Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Chem Soc. 2017;70:1–25. https://doi.org/10.1016/j.jacc.2017.04.052.
Article
Google Scholar
Frostegård J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013;11:117–29. https://doi.org/10.1186/1741-7015-11-117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poston RN. Atherosclerosis: integration of its pathogenesis as a self-perpetuating propagating inflammation: a review. Cardiovasc Endocrinol Metab. 2019;8:51–61. https://doi.org/10.1097/XCE.0000000000000172.
Article
CAS
PubMed
PubMed Central
Google Scholar
Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet (London, England). 1994;344:793–5. https://doi.org/10.1016/S0140-6736(94)92346-9.
Article
CAS
Google Scholar
Meyers DG. The iron hypothesis—does iron cause atherosclerosis? Clin Cardiol. 1996;19:925–9. https://doi.org/10.1002/clc.4960191205.
Article
CAS
PubMed
Google Scholar
Kuvin JT, Kimmelstiel CD. Infectious causes of atherosclerosis. American Heart Journal. 1999;137:216–26. https://doi.org/10.1053/hj.1999.v137.92261.
Article
CAS
PubMed
Google Scholar
Stehbens WE. The oxidative stress hypothesis of atherosclerosis: cause or product? Med Hypotheses. 1999;53:507–15. https://doi.org/10.1054/mehy.1999.0801.
Article
CAS
PubMed
Google Scholar
Lee SA, Amis TC, Byth K, Larcos G, Kairaitis K, Robinson TD, et al. Heavy snoring as a cause of carotid artery atherosclerosis. Sleep. 2008;31:1207–13. https://doi.org/10.5665/sleep/31.9.1207.
Article
PubMed
PubMed Central
Google Scholar
Verhagen SN, Visseren FLJ. Perivascular adipose tissue as a cause of atherosclerosis. Atherosclerosis. 2011;214:3–10. https://doi.org/10.1016/j.atherosclerosis.2010.05.034.
Article
CAS
PubMed
Google Scholar
Sarathi M, Ashley U, Lingyun W, Rui W. Hydrogen sulfide and the pathogenesis of atherosclerosis. Antioxid Redox Signal. 2014;20:805–17. https://doi.org/10.1089/ars.2013.5324.
Article
CAS
Google Scholar
McCully KS. Homocysteine and the pathogenesis of atherosclerosis. Expert Rev Clin Pharmacol. 2015;8:211–9. https://doi.org/10.1586/17512433.2015.1010516.
Article
CAS
PubMed
Google Scholar
Mimura J, Itoh K. Role of Nrf2 in the pathogenesis of atherosclerosis. Free Radic Biol Med. 2015;88:221–32. https://doi.org/10.1016/j.freeradbiomed.2015.06.019.
Article
CAS
PubMed
Google Scholar
Stancel N, Chen C-C, Ke L-Y, Chu C-S, Lu J, Sawamura T, et al. Interplay between CRP, atherogenic LDL, and LOX-1 and its potential role in the pathogenesis of atherosclerosis. Clin Chem. 2015;62:320–7. https://doi.org/10.1373/clinchem.2015.243923.
Article
CAS
PubMed
Google Scholar
Vijayvergiya R, Vadivelu R. Role of Helicobacter pylori infection in pathogenesis of atherosclerosis. World J Cardiol. 2015;7:134–43. https://doi.org/10.4330/wjc.v7.i3.134.
Article
PubMed
PubMed Central
Google Scholar
Frieri M, Stampfl H. Systemic lupus erythematosus and atherosclerosis: review of the literature. Autoimmun Rev. 2016;15:16–21. https://doi.org/10.1016/j.autrev.2015.08.007.
Article
CAS
PubMed
Google Scholar
Forstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circulation research. 2017;120:713–35. https://doi.org/10.1161/circresaha.116.309326.
