Chapman MA, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471(7339):467–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12(5):335–48.
Article
CAS
PubMed
Google Scholar
Rajkumar SV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48.
Article
PubMed
Google Scholar
Rajkumar SV, Kumar S. Multiple myeloma: diagnosis and treatment. Mayo Clin Proc. 2016;91(1):101–19.
Article
PubMed
Google Scholar
Hillengass J, et al. Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol. 2010;28(9):1606–10.
Article
PubMed
Google Scholar
Vij R, Fowler KJ, Shokeen M. New approaches to molecular imaging of multiple myeloma. J Nucl Med. 2016;57(1):1–4.
Article
CAS
PubMed
Google Scholar
Barlogie B, et al. Treatment of multiple myeloma. Blood. 2004;103(1):20–32.
Article
CAS
PubMed
Google Scholar
Barlogie B, et al. Curing myeloma at last: defining criteria and providing the evidence. Blood. 2014;124(20):3043–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez-Lopez J, et al. Long-term prognostic significance of response in multiple myeloma after stem cell transplantation. Blood. 2011;118(3):529–34.
Article
CAS
PubMed
Google Scholar
Fulciniti M, Munshi NC, Martinez-Lopez J. Deep response in multiple myeloma: a critical review. Biomed Res Int. 2015;2015:832049.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kumar S, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–46.
Article
PubMed
Google Scholar
Rasche L, et al. Combination of flow cytometry and functional imaging for monitoring of residual disease in myeloma. Leukemia. 2019;33(7):1713–22.
Article
CAS
PubMed
Google Scholar
Fiordelisi MF, et al. Preclinical molecular imaging for precision medicine in breast cancer mouse models. Contrast Media Mol Imaging. 2019;2019:8946729.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mankoff DA. A definition of molecular imaging. J Nucl Med. 2007;48(6):18N-21N.
PubMed
Google Scholar
Barwick T, et al. Imaging in myeloma with focus on advanced imaging techniques. Br J Radiol. 2019;92(1095):20180768.
Article
PubMed
PubMed Central
Google Scholar
Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80.
Article
CAS
PubMed
Google Scholar
Incoronato M, et al. Radiogenomic analysis of oncological data: a technical survey. Int J Mol Sci. 2017;18(4):805.
Article
PubMed Central
CAS
Google Scholar
Cai W, et al. How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther. 2006;5(11):2624–33.
Article
CAS
PubMed
Google Scholar
Pan D, et al. Nanomedicine: perspective and promises with ligand-directed molecular imaging. Eur J Radiol. 2009;70(2):274–85.
Article
PubMed
Google Scholar
Cheson BD, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86.
Article
PubMed
Google Scholar
Juweid ME, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571–8.
Article
PubMed
Google Scholar
Kazama T, et al. FDG PET in the evaluation of treatment for lymphoma: clinical usefulness and pitfalls. Radiographics. 2005;25(1):191–207.
Article
PubMed
Google Scholar
Sundaram S, et al. FDG PET imaging in multiple myeloma: implications for response assessments in clinical trials. Am J Nucl Med Mol Imaging. 2018;8(6):421–7.
CAS
PubMed
PubMed Central
Google Scholar
Sachpekidis C, Goldschmidt H, Dimitrakopoulou-Strauss A. Positron emission tomography (PET) radiopharmaceuticals in multiple myeloma. Molecules. 2019;25(1):134.
Article
PubMed Central
CAS
Google Scholar
Ehlerding EB, et al. Molecular imaging of immunotherapy targets in cancer. J Nucl Med. 2016;57(10):1487–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghai A, et al. Development of [(89)Zr]DFO-elotuzumab for immunoPET imaging of CS1 in multiple myeloma. Eur J Nucl Med Mol Imaging. 2021;48(5):1302–11.
