Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al.: Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998,4(11):1334–1336. 10.1038/3337
Article
CAS
PubMed
Google Scholar
Rudin M: Molecular Imaging--Basic Principles and Applications in Biomedical Research. London: Imperial College Press; 2005.
Book
Google Scholar
Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al.: Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 2003,44(9):1426–1431.
CAS
PubMed
Google Scholar
Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K, et al.: Glioma proliferation as assessed by 3'-fluoro-3'-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 2008, 14: 2049–2055. 10.1158/1078-0432.CCR-07-1553
Article
CAS
PubMed
Google Scholar
Kenny LM, Vigushin DM, Al-Nahhas A, Osman S, Luthra SK, Shousha S, et al.: Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [F-18]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 2005,65(21):10104–10112. 10.1158/0008-5472.CAN-04-4297
Article
CAS
PubMed
Google Scholar
Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, Schirrmeister H, et al.: Molecular imaging of proliferation in malignant lymphoma. Cancer Res 2006,66(22):11055–11061. 10.1158/0008-5472.CAN-06-1955
Article
CAS
PubMed
Google Scholar
Mourik JEM, van Velden FHP, Lubberink M, Kloet RW, van Berckel BNM, Lammertsma AA, et al.: Image derived input functions for dynamic high resolution research tomograph PET brain studies. Neuroimage 2008,43(4):676–686. 10.1016/j.neuroimage.2008.07.035
Article
PubMed
Google Scholar
Germano G, Chen BC, Huang SC, Gambhir SS, Hoffman EJ, Phelps ME: Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies. J Nucl Med 1992,33(4):613–620.
CAS
PubMed
Google Scholar
Watabe H, Channing MA, Riddell C, Jousse F, Libutti SK, Carrasquillo JA, et al.: Noninvasive estimation of the aorta input function for measurement of tumor blood flow with. IEEE Trans Med Imaging 2001,20(3):164–174. 10.1109/42.918468
Article
CAS
PubMed
Google Scholar
Asselin MC, Cunningham VJ, Amano S, Gunn RN, Nahmias C: Parametrically defined cerebral blood vessels as non-invasive blood input functions for brain PET studies. Phys Med Biol 2004,49(6):1033–1054. 10.1088/0031-9155/49/6/013
Article
PubMed
Google Scholar
Zanotti-Fregonara P, Fadaili EM, Maroy R, Comtat C, Souloumiac A, Jan S, et al.: Comparison of eight methods for the estimation of the image-derived input function in dynamic [(18)F]-FDG PET human brain studies. J Cereb Blood Flow Metab 2009,29(11):1825–1835. 10.1038/jcbfm.2009.93
Article
PubMed
Google Scholar
Sundaram SK, Freedman NMT, Carrasquillo JA, Carson JM, Whatley M, Libutti SK, et al.: Simplified kinetic analysis of tumor 18F-FDG uptake: a dynamic approach. J Nucl Med 2004,45(8):1328–1333.
CAS
PubMed
Google Scholar
Bentourkia M: Kinetic modeling of PET data without blood sampling. IEEE 2005,52(3):697–702.
CAS
Google Scholar
Shields AF, Briston DA, Chandupatla S, Douglas KA, Lawhorn-Crews J, Collins JM, et al.: A simplified analysis of [18
F]3'-deoxy-3'-fluorothymidine metabolism and retention. Eur J Nucl Med Mol Imaging 2005,32(11):1269–1275.
Article
CAS
PubMed
Google Scholar
Cook GJ, Lodge MA, Marsden PK, Dynes A, Fogelman I: Non-invasive assessment of skeletal kinetics using fluorine-18 fluoride positron emission tomography: evaluation of image and population-derived arterial input functions. Eur J Nucl Med 1999,26(11):1424–1429. 10.1007/s002590050474
Article
CAS
PubMed
Google Scholar
Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, et al.: Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology 1993,188(1):131–136.
Article
CAS
PubMed
Google Scholar
Eberl S, Anayat AR, Fulton RR, Hooper PK, Fulham MJ: Evaluation of two population-based input functions for quantitative neurological FDG PET studies. Eur J Nucl Med 1997,24(3):299–304.
CAS
PubMed
Google Scholar
Kissel J, Port RE, Zaers J, Bellemann ME, Strauss LG, Haberkorn U, et al.: Noninvasive determination of the arterial input function of an anticancer drug from dynamic PET scans using the population approach. Med Phys 1999,26(4):609–615. 10.1118/1.598560
Article
CAS
PubMed
Google Scholar
Kim SJ, Lee JS, Im KC, Kim SY, Park SA, Lee SJ, et al.: Kinetic modeling of 3 '-deoxy-3 '-F-18-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice. J Nucl Med 2008,49(12):2057–2066. 10.2967/jnumed.108.053215
Article
PubMed
Google Scholar
Menda Y, Ponto LLB, Dornfeld KJ, Tewson TJ, Watkins GL, Schultz MK, et al.: Kinetic analysis of 3 '-deoxy-3 '-F-18-fluorothymidine (F-18-FLT) in head and neck cancer patients before and early after initiation of chemoradiation therapy. J Nucl Med 2009,50(7):1028–1035. 10.2967/jnumed.108.058495
Article
CAS
PubMed Central
PubMed
Google Scholar
Visvikis D, Francis D, Mulligan R, Costa DC, Croasdale I, Luthra SK, et al.: Comparison of methodologies for the in vivo assessment of (FLT)-F-18 utilisation in colorectal cancer. Eur J Nucl Med Mol Imaging 2004,31(2):169–178. 10.1007/s00259-003-1339-2
Article
CAS
PubMed
Google Scholar
de Langen AJ, Klabbers B, Lubberink M, Boellaard R, Spreeuwenberg MD, Slotman BJ, et al.: Reproducibility of quantitative F-18–3'-deoxy-3'-fluorothymidine measurements using positron emission tomography. Eur J Nucl Med Mol Imaging 2009,36(3):389–395. 10.1007/s00259-008-0960-5
Article
PubMed
Google Scholar
Backes H, Ullrich R, Neumaier B, Kracht L, Wienhard K, Jacobs AH: Noninvasive quantification of F-18-FLT human brain PET for the assessment of tumour proliferation in patients with high-grade glioma. Eur J Nucl Med Mol Imaging 2009,36(12):1960–1967. 10.1007/s00259-009-1244-4
Article
PubMed Central
PubMed
Google Scholar
Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO: Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3'-deoxy-3'-[18
F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 2007,34(9):1339–1347. 10.1007/s00259-007-0379-4
Article
PubMed
Google Scholar
Coleman TF, Li Y: On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. 1994,67(2):189–224.
Google Scholar
Coleman TF, Li Y: An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 1996, 6: 418–445. 10.1137/0806023
Article
Google Scholar
Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA: Kinetic modeling of 3'-deoxy-3'-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med 2005,46(2):371–380.
CAS
PubMed
Google Scholar
Mankoff DA, Shields AF, Graham MM, Link JM, Krohn KA: A graphical analysis method to estimate blood-to-tissue transfer constants for tracers with labeled metabolites. J Nucl Med 1996,37(12):2049–2057.
CAS
PubMed
Google Scholar