Nordberg A, Rinne JO, Kadir A, Långström B. The use of PET in Alzheimer disease. Nat Rev Neurol. 2010;6(2):78–87 Available from: https://doi.org/10.1038/nrneurol.2009.217.
Article
CAS
Google Scholar
Morbelli S, Brugnolo A, Bossert I, Buschiazzo A, Frisoni GB, Galluzzi S, et al. Visual versus semi-quantitative analysis of 18F-FDG-PET in amnestic MCI: an European Alzheimer’s Disease Consortium (EADC) project. J Alzheimer’s Dis. 2015;44(3):815–26.
Article
CAS
Google Scholar
Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the ε4 allele for apolipoprotein E. N Engl J Med. 1996;334(12):752–8. Available from: https://doi.org/10.1056/NEJM199603213341202.
Article
CAS
Google Scholar
de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, et al. Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A [Internet]. 2001;98(19):10966–71. Available from: https://doi.org/10.1073/pnas.191044198.
Article
CAS
Google Scholar
Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2000;97(11):6037–42. Available from: https://doi.org/10.1073/pnas.090106797.
Article
CAS
Google Scholar
Borczyskowski D, Wilke F, Martin B, Brenner W, Clausen M, Mester J, et al. Evaluation of a new expert system for fully automated detection of the Alzheimer’s dementia pattern in FDG PET. Nucl Med Commun. 2006;27(9):739–43.
Article
Google Scholar
Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frölich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage. 2002;17(1):302–16.
Article
CAS
Google Scholar
Teune L, Strijkert F, Renken R, Izaks G, Vries J, Segbers M, et al. The Alzheimer’s disease-related glucose metabolic brain pattern. Curr Alzheimer Res. 2014;11(8):725–32. Available from: https://doi.org/10.2174/156720501108140910114230.
Article
CAS
Google Scholar
Pagani M, Giuliani A, Öberg J, Chincarini A, Morbelli S, Brugnolo A, et al. Predicting the transition from normal aging to Alzheimer’s disease: a statistical mechanistic evaluation of FDG-PET data. Neuroimage. 2016;141:282–90 Available from: https://doi.org/10.1016/j.neuroimage.2016.07.043.
Article
Google Scholar
Jueptner M, Weiller C. Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage. 1995;2(2):148–56. Available from: https://doi.org/10.1006/nimg.1995.1017.
Article
CAS
Google Scholar
Bélanger M, Allaman I, Magistretti PJJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14(6):724–38 [cited 2011 Dec 13]. Available from: https://doi.org/10.1016/j.cmet.2011.08.016.
Article
Google Scholar
Austin BP, Nair VA, Meier TB, Xu G, Rowley HA, Carlsson CM, et al. Effects of hypoperfusion in Alzheimer’s disease. Adv Alzheimer’s Dis. 2011;2:253–63.
Google Scholar
Forsberg A, Engler H, Blomquist G, Långström B, Nordberg A. The use of PIB-PET as a dual pathological and functional biomarker in AD. Biochim Biophys Acta Mol Basis Dis. 2012;1822(3):380–5 Available from: https://doi.org/10.1016/j.bbadis.2011.11.006.
Article
CAS
Google Scholar
Hsiao IT, Huang CC, Hsieh CJ, Wey SP, Kung MP, Yen TC, et al. Perfusion-like template and standardized normalization-based brain image analysis using18F-florbetapir (AV-45/Amyvid) PET. Eur J Nucl Med Mol Imaging. 2013;40(6):908–20.
Article
CAS
Google Scholar
Hammes J, Leuwer I, Bischof GN, Drzezga A, van Eimeren T. Multimodal correlation of dynamic [18F]-AV-1451 perfusion PET and neuronal hypometabolism in [18F]-FDG PET. Eur J Nucl Med Mol Imaging. 2017; Available from: https://doi.org/10.1007/s00259-017-3840-z.
Article
CAS
Google Scholar
Chen YJ, Rosario BL, Mowrey W, Laymon CM, Lu X, Lopez OL, et al. Relative 11C-PiB delivery as a proxy of relative CBF: quantitative evaluation using single-session 15O-water and 11C-PiB PET. J Nucl Med. 2015;56(8):1199–205. Available from: https://doi.org/10.2967/jnumed.114.152405.
Article
CAS
Google Scholar
Meyer PT, Hellwig S, Amtage F, Rottenburger C, Sahm U, Reuland P, et al. Dual-biomarker imaging of regional cerebral amyloid load and neuronal activity in dementia with PET and 11C-labeled Pittsburgh compound B. J Nucl Med. 2011;52(3):393–400. Available from: https://doi.org/10.2967/jnumed.110.083683.
Article
Google Scholar
Oliveira FPM, Moreira AP, de MA, Verdelho A, Xavier C, Barroca D, et al. Can 11C-PiB-PET relative delivery R1 or 11C-PiB-PET perfusion replace 18F-FDG-PET in the assessment of brain neurodegeneration? J Alzheimers Dis. 2018;65:89–97.
Article
Google Scholar
Valentina G, Silvia M, Marco P. Dual-phase amyloid PET: hitting two birds with one stone. Eur J Nucl Med Mol Imaging. 2016;43(7):1300–3 Available from: https://doi.org/10.1007/s00259-016-3393-6.
Article
Google Scholar
Teipel S, Drzezga A, Grothe MJ, Barthel H, Chételat G, Schuff N, et al. Multimodal imaging in Alzheimer’s disease: validity and usefulness for early detection. Lancet Neurol. 2015;14(10):1037–53.
