European Science Foundation: Rheumatic Disease-a Major Challenge for European Research and Health Care. European Science Foundation Policy Briefing 2006, 6: 1–4.
Google Scholar
Vanderheyden JL: The use of imaging in preclinical drug development. Q J Nucl Med Mol Imaging 2009, 53: 374–381.
CAS
PubMed
Google Scholar
Schambach SJ, Bag S, Schilling L, Gronden C, Brockmann MA: Application of micro-CT in small animal imaging. Methods 2010, 50: 2–13. 10.1016/j.ymeth.2009.08.007
Article
CAS
PubMed
Google Scholar
Badea CT, Drangova M, Holdsworth DW, Johnson GA: In vivo small animal imaging using micro-CT and digital substraction angiography. Phys Med Biol 2008, 53: 319–350. 10.1088/0031-9155/53/2/001
Article
Google Scholar
Holdsworth DW, Thornton M: Micro-CT in small animal and specimen imaging. Trends in Biotechnology 2002, 20: 34–39. 10.1016/S0167-7799(02)02004-8
Article
Google Scholar
Winkelmann CT, Wise LD: High-throughput micro-computed tomography imaging as a method to evaluate rat and rabbit fetal skeletal abnormalities for developmental toxicity studies. J Pharmacol Toxicol Methods 2009, 59: 156–165. 10.1016/j.vascn.2009.03.004
Article
CAS
PubMed
Google Scholar
Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R: Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 2010, 25: 1468–1486. 10.1002/jbmr.141
Article
PubMed
Google Scholar
Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M: The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 1989, 4: 3–11.
Article
CAS
PubMed
Google Scholar
Rüegsegger P, Koller B, Müller R: A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 1996, 58: 24–29. 10.1007/BF02509542
Article
PubMed
Google Scholar
Wachsmuth L, Engelke K: High-resolution imaging of osteoarthritis using microcomputed tomography. Methods Mol Med 2004, 101: 231–248.
PubMed
Google Scholar
Feldkamp LA, Davis LC, Kress LW: Practical cone-beam algorithm. J Opt Soc Am 1984, 1: 612–619. 10.1364/JOSAA.1.000612
Article
Google Scholar
Du LY, Umoh J, Nikolov HN, Pollmann SI, Lee TY, Holdsworth DW: A quality assurance phantom for the performance evaluation of volumetric micro-CT systems. Phys Med Biol 2007, 52: 7087–7108. 10.1088/0031-9155/52/23/021
Article
PubMed
Google Scholar
Taschereau R, Silverman RW, Chatzijoannou AF: Dual-energy attenuation coefficient decomposition with differential filtration and application to a micro-CT scanner. Phys Med Biol 2010, 55: 1141–1155. 10.1088/0031-9155/55/4/016
Article
CAS
PubMed Central
PubMed
Google Scholar
Cherry SR: Multimodality imaging: beyond PET/CT and SPECT/CT. Semin Nucl Med 2009, 39: 348–353. 10.1053/j.semnuclmed.2009.03.001
Article
PubMed Central
PubMed
Google Scholar
Badea C, Hedlund LW, Johnson GA: Micro-CT with respiratory and cardiac gating. Med Phys 2004, 31: 3324–3329. 10.1118/1.1812604
Article
CAS
PubMed Central
PubMed
Google Scholar
Morgan EF, Mason ZD, Chien KB, Pfeiffer AJ, Barnes GL, Einhorn TA, Gerstenfeld LC: Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone 2009, 44: 335–344. 10.1016/j.bone.2008.10.039
Article
PubMed Central
PubMed
Google Scholar
Freeman TA, Patel P, Parvizi J, Antoci V Jr, Shapiro IM: Micro-CT analysis with multiple thresholds allows detection of bone formation and resorption during ultrasound-treated fracture healing. J Orthop Res 2009, 27: 673–679. 10.1002/jor.20771
Article
PubMed
Google Scholar
Johnson LC, Johnson RW, Munoz SA, Mundy GR, Peterson TE, Sterling JA: Longitudinal live animal microCT allows for quantitative analysis of tumor-induced bone destruction. Bone 2011, 48: 141–151. 10.1016/j.bone.2010.05.033
Article
PubMed Central
PubMed
Google Scholar
Campell GM, Ominsky MS, Boyd SK: Bone quality in partially recovered after the discontinuation of RANKL administration in rats by increased bone mass on existing trabeculae: an in vivo micro-Ct study. Osteoporos Int 2011, 22: 931–942. 10.1007/s00198-010-1283-5
Article
Google Scholar
Kristensen E, Parsons TE, Hallgrímsson B, Boyd SK: A novel 3-D image-based morphological method for phenotypic analysis. IEEE Trans Biomed Eng 2008, 55: 2826–2831.
