Berriolo-Riedinger A, Touzery C, Riedinger JM, Toubeau M, Coudert B, Arnould L, Boichot C, Cochet A, Fumoleau P, Brunotte F: [18F]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 2007, 34: 1915–1924. 10.1007/s00259-007-0459-5
Article
CAS
PubMed
Google Scholar
Kim SJ, Kim SK, Lee ES, Ro J, Kang S: Predictive value of [18F]FDG PET for pathological response of breast cancer to neo-adjuvant chemotherapy. Ann Oncol 2004, 15: 1352–1357. 10.1093/annonc/mdh345
Article
PubMed
Google Scholar
Tiling R, Linke R, Untch M, Richter A, Fieber S, Brinkbaumer K, Tatsch K, Hahn K: 18F-FDG PET and 99mTc-sestamibi scintimammography for monitoring breast cancer response to neoadjuvant chemotherapy: a comparative study. Eur J Nucl Med 2001, 28: 711–720. 10.1007/s002590100539
Article
CAS
PubMed
Google Scholar
Dose Schwarz J, Bader M, Jenicke L, Hemminger G, Janicke F, Avril N: Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J Nucl Med 2005, 46: 1144–1150.
PubMed
Google Scholar
Lucignani G, Paganelli G, Bombardieri E: The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl Med Commun 2004, 25: 651–656. 10.1097/01.mnm.0000134329.30912.49
Article
CAS
PubMed
Google Scholar
Zasadny KR, Wahl RL: Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 1993, 189: 847–850.
Article
CAS
PubMed
Google Scholar
Doot RK, Dunnwald LK, Schubert EK, Muzi M, Peterson LM, Kinahan PE, Kurland BF, Mankoff DA: Dynamic and static approaches to quantifying 18F-FDG uptake for measuring cancer response to therapy, including the effect of granulocyte CSF. J Nucl Med 2007, 48: 920–925. 10.2967/jnumed.106.037382
Article
CAS
PubMed Central
PubMed
Google Scholar
Partridge SC, Vanantwerp RK, Doot RK, Chai X, Kurland BF, Eby PR, Specht JM, Dunnwald LK, Schubert EK, Lehman CD, Mankoff DA: Association between serial dynamic contrast-enhanced MRI and dynamic 18F-FDG PET measures in patients undergoing neoadjuvant chemotherapy for locally advanced breast cancer. J Magn Reson Imaging 2010, 32: 1124–1131. 10.1002/jmri.22362
Article
PubMed Central
PubMed
Google Scholar
Cheebsumon P, van Velden FH, Yaqub M, Hoekstra CJ, Velasquez LM, Hayes W, Hoekstra OS, Lammertsma AA, Boellaard R: Measurement of metabolic tumour volume: static versus dynamic FDG scans. EJNMMI Res 2011, 1: 35. 10.1186/2191-219X-1-35
Article
PubMed Central
PubMed
Google Scholar
Tateishi U, Miyake M, Nagaoka T, Terauchi T, Kubota K, Kinoshita T, Daisaki H, Macapinlac HA: Neoadjuvant chemotherapy in breast cancer: prediction of pathologic response with PET/CT and dynamic contrast-enhanced MR imaging–prospective assessment. Radiology 2012, 263: 53–63. 10.1148/radiol.12111177
Article
PubMed
Google Scholar
Choi JH, Lim HI, Lee SK, Kim WW, Kim SM, Cho E, Ko EY, Han BK, Park YH, Ahn JS, Im YH, Lee JE, Yang JH, Nam SJ: The role of PET CT to evaluate the response to neoadjuvant chemotherapy in advanced breast cancer: comparison with ultrasonography and magnetic resonance imaging. J Surg Oncol 2010, 102: 392–397.
Article
PubMed
Google Scholar
Maday P, Khurd P, Ladic L, Schnall M, Rosen M, Davatzikos C, Kamen A: Imaging as a Surrogate for the Early Prediction and Assessment of Treatment Response through the Analysis of 4-D Texture Ensembles (ISEPARATE). In Medical Computer Vision. Volume 6533. 1st edition. Edited by: Menze B, Langs G, Tu Z, Criminisi A. Berlin: Springer; 2011:164–173.
Google Scholar
Padhani AR, Hayes C, Assersohn L, Powles T, Makris A, Suckling J, Leach MO, Husband JE: Prediction of clinicopathologic response of breast cancer to primary chemotherapy at contrast-enhanced MR imaging: initial clinical results. Radiology 2006, 239: 361–374. 10.1148/radiol.2392021099
Article
PubMed
Google Scholar
Li X, Dawant BM, Welch EB, Chakravarthy AB, Freehardt D, Mayer I, Kelley M, Meszoely I, Gore JC, Yankeelov TE: A nonrigid registration algorithm for longitudinal breast MR images and the analysis of breast tumor response. Magn Reson Imaging 2009, 27: 1258–1270. 10.1016/j.mri.2009.05.007
Article
PubMed Central
PubMed
Google Scholar
Li X, Dawant BM, Welch EB, Chakravarthy AB, Xu L, Mayer I, Kelley M, Meszoely I, Means-Powell J, Gore JC, Yankeelov TE: Validation of an algorithm for the nonrigid registration of longitudinal breast MR images using realistic phantoms. Med Phys 2010, 37: 2541–2552. 10.1118/1.3414035
Article
PubMed Central
PubMed
Google Scholar
Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D: Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med 2012, 53: 693–700. 10.2967/jnumed.111.099127
Article
PubMed Central
PubMed
Google Scholar
Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG: New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000, 92: 205–216. 10.1093/jnci/92.3.205
Article
CAS
PubMed
Google Scholar
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009, 45: 228–247. 10.1016/j.ejca.2008.10.026
Article
CAS
PubMed
Google Scholar
van Velden FH, van Beers P, Nuyts J, Velasquez LM, Hayes W, Lammertsma AA, Boellaard R, Loeckx D: Effects of rigid and non-rigid image registration on test-retest variability of quantitative [18F]FDG PET/CT studies. EJNMMI Res 2012, 2: 10. 10.1186/2191-219X-2-10
Article
PubMed Central
PubMed
Google Scholar
Moy L, Noz ME, Maguire GQ Jr, Melsaether A, Deans AE, Murphy-Walcott AD, Ponzo F: Role of fusion of prone FDG-PET and magnetic resonance imaging of the breasts in the evaluation of breast cancer. Breast J 2010, 16: 369–376.