Article
PubMed
Google Scholar
Kim YR, Han KH. Familial hypercholesterolemia and the atherosclerotic disease. Korean Circ J. 2013;43:363–7. https://doi.org/10.4070/kcj.2013.43.6.363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berger S, Raman G, Vishwanathan R, Jacques PF, Johnson EJ. Dietary cholesterol and cardiovascular disease: a systematic review and meta-analysis. Am J Clin Nutr. 2015;102:276–94. https://doi.org/10.3945/ajcn.114.100305.
Article
CAS
PubMed
Google Scholar
Chistiakov DA, Bobryshev YV, Orekhov AN. Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med. 2016;20:17–28. https://doi.org/10.1111/jcmm.12689.
Article
CAS
PubMed
Google Scholar
Zárate A, Manuel-Apolinar L, Saucedo R, Hernández-Valencia M, Basurto L. Hypercholesterolemia as a risk factor for cardiovascular disease: current controversial therapeutic management. Arch Med Res. 2016;47:491–5. https://doi.org/10.1016/j.arcmed.2016.11.009.
Article
CAS
PubMed
Google Scholar
Peters SAE, Singhateh Y, Mackay D, Huxley RR, Woodward M. Total cholesterol as a risk factor for coronary heart disease and stroke in women compared with men: a systematic review and meta-analysis. Atherosclerosis. 2016;248:123–31. https://doi.org/10.1016/j.atherosclerosis.2016.03.016.
Article
CAS
PubMed
Google Scholar
Borén J, Williams KJ. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol. 2016;27:473–83. https://doi.org/10.1097/MOL.0000000000000330.
Article
CAS
PubMed
Google Scholar
Honda A, Salen G, Honda M, Batta AK, Tint GS, Xu G, et al. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase activity is inhibited by cholesterol and up-regulated by sitosterol in sitosterolemic fibroblasts. J Lab Clin Med. 2000;135:174–9. https://doi.org/10.1067/mlc.2000.104459.
Article
CAS
PubMed
Google Scholar
Friesen JA, Rodwell VW. The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol. 2004;5:248. https://doi.org/10.1186/gb-2004-5-11-248.
Article
PubMed
PubMed Central
Google Scholar
Buhaescu I, Izzedine H. Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem. 2007;40:575–84. https://doi.org/10.1016/j.clinbiochem.2007.03.016.
Article
CAS
PubMed
Google Scholar
DeBose-Boyd RA. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res. 2008;18:609–21. https://doi.org/10.1038/cr.2008.61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carbonell T, Freire E. Binding thermodynamics of statins to hmg-coa reductase. biochemistry. 2005;44:11741–8. https://doi.org/10.1021/bi050905v.
Article
CAS
PubMed
Google Scholar
Endo A. A historical perspective on the discovery of statins. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86:484–93. https://doi.org/10.2183/pjab.86.484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feldstein CA. Statins in hypertension: are they a new class of antihypertensive agents? American journal of therapeutics. 2010;17:255–62. https://doi.org/10.1097/MJT.0b013e3181c0695e.
Article
PubMed
Google Scholar
Antonopoulos AS, Margaritis M, Lee R, Channon K, Antoniades C. Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr Pharm Des. 2012;18:1519–30. https://doi.org/10.2174/138161212799504803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rizzo M, Montalto G, Banach M. The effects of statins on blood pressure: current knowledge and future perspectives. Arch Med Sci. 2012;8:1–3. https://doi.org/10.5114/aoms.2012.27270.
Article
PubMed
PubMed Central
Google Scholar
Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circulation research. 2017;120:229–43. https://doi.org/10.1161/CIRCRESAHA.116.308537.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan S. Statins may decrease the fatality rate of middle east respiratory syndrome infection. mBio. 2015;6:e01120–15. https://doi.org/10.1128/mBio.01120-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong B, Wang C, Tan J, Cao Y, Zou Y, Yao Y, et al. Statins for the prevention and treatment of acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. Respirology. 2016;21:1026–33. https://doi.org/10.1111/resp.12820.
