Cherry SR, Gambhir SS. Use of positron emission tomography in animal research. ILAR J. 2001;42(3):219–32. https://doi.org/10.1093/ilar.42.3.219.
Article
CAS
PubMed
Google Scholar
Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA. 2000;97(16):9226–33. https://doi.org/10.1073/pnas.97.16.9226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuntner C, Stout D. Quantitative preclinical PET imaging: opportunities and challenges. Front Phys. 2014;2(12):1–12. https://doi.org/10.3389/fphy.2014.00012.
Article
Google Scholar
Fueger BJ, et al. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med. 2006;47(6):999–1006.
CAS
PubMed
Google Scholar
Wong K-P, Sha W, Zhang X, Huang S-C. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice. J Nucl Med. 2011;52(5):800–7. https://doi.org/10.2967/jnumed.110.085092.EFFECTS.
Article
PubMed
Google Scholar
Mannheim JG, et al. Reproducibility and comparability of preclinical PET imaging data: a multicenter small-animal PET study. J Nucl Med. 2019;60(10):1483–91. https://doi.org/10.2967/jnumed.118.221994.
Article
CAS
PubMed
Google Scholar
McDougald W, et al. Standardization of preclinical PET/CT imaging to improve quantitative accuracy, precision and reproducibility: a multi-center study. J Nucl Med. 2020;61(3):461–8. https://doi.org/10.2967/jnumed.119.231308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prinz F, Schlange T, Asadullah K. Believe it or not: How much can we rely on published data on potential drug targets? Nat Rev Drug Discov. 2011;10(9):712. https://doi.org/10.1038/nrd3439-c1.
Article
CAS
PubMed
Google Scholar
Stout D, et al. Guidance for methods descriptions used in preclinical imaging papers. Mol Imaging. 2013;12(7):1–15. https://doi.org/10.2310/7290.2013.00055.
Article
PubMed
Google Scholar
Mannheim JG, et al. Standardization of small animal imaging—current status and future prospects. Mol Imaging Biol. 2018;20:716–31. https://doi.org/10.1007/s11307-017-1126-2.
Article
PubMed
Google Scholar
NC3Rs, “ARRIVE guidelines,” New ARRIVE guidelines 2.0 release, 2020. https://arriveguidelines.org. Accessed Nov. 18, 2020.
Chalmers I, Glasziou P. Avoidable waste in the production and reporting of research evidence. Lancet. 2009;374(9683):86–9. https://doi.org/10.1016/S0140-6736(09)60329-9.
Article
PubMed
Google Scholar
Macleod M, et al. Biomedical research: increasing value, reducing waste. Lancet. 2014;383(9912):101–4.
Article
Google Scholar
Ioannidis J. Why most published research findings are false. PLoS Med. 2005;2(8): e124. https://doi.org/10.1371/journal.pmed.0020124.
Article
PubMed
PubMed Central
Google Scholar
Chalmers I, et al. How to increase value and reduce waste when research priorities are set. Lancet. 2014;383(9912):156–65. https://doi.org/10.1016/S0140-6736(13)62229-1.
Article
PubMed
Google Scholar
Lammertsma AA. Role of human and animal PET studies in drug development. Int Cong Ser 2004;1265(C):3–11. https://doi.org/10.1016/j.ics.2004.03.026.
Yao R, Lecomte R, Crawford ES. Small-ANIMAL PET: What is it, and why do we need it? J Nucl Med Technol. 2012;40(3):157–65. https://doi.org/10.2967/jnmt.111.098632.
Article
PubMed
Google Scholar
Bouter C, Bouter Y. 18F-FDG-PET in mouse models of Alzheimer’s disease. Front Med (Lausanne) 2019;6:71. https://doi.org/10.3389/fmed.2019.00071.
Dearling J, et al. Analysis of the regional uptake of radiolabeled deoxyglucose analogs in human tumor xenografts. J Nucl Med. 2004;45(1):101–7.
