Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, Pohost GM, Williams KA: American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Nuclear Cardiology, American College of Radiology, American Heart Association, American Society of Echocardiography, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, Society of Nuclear Medicine. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Circulation 2009, 119: e561-e587.
Article
PubMed
Google Scholar
Hesse B, Lindhardt TB, Acampa W, Anagnostopoulos C, Ballinger J, Bax JJ, Edenbrandt L, Flotats A, Germano G, Stopar TG, Franken P, Kelion A, Kjaer A, Le Guludec D, Ljungberg M, Maenhout AF, Marcassa C, Marving J, McKiddie F, Schaefer WM, Stegger L, Underwood R: EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging 2008, 35: 851–885. 10.1007/s00259-007-0694-9
Article
CAS
PubMed
Google Scholar
Jain D: Technetium-99m labeled myocardial perfusion imaging agents. Semin Nucl Med 1999, 29: 221–236. 10.1016/S0001-2998(99)80012-9
Article
CAS
PubMed
Google Scholar
Wackers FJ, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, Boucher CA, Picard M, Holman BL, Fridrich R: Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 1989, 30: 301–311.
CAS
PubMed
Google Scholar
Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM: High resolution SPECT using multipinhole collimation. IEEE Trans NuclSci 2003, 50: 315–320. 10.1109/TED.2002.808519
Article
Google Scholar
Lackas C, Hoppin J, Pissarek M, Schramm NU: Multi-pinhole SPECT with helical scanning. Mol Imaging 2005, 4: 364.
Google Scholar
Forrer F, Valkema R, Bernard B, Schramm NU, Hoppin JW, Rolleman E, Krenning EP, de Jong M: In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals. Eur J Nucl Med Mol Imaging 2006, 33: 1214–1217. 10.1007/s00259-006-0178-3
Article
CAS
PubMed
Google Scholar
Finucane CM, Murray I, Sosabowski JK, Foster JM, Mather SJ: Quantitative accuracy of low-count SPECT imaging in phantom and in vivo mouse studies. Int J Mol Imaging 2011, 2011: 197381.
Article
PubMed Central
PubMed
Google Scholar
Acton PD, Thomas D, Zhou R: Quantitative imaging of myocardial infarct in rats with high resolution pinhole SPECT. Int J Cardiovasc Imaging 2006, 22: 429–434. 10.1007/s10554-005-9046-7
Article
PubMed Central
PubMed
Google Scholar
Wollenweber T, Zach C, Rischpler C, Fischer R, Nowak S, Nekolla SG, Grobner M, Ubleis C, Assmann G, Muller-Hocker J, La Fougere C, Boning G, Cumming P, Franz WM, Hacker M: Myocardial perfusion imaging is feasible for infarct size quantification in mice using a clinical single-photon emission computed tomography system equipped with pinhole collimators. Mol Imaging Biol 2010, 12: 427–434. 10.1007/s11307-009-0281-5
Article
PubMed
Google Scholar
Strydhorst JH, Leenen FH, Ruddy TD, Wells RG: Reproducibility of serial left ventricle perfusion, volume, and ejection fraction measurements using multiplexed multipinhole SPECT in healthy rats and rats after myocardial infarction. J Nucl Med 2011, 52: 1285–1292. 10.2967/jnumed.111.088658
Article
PubMed
Google Scholar
Constantinesco A, Choquet P, Monassier L, Israel-Jost V, Mertz L: Assessment of left ventricular perfusion, volumes, and motion in mice using pinhole gated SPECT. J Nucl Med 2005, 46: 1005–1011.