Article
PubMed
Google Scholar
Thomson NC. Clinical studies of statins in asthma and COPD. Current molecular pharmacology. 2017;10:60–71. https://doi.org/10.2174/1874467209666160112125911.
Article
CAS
PubMed
Google Scholar
So JY, Dhungana S, Beros JJ, Criner GJ. Statins in the treatment of COPD and asthma—where do we stand? Curr Opin Pharmacol. 2018;40:26–33. https://doi.org/10.1016/j.coph.2018.01.001.
Article
CAS
PubMed
Google Scholar
Melo AC, Cattani-Cavalieri I, Barroso MV, Quesnot N, Gitirana LB, Lanzetti M, et al. Atorvastatin dose-dependently promotes mouse lung repair after emphysema induced by elastase. Biomed Pharmacother. 2018;102:160–8. https://doi.org/10.1016/j.biopha.2018.03.067.
Article
CAS
PubMed
Google Scholar
Ahern TP, Lash TL, Damkier P, Christiansen PM, Cronin-Fenton DP. Statins and breast cancer prognosis: evidence and opportunities. Lancet Oncol. 2014;15:e461–e8. https://doi.org/10.1016/S1470-2045(14)70119-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pisanti S, Picardi P, Ciaglia E, D’Alessandro A, Bifulco M. Novel prospects of statins as therapeutic agents in cancer. Pharmacol Res. 2014;88:84–98. https://doi.org/10.1016/j.phrs.2014.06.013.
Article
CAS
PubMed
Google Scholar
Nevadunsky NS, Van Arsdale A, Strickler HD, Spoozak LA, Moadel A, Kaur G, et al. Association between statin use and endometrial cancer survival. Obstet Gynecol. 2015;126:144–50. https://doi.org/10.1097/aog.0000000000000926.
Article
CAS
PubMed
Google Scholar
Matusewicz L, Meissner J, Toporkiewicz M, Sikorski AF. The effect of statins on cancer cells--review. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36:4889–904. https://doi.org/10.1007/s13277-015-3551-7.
Article
CAS
Google Scholar
Borgquist S, Bjarnadottir O, Kimbung S, Ahern TP. Statins: a role in breast cancer therapy? J Intern Med. 2018;284:346–57. https://doi.org/10.1111/joim.12806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Telfah M, Iwakuma T, Bur A, Shnayder L, Tsue T, Al-Kasspooles MM, et al. A window of opportunity trial of atorvastatin in p53-mutant and p53 wild type malignancies. J Clin Oncol. 2019;37:TPS3165. https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS3165.
Article
Google Scholar
Verpaalen B, Neyts J, Delang L. Are statins a viable option for the treatment of infections with the hepatitis C virus? Antiviral Res. 2014;105:92–9. https://doi.org/10.1016/j.antiviral.2014.02.020.
Article
CAS
PubMed
Google Scholar
Bryan-Marrugo OL, Arellanos-Soto D, Rojas-Martinez A, Barrera-Saldana H, Ramos-Jimenez J, Vidaltamayo R, et al. The antidengue virus properties of statins may be associated with alterations in the cellular antiviral profile expression. Mol Med Rep. 2016;14:2155–63. https://doi.org/10.3892/mmr.2016.5519.
Article
CAS
PubMed
Google Scholar
Drechsler H, Ayers C, Cutrell J, Maalouf N, Tebas P, Bedimo R. Current use of statins reduces risk of HIV rebound on suppressive HAART. PLoS ONE. 2017;12:e0172175. https://doi.org/10.1371/journal.pone.0172175.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marakasova ES, Eisenhaber B, Maurer-Stroh S, Eisenhaber F, Baranova A. Prenylation of viral proteins by enzymes of the host: virus-driven rationale for therapy with statins and FT/GGT1 inhibitors. BioEssays. 2017;39:1700014. https://doi.org/10.1002/bies.201700014.