CAS
PubMed
Google Scholar
Abbey CK, et al. In vivo positron-emission tomography imaging of progression and transformation in a mouse model of mammary neoplasia. Proc Natl Acad Sci USA. 2004;101(31):11438–43. https://doi.org/10.1073/pnas.0404396101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bjurberg M, Kjellén E, Ohlsson T, Ridderheim M, Brun E. FDG-PET in cervical cancer: Staging, re-staging and follow-up. Acta Obstet Gynecol Scand. 2007;86(11):1385–91. https://doi.org/10.1080/00016340701625388.
Article
PubMed
Google Scholar
Adam JA, et al. EANM/SNMMI practice guideline for [18F]FDG PET/CT external beam radiotherapy treatment planning in uterine cervical cancer v1.0. Eur J Nucl Med Mol Imaging. 2021;48(4):1188–99. https://doi.org/10.1007/s00259-020-05112-2/Published.
Article
PubMed
Google Scholar
Aliaga A, et al. Breast cancer models to study the expression of estrogen receptors with small animal PET imaging. Nucl Med Biol. 2004;31(6):761–70. https://doi.org/10.1016/j.nucmedbio.2004.02.011.
Article
CAS
PubMed
Google Scholar
Rau FC, et al. O-(2-[18F]fluoroethyl)-L-tyrosine (FET): A tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imaging. 2002;29(8):1039–46. https://doi.org/10.1007/s00259-002-0821-6.
Article
CAS
PubMed
Google Scholar
Zanzonico P, et al. Iodine-124-labeled iodo-azomycin-galactoside imaging of tumor hypoxia in mice with serial microPET scanning. Eur J Nucl Med Mol Imaging. 2004;31(1):117–28. https://doi.org/10.1007/s00259-003-1322-y.
Article
PubMed
Google Scholar
Osborne DR, Kuntner C, Berr S, Stout D. Guidance for efficient small animal imaging quality control. Mol Imaging Biol. 2017;19(4):485–98. https://doi.org/10.1007/s11307-016-1012-3.
Article
PubMed
Google Scholar
Gouveia K, Hurst JL. Improving the practicality of using non-aversive handling methods to reduce background stress and anxiety in laboratory mice. Sci Rep. 2019;9(1):20305. https://doi.org/10.1038/s41598-019-56860-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao J, Zhang LN, Zhao ZJ. Trade-off between energy budget, thermogenesis and behavior in Swiss mice under stochastic food deprivation. J Therm Biol. 2009;34(6):290–8. https://doi.org/10.1016/j.jtherbio.2009.03.006.
Article
Google Scholar
Prior H, Ewart L, Bright J, Valentin JP. Refinement of the charcoal meal study by reduction of the fasting period. Altern Lab Anim. 2012;40(2):99–107. https://doi.org/10.1177/026119291204000209.
Article
CAS
PubMed
Google Scholar
Baumans V, van Loo PLP. How to improve housing conditions of laboratory animals: The possibilities of environmental refinement. Vet J. 2013;195(1):24–32. https://doi.org/10.1016/j.tvjl.2012.09.023.
Article
CAS
PubMed
Google Scholar
Harkness JE, Turner PV, VandeWoude S, Wheler CL. Biology and medicine of rabbits and rodents, 5th ed. Blackwell, 2010.
Hubrecht R, Kirkwood J. The UFAW handbook on the care and management of laboratory and other research animals, 8th ed. Wiley-Blackwell, 2010. https://doi.org/10.1002/9781444318777.
Balaban RS, Hampshire VA. Challenges in small animal noninvasive imaging. ILAR J. 2001;42(3):248–62. https://doi.org/10.1093/ilar.42.3.248.
Article
CAS
PubMed
Google Scholar
Vanhove C, Bankstahl JP, Krämer SD, Visser E, Belcari N, Vandenberghe S. Accurate molecular imaging of small animals taking into account animal models, handling, anaesthesia, quality control and imaging system performance. EJNMMI Phys. 2015;2(1):31. https://doi.org/10.1186/s40658-015-0135-y.