Article
Google Scholar
Gjedde A, Aanerud J, Braendgaard H, Rodell AB. Blood-brain transfer of Pittsburgh compound B in humans. Front Aging Neurosci. 2013;5(NOV):1–9. Available from: https://doi.org/10.3389/fnagi.2013.00070.
Peretti DE, Vállez García D, Reesink FE, van der Goot T, De Deyn PP, de Jong BM, et al. Relative cerebral flow from dynamic PIB scans as an alternative for FDG scans in Alzheimer’s disease PET studies. Ginsberg SD, editor. PLoS One. 2019;14(1):e0211000. Available from: https://doi.org/10.1371/journal.pone.0211000.
Article
CAS
Google Scholar
Rodriguez-Vieitez E, Carter SF, Chiotis K, Saint-Aubert L, Leuzy A, Scholl M, et al. Comparison of early-phase 11C-deuterium-L-deprenyl and 11C-Pittsburgh compound B PET for assessing brain perfusion in Alzheimer disease. J Nucl Med. 2016;57(7):1071–7. Available from: https://doi.org/10.2967/jnumed.115.168732.
Article
CAS
Google Scholar
Rostomian AH, Madison C, Rabinovici GD, Jagust WJ. Early 11C-PIB frames and 18F-FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients. J Nucl Med. 2011;52(2):173–9.
PubMed
PubMed Central
Google Scholar
Tiepolt S, Hesse S, Patt M, Luthardt J, Schroeter ML, Hoffmann KT, et al. Early [18F]florbetaben and [11C]PiB PET images are a surrogate biomarker of neuronal injury in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2016;43(9):1700–9 Available from: https://doi.org/10.1007/s00259-016-3353-1.
Article
CAS
Google Scholar
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7(3):263–9 Available from: https://doi.org/10.1016/j.jalz.2011.03.005.
Article
Google Scholar
Petersen R, Doody R, Kurz A, Al E. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58(12):1985–92 Available from: https://doi.org/10.1001/archneur.58.12.1985.
Article
CAS
Google Scholar
Knopman DS, Haeberlein SB, Carrillo MC, Hendrix JA, Kerchner G, Margolin R, et al. The National Institute on Aging and the Alzheimer’s Association Research Framework for Alzheimer’s disease: perspectives from the research roundtable. Alzheimer’s Dement. 2018;14(4):563–75. Available from: https://doi.org/10.1016/j.jalz.2018.03.002.
Article
Google Scholar
Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37(1):181–200.
Article
Google Scholar
Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26(3):839–51. Available from: https://doi.org/10.1016/j.neuroimage.2005.02.018.
Article
Google Scholar
Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003;19(4):224–47. Available from: https://doi.org/10.1002/hbm.10123.
Article
Google Scholar
Wu Y, Carson RE. Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab. 2002;22(12):1440–52. Available from: https://doi.org/10.1097/01.WCB.0000033967.83623.34.
Article
Google Scholar
Yaqub M, Tolboom N, Boellaard R, van Berckel BNM, van Tilburg EW, Luurtsema G, et al. Simplified parametric methods for [11C]PIB studies. Neuroimage. 2008;42(1):76–86. Available from: https://doi.org/10.1016/j.neuroimage.2008.04.251.
Article
Google Scholar
Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19 Available from: https://doi.org/10.1002/ana.20009.
Article
CAS
Google Scholar
Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab. 2005;25(11):1528–47. Available from: https://doi.org/10.1038/sj.jcbfm.9600146.
Article
CAS
Google Scholar
Joachim CL, Morris JH, Selkoe DJ. Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am J Pathol. 1989;135(2):309–19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1879919/.
Yamaguchi H, Hirai S, Morimatsu M, Shoji M, Nakazato Y. Diffuse type of senile plaques in the cerebellum of Alzheimer-type dementia demonstrated by β protein immunostain. Acta Neuropathol. 1989;77(3):314–9.
Article
CAS
Google Scholar
Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4(3):153–8. Available from: https://doi.org/10.1006/nimg.1996.0066.
Article
CAS
Google Scholar
Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6(2):65–70.
Google Scholar
Krouwer JS. Why Bland-Altman plots should use X, not (Y+X)/2 when X is a reference method. Stat Med. 2008;27(5):778–80. Available from: https://doi.org/10.1002/sim.3086.
Article
Google Scholar
Youden WJ. Index for rating diagnostic tests. Cancer. 1950:32–5.
Article
CAS
Google Scholar
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45 Available from: https://www.ncbi.nlm.nih.gov/pubmed/3203132.
Article
CAS
Google Scholar
R Development Core Team. R: a language and environment for statistical computing. Vienna; 2017.
Giavarina D. Understanding Bland Altman analysis. Biochem Medica. 2015;25(2):141–51 Available from: https://doi.org/10.11613/BM.2015.015.
Article
Google Scholar
Ho KM. Using linear regression to assess dose-dependent bias on a Bland-Altman plot. J Emerg Crit Care Med. 2018;2:68.
Article
Google Scholar
Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14(4):535–62. Available from: https://doi.org/10.1016/j.jalz.2018.02.018.
Article
Google Scholar
Herholz K, Westwood S, Haense C, Dunn G. Evaluation of a calibrated 18F-FDG PET score as a biomarker for progression in Alzheimer disease and mild cognitive impairment. J Nucl Med. 2011;52(8):1218–26. Available from: https://doi.org/10.2967/jnumed.111.090902.
Article
Google Scholar