Article
CAS
Google Scholar
Shrivastava-Ranjan P, Flint M, Bergeron É, McElroy AK, Chatterjee P, Albariño CG, et al. Statins suppress ebola virus infectivity by interfering with glycoprotein processing. mBio. 2018;9:e00660–18. https://doi.org/10.1128/mBio.00660-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biswas RR, Das MC, Rao ASRS, SRM K. Effect of atorvastatin on memory in albino mice. J Clin Diagn Res. 2014;8:HF01–HF4. https://doi.org/10.7860/JCDR/2014/9730.5089.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin F-C, Chuang Y-S, Hsieh H-M, Lee T-C, Chiu K-F, Liu C-K, et al. Early statin use and the progression of Alzheimer disease: a total population-based case-control study. Medicine. 2015;94:e2143. https://doi.org/10.1097/MD.0000000000002143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saeedi Saravi SS, Saeedi Saravi SS, Arefidoust A, Dehpour AR. The beneficial effects of HMG-CoA reductase inhibitors in the processes of neurodegeneration. Metab Brain Dis. 2017;32:949–65. https://doi.org/10.1007/s11011-017-0021-5.
Article
CAS
PubMed
Google Scholar
McFarland AJ, Davey AK, McDermott CM, Grant GD, Lewohl J, Anoopkumar-Dukie S. Differences in statin associated neuroprotection corresponds with either decreased production of IL-1β or TNF-α in an in vitro model of neuroinflammation-induced neurodegeneration. Toxicol Appl Pharmacol. 2018;344:56–73. https://doi.org/10.1016/j.taap.2018.03.005.
Article
CAS
PubMed
Google Scholar
Li H-H, Lin C-L, Huang C-N. Neuroprotective effects of statins against amyloid β-induced neurotoxicity. Neural Regen Res. 2018;13:198–206. https://doi.org/10.4103/1673-5374.226379.
Article
PubMed
PubMed Central
Google Scholar
Anna L, Antonina G, Maria Giovanna M, Salvatore P, Salvatore P, Maurizio A. Liver and statins: a critical appraisal of the evidence. Curr Med Chem. 2018;25:5835–46. https://doi.org/10.2174/0929867325666180327095441.
Article
CAS
Google Scholar
Mohammad S, Nguyen H, Nguyen M, Abdel-Rasoul M, Nguyen V, Nguyen CD, et al. Pleiotropic effects of statins: untapped potential for statin pharmacotherapy. Current Vascular Pharmacology. 2019;17:239–61. https://doi.org/10.2174/1570161116666180723120608.
Article
CAS
PubMed
Google Scholar
Adams SP, Tsang M, Wright JM. Lipid-lowering efficacy of atorvastatin. Cochrane Database Syst Rev. 2015;2015:CD008226–CD. https://doi.org/10.1002/14651858.CD008226.pub3.
Article
PubMed Central
Google Scholar
Lewis JS, Windhorst AD, Zeglis BM. Radiopharmaceutical chemistry: Springer International Publishing; 2019.
Beyzavi MH, Mandal D, Strebl MG, Neumann CN, D’Amato EM, Chen J, et al. 18F-deoxyfluorination of phenols via Ru π-complexes. ACS Cent Sci. 2017;3:944–8. https://doi.org/10.1021/acscentsci.7b00195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strebl MG, Campbell AJ, Zhao W-N, Schroeder FA, Riley MM, Chindavong PS, et al. HDAC6 brain mapping with [18F]bavarostat enabled by a Ru-mediated deoxyfluorination. ACS Cent Sci. 2017;3:1006–14. https://doi.org/10.1021/acscentsci.7b00274.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rickmeier J, Ritter T. Site-specific deoxyfluorination of small peptides with [18F]fluoride. Angew Chem Int Ed. 2018;130:14403–7. https://doi.org/10.1002/ange.201807983.