Article
PubMed
Google Scholar
Ritman EL: Small-animal CT: its difference from, and impact on, clinical CT. Nucl Instrum Methods Phys Res A 2007, 580: 968–970. 10.1016/j.nima.2007.06.040
Article
CAS
PubMed Central
PubMed
Google Scholar
Boyd SK, Davison P, Müller R, Gasser JA: Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 2006, 39: 854–862. 10.1016/j.bone.2006.04.017
Article
PubMed
Google Scholar
Klinck RJ, Campbell GM, Boyd SK: Radiation effects on bone architecture in mice and rats resulting from in vivo micro-computed tomography scanning. Med Eng Phys 2008, 30: 888–895. 10.1016/j.medengphy.2007.11.004
Article
PubMed
Google Scholar
Barck KH, Lee WP, Diehl LJ, Ross J, Gribling P, Zhang Y, Nguyen K, van Bruggen N, Hurst S, Carano RA: Quantification of cortical bone loss and repair for therapeutic evaluation in collagen-induced arthritis, by micro-computed tomography and automated image analysis. Arthritis Rheum 2004, 50: 3377–3386. 10.1002/art.20557
Article
PubMed
Google Scholar
Piscaer TM, Waarsing JH, Kops N, Pavljasevic P, Verhaar JA, van Osch GJ, Weinans H: In vivo imaging of cartilage degeneration using microCT-arthrography. Osteoarthritis Cartilage 2008, 16: 1011–1017. 10.1016/j.joca.2008.01.012
Article
CAS
PubMed
Google Scholar
Piscaer TM, van Osch GJVM, Verharra JAN, Weinans H: Imaging of experimental osteoarthritis in small animal models. Biorheology 2008, 45: 355–364.
CAS
PubMed
Google Scholar
Botter SM, Osch GJVM, Waarsinge JH, van der Linden JC, Verhaar JAN, Pols HAP, van Leeuwen JPTM, Weinans H: Cartilage damage pattern in relation to subchondral plate thickness in a collagenase-induced model of osteoarthritis. Osteoarthritis Cartilage 2008, 16: 506–514. 10.1016/j.joca.2007.08.005
Article
CAS
PubMed
Google Scholar
Moodie JP, Stok KS, Muller R, Vincent TL, Shefelbine SJ: Multimodal imaging demonstrates concomitant changes in bone and cartilage after destabilization of the medial meniscus and increased joint laxity. Osteoarthritis Cartilage 2011, 19: 163–170. 10.1016/j.joca.2010.11.006
Article
CAS
PubMed
Google Scholar
Stok KS, Pelled G, Zilberam Y, Kallai I, Goldhahn , Gazit D, Muller R: Revealing the interplay of bone and cartilage in osteoarthritis through multimodal imaging of murine joints. Bone 2009, 45: 414–422. 10.1016/j.bone.2009.05.017
Article
PubMed
Google Scholar
Botter SM, van Osch GJ, Waarsing JH, Day JS, Verhaar JA, Pols HA, van Leeuwen JP, Weinans H: Quantification of subchondral bone changes in murine osteorathritis model using micro-CT. Biorheology 2006, 43: 379–388.