Article
CAS
PubMed
Google Scholar
Rasche L, et al. Low expression of hexokinase-2 is associated with false-negative FDG-positron emission tomography in multiple myeloma. Blood. 2017;130(1):30–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ulaner GA, et al. (18)F-FDG PET/CT for systemic staging of newly diagnosed breast cancer in men. J Nucl Med. 2019;60(4):472–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lapa C, et al. [(68)Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma—comparison to [(18)F]FDG and laboratory values. Theranostics. 2017;7(1):205–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sikkandhar MG, et al. Theranostic probes for targeting tumor microenvironment: an overview. Int J Mol Sci. 2017;18(5):1036.
Article
PubMed Central
CAS
Google Scholar
Soodgupta D, et al. Very late antigen-4 (alpha(4)beta(1) Integrin) targeted PET imaging of multiple myeloma. PLoS ONE. 2013;8(2):e55841.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holzmann B, Gosslar U, Bittner M. Alpha 4 integrins and tumor metastasis. Curr Top Microbiol Immunol. 1998;231:125–41.
CAS
PubMed
Google Scholar
Matsunaga T, et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med. 2003;9(9):1158–65.
Article
CAS
PubMed
Google Scholar
Damiano JS, Dalton WS. Integrin-mediated drug resistance in multiple myeloma. Leuk Lymphoma. 2000;38(1–2):71–81.
Article
CAS
PubMed
Google Scholar
Soodgupta D, et al. Ex vivo and in vivo evaluation of overexpressed VLA-4 in multiple myeloma using LLP2A imaging agents. J Nucl Med. 2016;57(4):640–5.
Article
CAS
PubMed
Google Scholar
Beaino W, Anderson CJ. PET imaging of very late antigen-4 in melanoma: comparison of 68Ga- and 64Cu-labeled NODAGA and CB-TE1A1P-LLP2A conjugates. J Nucl Med. 2014;55(11):1856–63.
Article
CAS
PubMed
Google Scholar
Mattila JT, et al. Positron emission tomography imaging of macaques with tuberculosis identifies temporal changes in granuloma glucose metabolism and integrin alpha4beta1-expressing immune cells. J Immunol. 2017;199(2):806–15.
Article
CAS
PubMed
Google Scholar
Peng L, et al. Combinatorial chemistry identifies high-affinity peptidomimetics against alpha4beta1 integrin for in vivo tumor imaging. Nat Chem Biol. 2006;2(7):381–9.
Article
CAS
PubMed
Google Scholar
https://ClinicalTrials.gov/show/NCT03804424.
Kouroukis TC, et al. Bortezomib in multiple myeloma: systematic review and clinical considerations. Curr Oncol. 2014;21(4):e573-603.
Article
CAS
PubMed
PubMed Central
Google Scholar
San Miguel JF, et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med. 2008;359(9):906–17.
Article
CAS
PubMed
Google Scholar
Richardson PG, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352(24):2487–98.
Article
CAS
PubMed
Google Scholar
Noborio-Hatano K, et al. Bortezomib overcomes cell-adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma. Oncogene. 2009;28(2):231–42.
Article
CAS
PubMed
Google Scholar
Sevilla-Movilla S, et al. Upregulated expression and function of the alpha4beta1 integrin in multiple myeloma cells resistant to bortezomib. J Pathol. 2020;252(1):29–40.
Article
CAS
PubMed
Google Scholar
Wahl RL, et al. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S-S150.
Article
CAS
PubMed
Google Scholar
Mankoff DA, Katz SI. PET imaging for assessing tumor response to therapy. J Surg Oncol. 2018;118(2):362–73.
Article
PubMed
Google Scholar
Fryer RA, et al. Characterization of a novel mouse model of multiple myeloma and its use in preclinical therapeutic assessment. PLoS ONE. 2013;8(2):e57641.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishii T, et al. Anti-tumor activity against multiple myeloma by combination of KW-2478, an Hsp90 inhibitor, with bortezomib. Blood Cancer J. 2012;2(4):e68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Satou Y, et al. Proteasome inhibitor, bortezomib, potently inhibits the growth of adult T-cell leukemia cells both in vivo and in vitro. Leukemia. 2004;18(8):1357–63.