Article
Google Scholar
Baumann KL, Butler DE, Deering CF, Mennen KE, Millar A, Nanninga TN, et al. The convergent synthesis of CI-981, an optically active, highly potent, tissue selective inhibitor of HMG-CoA reductase. Tetrahedron Lett. 1992;33:2283–4. https://doi.org/10.1016/S0040-4039(00)74190-6.
Article
CAS
Google Scholar
Sagyam RR, Padi PR, Ghanta MR, Vurimidi H. An efficient synthesis of highly substituted pyrrole and bis pyrrole derivatives. J Heterocycl Chem. 2007;44:923–6. https://doi.org/10.1002/jhet.5570440429.
Article
CAS
Google Scholar
Ballinger JR, Koziorowski J. Regulation of PET radiopharmaceuticals production in Europe. In: Khalil MM, editor. Basic science of PET imaging. Cham: Springer International Publishing; 2017. p. 127–43.
Chapter
Google Scholar
Brittain HG. Profiles of drug substances, excipients and related methodology: Elsevier Science; 2010.
Ness GC, Gertz KR. Hepatic HMG-CoA Reductase expression and resistance to dietary cholesterol. Exp Biol Med. 2004;229:412–6. https://doi.org/10.1177/153537020422900509.
Article
CAS
Google Scholar
Lagor WR, Heller R, De Groh ED, Ness GC. Functional analysis of the hepatic HMG-CoA reductase promoter by in vivo electroporation. Exp Biol Med. 2007;232:353–61. https://doi.org/10.3181/00379727-232-2320353.
Article
CAS
Google Scholar
Wu N, Sarna LK, Hwang S, Zhu Q, Wang P, Siow YL, et al. Regulation of Hmg-Coa reductase in diet-induced non-alcoholic fatty liver disease. Canadian J Cardiol. 2013;29:S378. https://doi.org/10.1016/j.cjca.2013.07.648.
Article
Google Scholar
Keller GA, Barton MC, Shapiro DJ, Singer SJ. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase is present in peroxisomes in normal rat liver cells. PNAS. 1985;82:770–4. https://doi.org/10.1073/pnas.82.3.770.
Article
CAS
PubMed
Google Scholar
Rezvan A, Sur S, Jo H. Novel animal models of atherosclerosis. Biomedical Engineering Letters. 2015;5:181–7. https://doi.org/10.1007/s13534-015-0200-4.
Article
Google Scholar
Wei S, Zhang Y, Su L, He K, Wang Q, Zhang Y, et al. Apolipoprotein E-deficient rats develop atherosclerotic plaques in partially ligated carotid arteries. Atherosclerosis. 2015;243:589–92. https://doi.org/10.1016/j.atherosclerosis.2015.10.093.
Article
CAS
PubMed
Google Scholar
Sijbesma J, van Waarde A, Kristensen S, Kion I, Tietge UJF, Hillebrands JL, et al. OP-655: Characterization of the apolipoprotein E-deficient rat as novel model for atherosclerosis imaging. Eur J Nucl Med Mol Imaging. 2019;46:S248. https://doi.org/10.1007/s00259-019-04486-2.
Article
Google Scholar
The Human Protein Atlas. https://www.proteinatlas.org/ENSG00000113161-HMGCR/tissue. Accessed 02 February 2020.
Zarganes-Tzitzikas T, Neochoritis CG, Dömling A. Atorvastatin (Lipitor) by MCR. ACS Med Chem Lett. 2019;10:389–92. https://doi.org/10.1021/acsmedchemlett.8b00579.
Article
CAS
PubMed
PubMed Central
Google Scholar
Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 2001;292:1160–4. https://doi.org/10.1126/science.1059344.
Article
CAS
PubMed
Google Scholar
Lee CW, Park C-S, Hwang I, Kim Y, Park D-W, Kang S-J, et al. Expression of HMG-CoA reductase in human coronary atherosclerotic plaques and relationship to plaque destabilisation. Heart. 2011;97:715–20. https://doi.org/10.1136/hrt.2009.190934.
Article
CAS
PubMed
Google Scholar