CAS
PubMed
Google Scholar
Mc Erlain DD, Appleton CT, Litchfield RB, Pitelka V, Henry JL, Bernier SM, Beier F, Holdsworth DW: Study of subchondral bone adaptations in a rodent surgical model of OA using in vivo micro-computed tomography. Osteoarthritis Cartilage 2008, 16: 458–469. 10.1016/j.joca.2007.08.006
Article
CAS
Google Scholar
Roemer FW, Mohr A, Lynch JA, Meta MD, Guermazi A, Genant HK: Micro-CT arthrography: a pilot study for the ex vivo visualization of the rat knee joint. AJR Am J Roentgenol 2005, 184: 1215–1219.
Article
PubMed
Google Scholar
Palmer AW, Guldberg RE, Levbenston ME: Analysis of cartilage matrix fixed charge density qand three-dimensional morphology via contrast-enhanced microcomputed tomography. Proc Natl Acad Sci USA 2006, 103: 19255–19260. 10.1073/pnas.0606406103
Article
CAS
PubMed Central
PubMed
Google Scholar
Blair-Levy JM, Watts CE, Fiorientino NM, Dimitriadis EK, Marinie JC, Lipsky PE: A type I Collagen defect leads to rapidly progressive osteoarthritis in a mouse model. Arthritis & Rheumatism 58: 1096–1106.
Faure P, Doan BT, Beloil JC: In vivo high resolution three-dimensional MRI studies of rat joints at 7T. NMR in Biomedicine 2003, 16: 484–493. 10.1002/nbm.855
Article
CAS
PubMed
Google Scholar
Laurent D, O'Byrne E, Wasvary J, Pellas TC: In vivo MRI of cartilage pathogenesis in surgical models of osteoarthritis. Skeletal Radiol 2006, 35: 555–564. 10.1007/s00256-006-0133-1
Article
PubMed
Google Scholar
Jiang Y, Zhao J, White DL, Genant HK: Micro Ct and Micro MRI imaging of 3D architecture of animal skeleton. J Musculoskel Neuron Intercat 2000, 1: 45–51.
CAS
Google Scholar
Wang HH, Wang YX, Griffith JF, Sun YL, Zhang G, Chan CW, Qin L, Ahuja AT, Teng LS: Pitfalls in interpreting rat knee joint magnetic resonance images and their histological correlation. Acta Radiol 2009, 50: 1042–1048. 10.3109/02841850903156484
Article
PubMed
Google Scholar
Takahashi M, Wehrli FW, Hilaire L, Zemel BS, Hwang SN: In vivo NMR microscopy allows short-term serial assessment of multiple skeletal implications of corticosteroid exposure. Proc Natl Acad Sci USA 2002, 99: 4574–4579. 10.1073/pnas.062037499
Article
CAS
PubMed Central
PubMed
Google Scholar
Anumula S, Wehrli SL, Magland J, Wright AC, Wehrli FW: Ultra-short echo-time MRI detects changes in bone mineralization and water content in OVX rat bone in response to alendronate treatment. Bone 2010, 46: 1391–1399. 10.1016/j.bone.2010.01.372
Article
CAS
PubMed Central
PubMed
Google Scholar
Goebel JC, Bolbos R, Pham M, Galois L, Rengle A, Loeuille D, Netter P, Gillet P, Beuf O, Watrin-Pinzano A: In vivo high-resolution MRI (7T) of femoro-tibial cartilage changes in the rat anterior cruciate ligament transection model of osteoarthritis: a cross-sectional study. Rheumatology (Oxford) 2010, 49: 1654–1664. 10.1093/rheumatology/keq154
Article
Google Scholar
Spandonis Y, Heese FP, Hall LD: High resolution MRI relaxation measurements of water in the articular cartilage of the meniscectomized rat knee at 4.7 T. Magn Reson Imaging 2004, 22: 943–951. 10.1016/j.mri.2004.02.010
Article
PubMed
Google Scholar
Liu S, Shen S, Zhu T, Liang W, Huang L, Chen H, Wu H: Gadolinium-enhanced magnetic resonance imaging of the knee: an experimental approach. Skeletal Radiol 2010, 39: 885–890. 10.1007/s00256-008-0645-y
Article
PubMed
Google Scholar
Rengle A, Armenean M, Bolbos R, Goebel JC, Pinzano-Watrin A, Saint-Jalmes H, Gillet P, Beauf O: A dedicated two-channel phased-array receiver coild for high-resolution MRI of the rat knee cartilage at 7T. IEEE Transactions on Biomedical Engineering 2009, 56: 2891–2897.