Article
PubMed
PubMed Central
Google Scholar
Szentirmai É, Kapás L, Sun Y, Smith RG, Krueger JM. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R467–77. https://doi.org/10.1152/ajpregu.00557.2009.
Article
CAS
PubMed
Google Scholar
Ms C, Lynch C. Circadian variation of strain differences in body temperature and activity in mice. Physiol Behav. 1981;27(6):1045–9. https://doi.org/10.1016/0031-9384(81)90368-1.
Article
Google Scholar
Swoap SJ, Gutilla MJ, Liles LC, Smith RO, Weinshenker D. The full expression of fasting-induced torpor requires β3-adrenergic receptor signaling. J Neurosci. 2006;26(1):241–5. https://doi.org/10.1523/JNEUROSCI.3721-05.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor DK. Study of two devices used to maintain normothermia in rats and mice during general anesthesia. J Am Assoc Lab Anim Sci JAALAS. 2007;46(5):37–41.
CAS
PubMed
Google Scholar
Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse anesthesia: the art and science. ILAR J. 2021;62(1–2):238–73. https://doi.org/10.1093/ilar/ilab016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suckow C, Kuntner C, Chow P, Silverman R, Chatziioannou A, Stout D. Multimodality rodent imaging chambers for use under barrier conditions with gas anesthesia. Mol Imaging Biol. 2009;11(2):100–6. https://doi.org/10.1007/s11307-008-0165-0.
Article
PubMed
Google Scholar
Jensen TL, Kiersgaard MK, Sørensen DB, Mikkelsen LF. Fasting of mice: a review. Lab Anim. 2013;47(4):225–40. https://doi.org/10.1177/0023677213501659.
Article
CAS
PubMed
Google Scholar
Froy O. The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol. 2007;28(2–3):61–71. https://doi.org/10.1016/j.yfrne.2007.03.001.
Article
CAS
PubMed
Google Scholar
Dolat E, Sazgarnia A. The effect of fasting on positron emission tomography (PET) imaging: a narrative review photodynamic therapy (PDT) view project hyperspectral imaging for monitoring of food process view project. J Fasting Health. 2014;2(4):164–9.
Google Scholar
Woo SK, et al. Anesthesia condition for 18F-FDG imaging of lung metastasis tumors using small animal PET. Nucl Med Biol. 2008;35(1):143–50. https://doi.org/10.1016/j.nucmedbio.2007.10.003.
Article
CAS
PubMed
Google Scholar
Lee K, et al. Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J Nucl Med. 2005;46(9):1531–6.
CAS
PubMed
Google Scholar
Deleye S, et al. The effects of physiological and methodological determinants on 18F-FDG mouse brain imaging exemplified in a double transgenic Alzheimer model. Mol Imaging. 2016;15:1536012115624919. https://doi.org/10.1177/1536012115624919.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowland N. Food or fluid restriction in common laboratory animals: balancing welfare considerations with scientific inquiry. Comp Med. 2007;57(2):149–60.
CAS
PubMed
Google Scholar
Siikanen J, et al. An anesthetic method compatible with 18 F-FDG-PET studies in mice. Am J Nucl Med Mol Imaging. 2015;5(3):270–7.
PubMed
PubMed Central
Google Scholar
Suckow MA, Danneman PJ, Brayton C. The laboratory mouse. SRS Press;2001.
Dandekar M, Tseng JR, Gambhir SS. Reproducibility of 18F-FDG microPET studies in mouse tumor xenografts. J Nucl Med. 2007;48(4):602–7. https://doi.org/10.2967/jnumed.106.036608.
Article
PubMed
Google Scholar
Gargiulo S, et al. Mice anesthesia, analgesia, and care, part i: anesthetic considerations in preclinical research. ILAR J. 2012;53(1):E55–69. https://doi.org/10.1093/ilar.53.1.55.