PubMed
Google Scholar
Moy L, Noz ME, Maguire GQ Jr, Ponzo F, Deans AE, Murphy-Walcott AD, Kramer EL: Prone mammoPET acquisition improves the ability to fuse MRI and PET breast scans. Clin Nucl Med 2007, 32: 194–198. 10.1097/01.rlu.0000255055.10177.80
Article
PubMed
Google Scholar
Moy L, Ponzo F, Noz ME, Maguire GQ Jr, Murphy-Walcott AD, Deans AE, Kitazono MT, Travascio L, Kramer EL: J Nucl Med. 2007, 48: 528–537. 10.2967/jnumed.106.036780
Article
PubMed
Google Scholar
Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P: Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 1997, 16: 187–198. 10.1109/42.563664
Article
CAS
PubMed
Google Scholar
Rohde GK, Aldroubi A, Dawant BM: The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Trans Med Imaging 2003, 22: 1470–1479. 10.1109/TMI.2003.819299
Article
PubMed
Google Scholar
Wu Z: Multivariate compactly supported positive definite radial functions. Adv Comput Math 1995, 4: 283–292. 10.1007/BF03177517
Article
Google Scholar
Drever L, Roa W, McEwan A, Robinson D: Iterative threshold segmentation for PET target volume delineation. Med Phys 2007, 34: 1253–1265. 10.1118/1.2712043
Article
PubMed
Google Scholar
Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, Siegel BA, Bradley JD: 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006, 47: 1808–1812.
PubMed
Google Scholar
Miller TR, Grigsby PW: Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. Int J Radiat Oncol Biol Phys 2002, 53: 353–359. 10.1016/S0360-3016(02)02705-0
Article
PubMed
Google Scholar
Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, Bosch W, Bertrand RJ: Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004, 59: 78–86. 10.1016/j.ijrobp.2003.10.044
Article
PubMed
Google Scholar
Brianzoni E, Rossi G, Ancidei S, Berbellini A, Capoccetti F, Cidda C, D'Avenia P, Fattori S, Montini GC, Valentini G, Proietti A, Algranati C: Radiotherapy planning: PET/CT scanner performances in the definition of gross tumour volume and clinical target volume. Eur J Nucl Med Mol Imaging 2005, 32: 1392–1399. 10.1007/s00259-005-1845-5
Article
PubMed
Google Scholar
Abramson RG, Mavi A, Cermik T, Basu S, Wehrli NE, Houseni M, Mishra S, Udupa J, Lakhani P, Maidment AD, Torigian DA, Alavi A: Age-related structural and functional changes in the breast: multimodality correlation with digital mammography, computed tomography, magnetic resonance imaging, and positron emission tomography. Semin Nucl Med 2007, 37: 146–153. 10.1053/j.semnuclmed.2007.01.003
Article
PubMed
Google Scholar
O'Connor JP, Rose CJ, Jackson A, Watson Y, Cheung S, Maders F, Whitcher BJ, Roberts C, Buonaccorsi GA, Thompson G, Clamp AR, Jayson GC, Parker GJ: DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6. Br J Cancer 2011, 105: 139–145. 10.1038/bjc.2011.191
Article
PubMed Central
PubMed
Google Scholar
Li X, Arlinghaus LR, Chakravarthy A, Farley J, Mayer I, Abramson V, Kelley M, Meszoely I, Means-Powell J, Yankeelov TE: Early DCE-MRI changes after longitudinal registration may predict breast cancer response to neoadjuvant chemotherapy. In Biomedical Image Registration. Volume 7359. Edited by: Dawant B, Christensen GE, Fitzpatrick JM, Rueckert D. New York: Springer; 2012:229–235.
Chapter
Google Scholar
Hamstra DA, Galban CJ, Meyer CR, Johnson TD, Sundgren PC, Tsien C, Lawrence TS, Junck L, Ross DJ, Rehemtulla A, Ross BD, Chenevert TL: Functional diffusion map as an early imaging biomarker for high-grade glioma: correlation with conventional radiologic response and overall survival. J Clin Oncol 2008, 26: 3387–3394. 10.1200/JCO.2007.15.2363
Article
PubMed Central
PubMed
Google Scholar
Li X, Arlinghaus LR, Chakravarthy A, Welch EB, Farley J, Mayer I, Abramson V, Kelley M, Meszoely I, Means-Powell J, Grau AM, Bhave S, Yankeelov TE: Voxel-based analysis of early DCE-MRI changes may predict the response to neoadjuvant chemotherapy in breast cancer patients. Proc Intl Soc Mag Reson Med (ISMRM) 2012, 20: 1465.
Google Scholar