Liehn EA, Postea O, Curaj A, Marx N: Repair after myocardial infarction, between fantasy and reality: the role of chemokines. J Am Coll Cardiol 2011, 58: 2357–2362. 10.1016/j.jacc.2011.08.034
Article
Google Scholar
Pfeffer MA, Braunwald E: Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation 1990, 81: 1161–1172. 10.1161/01.CIR.81.4.1161
Article
CAS
Google Scholar
Cohn JN, Ferrari R, Sharpe N: Cardiac remodeling - concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 2000, 35: 569–582. 10.1016/S0735-1097(99)00630-0
Article
CAS
Google Scholar
Sun M, Opavsky MA, Stewart DJ, Rabinovitch M, Dawood F, Wen WH: Temporal response and localization of integrins beta1 and beta3 in the heart after myocardial infarction: regulation by cytokines. Circulation 2003, 107: 1046–1052. 10.1161/01.CIR.0000051363.86009.3C
Article
CAS
Google Scholar
Meoli DF, Sadeghi MM, Krassilnikova S, Bourke BN, Giordano FJ, Dione DP, Su H, Edwards DS, Liu S, Harris TD, Madri JA, Zaret BL, Sinusas AJ: Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest 2004, 113: 1684–1691.
Article
CAS
Google Scholar
Higuchi T, Bengel FM, Seidl S, Watzlowik P, Kessler H, Hegenloh R, Reder S, Nekolla SG, Wester HJ, Schwaiger M: Assessment of αvβ3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc Res 2008, 78: 395–403. 10.1093/cvr/cvn033
Article
CAS
Google Scholar
Gao H, Lang L, Guo N, Cao F, Quan Q, Hu S, Kiesewetter DO, Niu G, Chen X: PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer 18
F-AlF-NOTA-PRGD
2
. Eur J Nucl Med Mol Imaging 2012, 39: 683–692. 10.1007/s00259-011-2052-1
Article
CAS
Google Scholar
Sherif HM, Saraste A, Nekolla SG, Weidl E, Reder S, Tapfer A, Rudelius M, Higuchi T, Botnar RM, Wester HJ, Schwaiger M: Molecular imaging of early αvβ3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats. J Nucl Med 2012, 53: 318–323. 10.2967/jnumed.111.091652
Article
CAS
Google Scholar
Notni J, Šimeček J, Hermann P, Wester HJ: TRAP, a powerful and versatile framework for gallium-68 radiopharmaceuticals. Chem Eur J 2011, 17: 14718–1422. 10.1002/chem.201103503
Article
CAS
Google Scholar
Pohle K, Notni J, Bussemer J, Kessler H, Schwaiger M, Beer AJ: 68
Ga-NODAGA-RGD is a suitable substitute for 18
F-galacto-RGD and can be produced with high specific activity in a cGMP/GRP compliant automated process. Nucl Med Biol 2012, 39: 777–784. 10.1016/j.nucmedbio.2012.02.006
Article
CAS
Google Scholar
Notni J, Pohle K, Wester HJ: Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: practical consequences for the future of gallium-68-PET. EJNMMI Res 2012, 2: 28. 10.1186/2191-219X-2-28
Article
CAS
Google Scholar
Notni J, Pohle K, Wester HJ: Be spoilt for choice with radiolabelled RGD peptides: preclinical evaluation of 68
Ga-TRAP(RGD)
3
. Nucl Med Biol 2013, 40: 33–40. 10.1016/j.nucmedbio.2012.08.006
Article
CAS
Google Scholar
Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, Senekowitsch-Schmidtke R, Kessler H, Schwaiger M: Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001, 61: 1781–1785.
CAS
Google Scholar
Mas-Moruno C, Rechenmacher F, Kessler H: Cilengitide: the first anti-angiogenic small molecule drug candidate. Design, synthesis and clinical evaluation. Anticancer Agents Med Chem 2010, 10: 753–768. 10.2174/187152010794728639
Article
CAS
Google Scholar
Dechantsreiter MA, Planker E, Mathä B, Lohof E, Hölzemann G, Jonczyk A, Goodman SL, Kessler H: N -methylated cyclic RGD peptides as highly active and selective αvβ3 integrin antagonists. J Med Chem 1999, 42: 3033–3040. 10.1021/jm970832g
Article
CAS
Google Scholar
Ross RS: The extracellular connections: the role of integrins in myocardial remodeling. J Card Fail 2002,8(Suppl 6):326–331.
Article
Google Scholar
Ross RS, Pham C, Shai SY, Goldhaber JI, Fenczik C, Glembotski CC, Ginsberg MH, Loftus JC: Beta1 integrins participate in the hypertrophic response of rat ventricular myocytes. Circ Res 1998, 82: 1160–1172. 10.1161/01.RES.82.11.1160
Article
CAS
Google Scholar
Johnston RK, Balasubramanian S, Kasiganesan H, Baicu CF, Zile MR, Kuppuswamy D: Beta3 integrin-mediated ubiquitination activates survival signaling during myocardial hypertrophy. FASEB J 2009, 23: 2759–2771. 10.1096/fj.08-127480
Article
CAS
Google Scholar
Cheng Z, DiMichele LA, Hakim ZS, Rojas M, Mack CP, Taylor JM: Targeted focal adhesion kinase activation in cardiomyocytes protects the heart from ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol 2012, 32: 924–933. 10.1161/ATVBAHA.112.245134
Article
CAS
Google Scholar
Gaertner FC, Kessler H, Wester HJ, Schwaiger M, Beer A: Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging 2012,39(Suppl 1):126–138.