Article
CAS
PubMed
Google Scholar
Wang X, et al. Bortezomib and IL-12 produce synergetic anti-multiple myeloma effects with reduced toxicity to natural killer cells. Anticancer Drugs. 2014;25(3):282–8.
Article
CAS
PubMed
Google Scholar
Boccadoro M, Morgan G, Cavenagh J. Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy. Cancer Cell Int. 2005;5(1):18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Savaikar MA, et al. Preclinical PERCIST and 25% of SUV(max) threshold: precision imaging of response to therapy in co-clinical (18)F-FDG PET imaging of triple-negative breast cancer patient-derived tumor xenografts. J Nucl Med. 2020;61(6):842–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vanderheyden JL. The use of imaging in preclinical drug development. Q J Nucl Med Mol Imaging. 2009;53(4):374–81.
CAS
PubMed
Google Scholar
Ghai A, et al. Preclinical development of CD38-targeted [(89)Zr]Zr-DFO-Daratumumab for imaging multiple myeloma. J Nucl Med. 2018;59(2):216–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan Q, et al. Chemokine receptor-4 targeted PET/CT with (68)Ga-Pentixafor in assessment of newly diagnosed multiple myeloma: comparison to (18)F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2020;47(3):537–46.
Article
CAS
PubMed
Google Scholar
Ulaner GA, et al. CD38-targeted immuno-PET of multiple myeloma: from xenograft models to first-in-human imaging. Radiology. 2020;295(3):606–15.
Article
PubMed
Google Scholar
Hillengass J, et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol. 2019;20(6):e302–12.
Article
PubMed
Google Scholar
Anderson KC, et al. The role of minimal residual disease testing in myeloma treatment selection and drug development: current value and future applications. Clin Cancer Res. 2017;23(15):3980–93.
Article
PubMed
Google Scholar
Durie BG, et al. Whole-body (18)F-FDG PET identifies high-risk myeloma. J Nucl Med. 2002;43(11):1457–63.
PubMed
Google Scholar
Matteucci F, et al. PET/CT in multiple myeloma: beyond FDG. Front Oncol. 2021. https://doi.org/10.3389/fonc.2020.622501.
Article
PubMed
PubMed Central
Google Scholar
Zamagni E, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2011;118(23):5989–95.
Article
CAS
PubMed
Google Scholar
Harzschel A, et al. VLA-4 expression and activation in B cell malignancies: functional and clinical aspects. Int J Mol Sci. 2020;21(6):2206.
Article
PubMed Central
CAS
Google Scholar
Perkins LA, et al. Integrin VLA-4 as a PET imaging biomarker of hyper-adhesion in transgenic sickle mice. Blood Adv. 2020;4(17):4102–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cook GJ, Fogelman I, Maisey MN. Normal physiological and benign pathological variants of 18-fluoro-2-deoxyglucose positron-emission tomography scanning: potential for error in interpretation. Semin Nucl Med. 1996;26(4):308–14.
Article
CAS
PubMed
Google Scholar
Baschnagel AM, et al. The association of (18)F-FDG PET and glucose metabolism biomarkers GLUT1 and HK2 in p16 positive and negative head and neck squamous cell carcinomas. Radiother Oncol. 2015;117(1):118–24.
Article
CAS
PubMed
Google Scholar
Ghai A, et al. Development of [(89)Zr]DFO-elotuzumab for immunoPET imaging of CS1 in multiple myeloma. Eur J Nucl Med Mol Imaging. 2020;48:1302–11.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hosen N. Integrins in multiple myeloma. Inflamm Regen. 2020;40:4.
Article
PubMed
PubMed Central
Google Scholar