Article
PubMed
Google Scholar
Riemann B, Schäfers KP, Schober O, Schäfers M: Small animal PET in preclinical studies: opportunities and challenges. QJ Nucl Med Mil Imaging 2008, 52: 215–221.
CAS
Google Scholar
Franc BJ, Acton PD, Mari C, Hasegawa BH: Small Animal SPECT and SPECT/CT: Important tools for preclinical investigation. J Nucl Med 2008, 49: 1651–1663. 10.2967/jnumed.108.055442
Article
PubMed
Google Scholar
Miot-Noirault E, Vidal A, Auzeloux P, Madelmont JC, Maublant J, Moins N: First in vivo SPECT imaging of mouse femorotibial cartilage using 99 m Tc-NTP 15–5. Mol Imaging 2008, 7: 263–271.
CAS
PubMed
Google Scholar
Miot-Noirault E, Gouin F, Vidal A, Rapp M, Maublant J, Askienazy S, Chezal JM, Heymann D, Redini F, Moins N: First preclinical imaging of primary cartilage neoplasm and its local recurrence using 99 m
Tc-NTP 15–5 radiotracer. J Nucl Med 2009, 50: 1541–1547. 10.2967/jnumed.108.056721
Article
CAS
PubMed
Google Scholar
Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I: Quantitative studies of bone with the use of 18F-fluoride and 99 m
Tc-methylene diphosphonate. Semin Nucl Med 2001, 31: 28–49. 10.1053/snuc.2001.18742
Article
CAS
PubMed
Google Scholar
Li J, Miller MA, Hutchins GD, Burr DB: Imaging bone microdamage in vivo with positron emission tomography. Bone 2005, 37: 819–824. 10.1016/j.bone.2005.06.022
Article
PubMed
Google Scholar
Hsu WK, Feeley BT, Krenek L, Stout DB, Chatzijoannou AF, Lieberman JR: The use of 18F-fluoride and 18F-FDG PET scans to assess fracture healing in a rat femur model. Eur J Nucl Med Mol Imaging 2007, 34: 1291–1301. 10.1007/s00259-006-0280-6
Article
CAS
PubMed Central
PubMed
Google Scholar
Hsu WK, Virk MS, Feeley BT, Stout DB, Chatzijoannou AF, Lieberman JR: Characterisation of osteolytic, osteoblastic and mixed lesions in a prostate cancer mouse model using 18F-FDG and 18F-fluoride PET/CT. J Nucl Med 2008, 49: 414–442. 10.2967/jnumed.107.045666
Article
PubMed Central
PubMed
Google Scholar
Andersson SE, Johansson A, Lexmüller K, Ekström GM: Physiological characterization of mBSA antigen induced arthritis in the rat. II. Joint blood flow, glucose metabolism, and cell proliferation. J Rheumatol 1998, 25: 1778–1784.
CAS
PubMed
Google Scholar
Hansch A, Frey O, Hilger I, Sauner D, Haas M, Schmidt D, Kurrat C, Gajda M, Malich A, Bräuer R, Kaiser WA: In vivo imaging of experimental arthritis with near-infrared fluorescence. Arthritis Rheum 2004, 50: 626–632.