Article
PubMed
Google Scholar
Boellaard R, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: Version 1.0. Eur J Nucl Med Mol Imaging. 2010;37(1):181–200. https://doi.org/10.1007/s00259-009-1297-4.
Article
PubMed
Google Scholar
Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF. Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA-NU4 standards. J Nucl Med. 2009;50(3):401–8. https://doi.org/10.2967/jnumed.108.056374.
Article
PubMed
Google Scholar
Gu Z, et al. NEMA NU-4 performance evaluation of PETbox4, a high sensitivity dedicated PET preclinical tomograph. Phys Med Biol. 2013;58:3791. https://doi.org/10.1088/0031-9155/58/11/3791.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato K, et al. Performance evaluation of the small-animal PET scanner ClairvivoPET using NEMA NU 4–2008 Standards. Phys Med Biol. 2016;61:696. https://doi.org/10.1088/0031-9155/61/2/696.
Article
CAS
PubMed
Google Scholar
Belcari N, et al. NEMA NU-4 performance evaluation of the IRIS PET/CT preclinical scanner. IEEE Trans Radiat Plasma Med Sci. 2017;1(4):301–9. https://doi.org/10.1109/trpms.2017.2707300.
Article
Google Scholar
Omidvari N, et al. PET performance evaluation of MADPET4: A small animal PET insert for a 7 T MRI scanner. Phys Med Biol. 2017;62:8671. https://doi.org/10.1088/1361-6560/aa910d.
Article
CAS
PubMed
Google Scholar
Krishnamoorthy S, Blankemeyer E, Mollet P, Surti S, van Holen R, Karp JS. Performance evaluation of the MOLECUBES β-CUBE - A high spatial resolution and high sensitivity small animal PET scanner utilizing monolithic LYSO scintillation detectors. Phys Med Biol. 2018;63: 155013. https://doi.org/10.1088/1361-6560/aacec3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu Z, et al. Performance evaluation of G8, a high-sensitivity benchtop preclinical PET/CT tomograph. J Nucl Med. 2019;60(1):142–9. https://doi.org/10.2967/jnumed.118.208827.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Z, et al. PKU-PET-II: a novel SiPM-based PET imaging system for small animals. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2018;877:104–11. https://doi.org/10.1016/j.nima.2017.09.012.
Article
CAS
Google Scholar
Amirrashedi M, et al. NEMA NU-4 2008 performance evaluation of Xtrim-PET: a prototype SiPM-based preclinical scanner. Med Phys. 2019;46(11):4816–25. https://doi.org/10.1002/mp.13785.
Article
PubMed
Google Scholar
Chomet M, et al. Performance of nanoScan PET/CT and PET/MR for quantitative imaging of 18F and 89Zr as compared with ex vivo biodistribution in tumor-bearing mice. EJNMMI Res. 2021. https://doi.org/10.1186/s13550-021-00799-2.
Article
PubMed
PubMed Central
Google Scholar
Nicolucci C, et al. Single low dose of cocaine-structural brain injury without metabolic and behavioral changes. Front Neurosci. 2021;14: 589897. https://doi.org/10.3389/fnins.2020.589897.
Article
PubMed
PubMed Central
Google Scholar
Sephton SE, Sapolsky RM, Kraemer HC, Spiegel D. Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst. 2000;92(12):994–1000. https://doi.org/10.1093/jnci/92.12.994.
Article
CAS
PubMed
Google Scholar
Lévi F. Chronotherapeutics: the relevance of timing in cancer therapy. Cancer Causes Control. 2006;17:611–21. https://doi.org/10.1007/s10552-005-9004-7.
Article
PubMed
Google Scholar
Levi F, Okyar A, Dulong S, Innominato PF, Clairambault J. Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol. 2010;50:377–421. https://doi.org/10.1146/annurev.pharmtox.48.113006.094626.