Article
CAS
Google Scholar
Schottelius M, Laufer B, Kessler H, Wester HJ: Ligands for mapping alphavbeta3-integrin expression in vivo . Acc Chem Res 2009, 42: 969–980. 10.1021/ar800243b
Article
CAS
Google Scholar
Pfaff M, Tangemann K, Müller B, Gurrath M, Müller G, Kessler H, Timpl R, Engel J: Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha IIb beta 3, alpha V beta 3, and alpha 5 beta 1 integrins. J Biol Chem 1994, 269: 20233–20238.
CAS
Google Scholar
Weide T, Modlinger A, Kessler H: Spatial screening for the identification of the bioactive conformation of integrin ligands. Top Curr Chem 2007, 272: 1–50. 10.1007/128_052
Article
CAS
Google Scholar
Beer A, Kessler H, Wester HJ, Schwaiger M: PET imaging of integrin α
v
β
3
expression. Theranostics 2011, 1: 48–57.
Article
CAS
Google Scholar
Dimastromatteo J, Riou LM, Ahmadi M, Pons G, Pellegrini E, Broisat A, Sancey L, Gavrilina T, Boturyn D, Dumy P, Fagret D, Ghezzi C: In vivo molecular imaging of myocardial angiogenesis using the αvß3 integrin-targeted tracer 99m
Tc-RAFT-RGD. J Nucl Cardiol 2010, 17: 435–443. 10.1007/s12350-010-9191-9
Article
Google Scholar
Notni J, Hermann P, Havlíčková J, Kotek J, Kubíček V, Plutnar J, Loktionová N, Riss PJ, Rösch F, Lukeš I: A triazacyclononane-based bifunctional phosphinate ligand for the preparation of multimeric 68
Ga tracers for positron emission tomography. Chem Eur J 2010, 16: 7174–7185.
Article
CAS
Google Scholar
Šimeček J, Schulz M, Notni J, Plutnar J, Kubíček V, Havlíčková J, Hermann P: Complexation of metal ions with TRAP (1,4,7-triazacyclononane phosphinic acid) ligands and NOTA: phosphinate-containing ligands as unique chelators for trivalent gallium. Inorg Chem 2012, 51: 577–590. 10.1021/ic202103v
Article
Google Scholar
Thumshirn G, Hersel U, Goodman SL, Kessler H: Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. Chem Eur J 2003, 9: 2717–2725. 10.1002/chem.200204304
Article
CAS
Google Scholar
Li ZB, Chen K, Chen X: 68
Ga-labeled multimeric RGD peptides for microPET imaging of integrin α
v
β
3
expression. Eur J Nucl Med Mol Imaging 2008, 35: 1100–1108. 10.1007/s00259-007-0692-y
Article
CAS
Google Scholar
Shi J, Zhou Y, Chakraborty S, Kim YS, Jia B, Wang F, Liu S: Evaluation of in-labeled cyclic RGD peptides: effects of peptide and linker multiplicity on their tumor uptake, excretion kinetics and metabolic stability. Theranostics 2011, 1: 322–340.
Article
CAS
Google Scholar
Nawata J, Ohno I, Isoyama S, Suzuki J, Miura S, Ikeda J, Shirato K: Differential expression of alpha 1, alpha 3 and alpha 5 integrin subunits in acute and chronic stages of myocardial infarction in rats. Cardiovasc Res 1999, 43: 371–381. 10.1016/S0008-6363(99)00117-0
Article
CAS
Google Scholar
Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, Stöcklin G, Schwaiger M: Radiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999, 40: 1061–1071.
CAS
Google Scholar
Hynes R: Integrins: bidirectional, allosteric signalling machines. Cell 2002, 110: 673–687. 10.1016/S0092-8674(02)00971-6
Article
CAS
Google Scholar
Brooks PC, Clark RA, Cheresh DA: Requirements of vascular integrin avß3 for angiogenesis. Science 1994, 264: 569–571. 10.1126/science.7512751
Article
CAS
Google Scholar
Clark RA, Tonnesen MG, Gailit J, Cheresh DA: Transient functional expression of avß3 on vascular cells during wound repair. Am J Pathol 1996, 148: 1407–1421.
CAS
Google Scholar
van den Borne SW, Isobe S, Verjans JW, Petrov A, Lovhaug D, Li P, Zandbergen HR, Ni Y, Frederik P, Zhou J, Arbo B, Rogstad A, Cuthbertson A, Chettibi S, Reutelingsperger C, Blankesteijn WM, Smits JF, Daemen MJ, Zannad F, Vannan MA, Narula N, Pitt B, Hofstra L, Narula J: Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J Am Coll Cardiol 2008, 52: 2017–2028. 10.1016/j.jacc.2008.07.067
Article
CAS
Google Scholar
Savill J, Dransfield I, Hogg N, Haslett C: Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 1990, 343: 170–173. 10.1038/343170a0
Article
CAS
Google Scholar
Battle MR, Goggi JL, Allen L, Barnett J, Morrison MS: Monitoring tumor response to antiangiogenic sunitinib therapy with 18
F-fluciclatide, an 18
F-labeled α
V
β
3
-integrin and α
V
β
5
-integrin imaging agent. J Nucl Med 2011, 52: 424–430. 10.2967/jnumed.110.077479
Article
CAS
Google Scholar