Article
Google Scholar
Wellicome SM, Thornhill MH, Pitzalis C, Thomas DS, Lanchbury JS, Panayi GS, Haskard DO: A monoclonal antibody that detects a novel antigen on endothelial cells that is induced by tumor necrosis factor, il-1, or lipopolysaccharide. J Immunol 1990, 144: 2558–2565.
CAS
PubMed
Google Scholar
Jamar F, Houssiau FA, Devogelaer JP, Chapman PT, Haskard DO, Beaujean V, Beckers C, Manicourt DH, Peters AM: Scintigraphy using a technetium 99 m-labelled anti-e-selectin fab fragment in rheumatoid arthritis. Rheumatology (Oxford) 2002, 41: 53–61. 10.1093/rheumatology/41.1.53
Article
CAS
Google Scholar
Gompels LL, Madden L, Han Lim N, Inglis JJ, McConnell E, Vincent TL, Haskard DO, Paleolog EM: In vivo fluorescence imaging of E-selectin: quantitative detection of endothelial activation in arthritis. Arthritis & Rheumatism 2011,63(1):107–117. 10.1002/art.30082
Article
CAS
Google Scholar
Lai WF, Chang CH, Tang Y, Bronson R, Tung CH: Early diagnosis of osteoarthritis using cathepsin B sensitive near-infrared fluorescent probes. Osteoarthritis Cartilage 2004, 12: 239–244. 10.1016/j.joca.2003.11.005
Article
PubMed
Google Scholar
Snoeks TJ, Khmelinskii A, Lelieveldt BP, Kaijzel EL, Löwik CW: Optical advances in skeletal imaging applied to bone metastases. Bone 2011, 48: 106–114. 10.1016/j.bone.2010.07.027
Article
CAS
PubMed
Google Scholar
Zaheer A, Lenkinski RE, Mahmood A, Jones AG, Cantley LC, Frangioni JV: In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol 2001, 19: 1148–1154. 10.1038/nbt1201-1148
Article
CAS
PubMed
Google Scholar
Carlsen H, Moskaug JØ, Fromm SH, Blomhoff R: In vivo imaging of NF-kappa B activity. J Immunol 2002, 168: 1441–1446.
Article
CAS
PubMed
Google Scholar
Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, Löwik CW, Gautschi E, Thalmann GN, Cecchini MG: Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol 2002, 160: 1143–1153. 10.1016/S0002-9440(10)64934-6
Article
PubMed Central
PubMed
Google Scholar
Walter T, Shattuck DW, Baldock R, Bastin ME, Carpenter AE, Duce S, Ellenberg J, Fraser A, Hamilton N, Pieper S, Ragan MA, Schneider JE, Tomancak P, Heriche JK: Visualization of image data from cells to organisms. Nat Methods 2010, 7: 526–541.
Article
Google Scholar
Baiker M, Milles J, Dijkstra J, Henning TD, Weber AW, Que I, Kaijzel EL, Löwik CWGM, Reiber JHC, Lelieveldt BPF: Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data. Medical Image Analysis 2010, 14: 723–737. 10.1016/j.media.2010.04.008
Article
PubMed
Google Scholar
Snoeks TJA, Khmelinskii A, lelieveldt BPF, Kaijzel EL, Löwik CWGM: Optical advances in skeletal imaging applied to bone metastases. Bone 2011, 48: 106–114. 10.1016/j.bone.2010.07.027
Article
CAS
PubMed
Google Scholar
Bhattacharjee D, Ito A: Deceleration of carcinogenic potential by adaptation with low dose gamma irradiation. In Vivo 2001, 15: 87–92.
CAS
PubMed
Google Scholar
Boone JM, Velazquez O, Cherry SR: Small-animal X-ray dose from micro-CT. Mol Imaging 2004, 3: 149–158. 10.1162/1535350042380326
Article
PubMed
Google Scholar
de Kemp RA, Epstein FH, Catana C, Tsui BM, Ritman EL: Small-animal molecular imaging methods. J Nucl Med 2010,51(Suppl 1):18S-32S.
Article
CAS
PubMed Central
PubMed
Google Scholar