Article
CAS
PubMed
Google Scholar
Chen D, Cheng J, Yang K, Ma Y, Yang F. Retrospective analysis of chronomodulated chemotherapy versus conventional chemotherapy with paclitaxel, carboplatin, and 5-fluorouracil in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. OncoTargets Ther. 2013;6:1507–14. https://doi.org/10.2147/OTT.S53098.
Article
CAS
Google Scholar
Pattison DA, MacFarlane LL, Callahan J, Kane EL, Akhurst T, Hicks RJ. Personalised insulin calculator enables safe and effective correction of hyperglycaemia prior to FDG PET/CT. EJNMMI Res. 2019;9(1):15. https://doi.org/10.1186/s13550-019-0480-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krueger MA, Calaminus C, Schmitt J, Pichler BJ. Circadian rhythm impacts preclinical FDG-PET quantification in the brain, but not in xenograft tumors. Sci Rep. 2020;10(1):5587. https://doi.org/10.1038/s41598-020-62532-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toyama H, et al. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol. 2004;31(2):251–6. https://doi.org/10.1016/S0969-8051(03)00124-0.
Article
CAS
PubMed
Google Scholar
Bascuñana P, Thackeray JT, Bankstahl M, Bengel FM, Bankstahl JP. Anesthesia and preconditioning induced changes in mouse brain [18F] FDG uptake and kinetics. Mol Imaging Biol. 2019;21(6):1089–96. https://doi.org/10.1007/s11307-019-01314-9.
Article
CAS
PubMed
Google Scholar
Matsumura A, et al. Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: Comparison between quantitative data obtained with microPET and ex vivo autoradiography. Neuroimage. 2003;20(4):2040–50. https://doi.org/10.1016/j.neuroimage.2003.08.020.
Article
PubMed
Google Scholar
Alf MF, Martić-Kehl MI, Schibli R, Krämer SD. FDG kinetic modeling in small rodent brain PET: Optimization of data acquisition and analysis. EJNMMI Res. 2013;3:61. https://doi.org/10.1186/2191-219X-3-61.
Article
PubMed
PubMed Central
Google Scholar
Mizuma H, Shukuri M, Hayashi T, Watanabe Y, Onoe H. Establishment of in vivo brain imaging method in conscious mice. J Nucl Med. 2010;51(7):1068–75. https://doi.org/10.2967/jnumed.110.075184.
Article
PubMed
Google Scholar
Langah RAK, Spicer KM, Chang R, Rosol M. Inhibition of physiologic myocardial FDG uptake in normal rodents: comparison of four pre-scan preparation protocols. Adv Mol Imaging. 2012;2(3):21–30. https://doi.org/10.4236/ami.2012.23004.
Article
Google Scholar
Okumura W, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med. 2004;45(12):1989–98.
PubMed
Google Scholar
Kreissl MC, et al. Influence of dietary state and insulin on myocardial, skeletal muscle and brain [18F]- fluorodeoxyglucose kinetics in mice. EJNMMI Res. 2011;1:8. https://doi.org/10.1186/2191-219X-1-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thackeray JT, Bankstahl JP, Wang Y, Wollert KC, Bengel FM. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for 18F-FDG imaging of myocardial inflammation in mice. Eur J Nucl Med Mol Imaging. 2015;42:771–80. https://doi.org/10.1007/s00259-014-2956-7.
Article
CAS
PubMed
Google Scholar
Laforest R, et al. Measurement of input functions in rodents: challenges and solutions. Nucl Med Biol 2005;32(7):679–685. https://doi.org/10.1016/j.nucmedbio.2005.06.012.
Meyer M, Le-Bras L, Fernandez P, Zanotti-Fregonara P. Standardized input function for 18F-FDG PET studies in mice: A cautionary study. PLoS ONE. 2017;12(1): e0168667. https://doi.org/10.1371/journal.pone.0168667.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amirrashedi M, Zaidi H, Ayer MR. Towards quantitative small-animal imaging on hybrid PET/CT and PET/MRI systems. Clin Transl Imaging 2020;8:243–263. https://doi.org/10.1007/s40336-020-00376-y.