PubMed
Google Scholar
Liu Z, Chen L, Liu S, Barber C, Stevenson GD, Furenlid LR, Barrett HH, Woolfenden JM: Kinetic characterization of a novel cationic (99m)Tc(I)-tricarbonyl complex, (99m)Tc-15C5-PNP, for myocardial perfusion imaging. J Nucl Cardiol 2010, 17: 858–867. 10.1007/s12350-010-9262-y
Article
PubMed Central
PubMed
Google Scholar
Hatada K, Riou LM, Ruiz M, Yamamichi Y, Duatti A, Lima RL, Goode AR, Watson DD, Beller GA, Glover DK: 99mTc-N-DBODC5, a new myocardial perfusion imaging agent with rapid liver clearance: comparison with 99mTc-sestamibi and 99mTc-tetrofosmin in rats. J Nucl Med 2004, 45: 2095–2101.
CAS
PubMed
Google Scholar
Wu MC, Gao DW, Sievers RE, Lee RJ, Hasegawa BH, Dae MW: Pinhole single-photon emission computed tomography for myocardial perfusion imaging of mice. J Am Coll Cardiol 2003, 42: 576–582. 10.1016/S0735-1097(03)00716-2
Article
PubMed
Google Scholar
Yardeni T, Eckhaus M, Morris HD, Huizing M, Hoogstraten-Miller S: Retro-orbital injections in mice. Lab Anim (NY) 2011, 40: 155–160. 10.1038/laban0511-155
Article
Google Scholar
Steel CD, Stephens AL, Hahto SM, Singletary SJ, Ciavarra RP: Comparison of the lateral tail vein and the retro-orbital venous sinus as routes of intravenous drug delivery in a transgenic mouse model. Lab Anim (NY) 2008, 37: 26–32. 10.1038/laban0108-26
Article
Google Scholar
Li S, Li T, Luo Y, Yu H, Sun Y, Zhou H, Liang X, Huang J, Tang S: Retro-orbital injection of FITC-dextran is an effective and economical method for observing mouse retinal vessels. Mol Vis 2011, 17: 3566–3573.
CAS
PubMed Central
PubMed
Google Scholar
Hudson HM, Larkin RS: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994, 13: 601–609. 10.1109/42.363108
Article
CAS
PubMed
Google Scholar
Otsu N: A threshold selection method for gray level histogram. IEEE Trans Syst Man Cybern 1979,SMC-9(1):62–66.
Google Scholar
Shi P, Wang Y, Zhao H, Wei M, Hao H: Heart segmentation based on mathematical morphology And Otsu in visible human project images. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2007, 24: 996–1000.
PubMed
Google Scholar
Kober F, Iltis I, Cozzone PJ, Bernard M: Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: influence of ketamine/xylazine and isoflurane anesthesia. Magn Reson Med 2005, 53: 601–606. 10.1002/mrm.20373
Article
PubMed
Google Scholar
Muzik O, Duvernoy C, Beanlands RS, Sawada S, Dayanikli F, Wolfe ER, Schwaiger M: Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 1998, 31: 534–540. 10.1016/S0735-1097(97)00526-3
Article
CAS
PubMed
Google Scholar
Salerno M, Beller GA: Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging 2009, 2: 412–424. 10.1161/CIRCIMAGING.109.854893
Article
PubMed
Google Scholar
Jain D, Wackers FJ, Mattera J, McMahon M, Sinusas AJ, Zaret BL: Biokinetics of technetium-99m-tetrofosmin: myocardial perfusion imaging agent: implications for a one-day imaging protocol. J Nucl Med 1993, 34: 1254–1259.
CAS
PubMed
Google Scholar
Munch G, Neverve J, Matsunari I, Schroter G, Schwaiger M: Myocardial technetium-99m-tetrofosmin and technetium-99m-sestamibi kinetics in normal subjects and patients with coronary artery disease. J Nucl Med 1997, 38: 428–432.
CAS
PubMed
Google Scholar
Ravizzini GC, Hanson MW, Shaw LK, Wong TZ, Hagge RJ, Pagnanelli RA, Jain D, Lima HS, Coleman RE, Borges-Neto S: Efficiency comparison between 99m Tc-tetrofosmin and 99m Tc-sestamibi myocardial perfusion studies. Nucl Med Commun 2002, 23: 203–208. 10.1097/00006231-200203000-00002
Article
CAS
PubMed
Google Scholar