.
Article
PubMed
PubMed Central
Google Scholar
Perez-Costas E, Melendez-Ferro M, Rice M, Conley R, Roberts R. Dopamine pathology in schizophrenia: analysis of total and phosphorylated tyrosine hydroxylase in the substantia nigra. Front Psychiatry. 2012;3(31).
François J, Koning E, Ferrandon A, Sandner G, Nehlig A. Metabolic activity in the brain of juvenile and adult rats with a neonatal ventral hippocampal lesion. Hippocampus. 2010;20(7):841–51.
PubMed
Google Scholar
Weinstein JJ, van de Giessen E, Rosengard RJ, Xu X, Ojeil N, Brucato G, et al. PET imaging of dopamine-D2 receptor internalization in schizophrenia. Mol Psychiatry. 2018;23(6):1506–11.
Article
CAS
PubMed
Google Scholar
Nabulsi NB, Holden D, Zheng M-Q, Bois F, Lin S-F, Najafzadeh S, et al. Evaluation of 11C-LSN3172176 as a novel PET tracer for imaging M1 muscarinic acetylcholine receptors in nonhuman primates. J Nucl Med. 2019;60(8):1147–53.
Article
CAS
PubMed
Google Scholar
Chaney A, Cropper HC, Johnson EM, Lechtenberg KJ, Peterson TC, Stevens MY, et al. 11C-DPA-713 versus 18F-GE-180: a preclinical comparison of translocator protein 18 kDa PET tracers to visualize acute and chronic neuroinflammation in a mouse model of ischemic stroke. J Nucl Med. 2019;60(1):122–8.
Article
CAS
PubMed
PubMed Central
Google Scholar