Kennedy A, Nag S, Salem R, Murthy R, McEwan AJ, Nutting C, Benson A, Espat J, Bilbao JI, Sharma RA, Thomas JP, Coldwell D: Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys 2007, 68: 13–23. 10.1016/j.ijrobp.2006.11.060
Article
PubMed
Google Scholar
Lambert B, Mertens J, Sturm EJ, Stienaers S, Defreyne L, D'Asseler Y: 99mTc-labelled macroaggregated albumin (MAA) scintigraphy for planning treatment with 90Y microspheres. Eur J Nucl Med Mol Imaging 2010, 37: 2328–2333. 10.1007/s00259-010-1566-2
Article
CAS
PubMed
Google Scholar
Ahmadzadehfar H, Sabet A, Biermann K, Muckle M, Brockmann H, Kuhl C, Wilhelm K, Biersack HJ, Ezziddin S: The significance of 99mTc-MAA SPECT/CT liver perfusion imaging in treatment planning for 90Y-microsphere selective internal radiation treatment. J Nucl Med 2010, 51: 1206–1212. 10.2967/jnumed.109.074559
Article
PubMed
Google Scholar
Garin E, Rolland Y, Lenoir L, Pracht M, Mesbah H, Porée P, Laffont S, Clement B, Raoul JL, Boucher E: Utility of quantitative Tc-MAA SPECT/CT for yttrium-labelled microsphere treatment planning: calculating vascularized hepatic volume and dosimetric approach. Int J Mol Imaging 2011, 2011: 398051.
Article
PubMed Central
PubMed
Google Scholar
Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Van Den Eynde M, Hendlisz A: Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with yttrium-90 labeled resin microspheres. Phys Med Biol 2008, 53: 6591–5603. 10.1088/0031-9155/53/22/019
Article
PubMed
Google Scholar
Bilbao JI, Reiser MF: Liver Radioembolization with 90Y Microspheres. Berlin Heidelberg: Springer-Verlag; 2008.
Book
Google Scholar
Gupta T, Virmani S, Neidt TM, Szolc-Kowalska B, Sato KT, Ryu RK, Lewandowski RJ, Gates VL, Woloschak GE, Salem R, Omary RA, Larson AC: MR tracking of iron-labeled glass radioembolization microsphres during transcatheter delivery to rabbit VX2 livers tumors: feasibility study. Radiology 2008, 249: 845–854. 10.1148/radiol.2491072027
Article
PubMed
Google Scholar
Sebastian AJ, Szyszko T, Al-Nahhas A, Nijran K, Tait NP: Evaluation of hepatic angiography procedures and bremsstrahlung imaging in selective internal radiation therapy: a two-year single-center experience. Cardiovasc Intervent Radiol 2008, 31: 643–649. 10.1007/s00270-008-9298-4
Article
CAS
PubMed
Google Scholar
Mansberg R, Sorensen N, Mansberg V, Van der Wall H: Yttrium 90 bremsstrahlung SPECT/CT scan demonstrating areas of tracer/tumour uptake. Eur J Nucl Med Mol Imaging 2007, 34: 1887. 10.1007/s00259-007-0536-9
Article
PubMed
Google Scholar
Machac J, Weintraub J, Nowakowski F, Mobley D, Zhang Z, Warner R: Variations in liver perfusion patterns in patients with liver tumors undergoing therapy with yttrium-90 microspheres, studied with SPECT/CT. J Nucl Med 2007, 48: 396P.
Google Scholar
Knesaurek K, Muzinic M, Zhang Z, DaCosta M, Machac J: Comparison of visual and computer calculated coregistration of Y-90 and Tc-99m MAA SPECT/CT images in treatment of liver cancer. J Nucl Med 2008, 49: 112P.
Google Scholar
Knesaurek K, Machac J, Muzinic M, DaCosta M, Zhang Z, Heiba S: Quantitative comparison of yttrium-90 (90Y)-microspheres and technetium-99m (99mTc)-macroaggregated albumin SPECT images for planning 90Y therapy of liver cancer. Technol Cancer Res Treat 2010, 9: 253–262.
Article
CAS
PubMed
Google Scholar
Moore S, Park M, Mueller S: Activity estimation performance in Y-90 microsphere bremsstrahlung SPECT. J Nucl Med 2009, 50: 1433.
Google Scholar
Tehranipour N, AL-Nahhas A, Canelo R, Stamp G, Woo K, Tait P, Gishen P: Concordant F-18 FDG PET and Y-90 bremsstrahlung scans depict selective delivery of Y-90-microspheres to liver tumors: confirmation with histopathology. Clin Nucl Med 2007, 32: 371–374. 10.1097/01.rlu.0000259568.54976.bd
Article
PubMed
Google Scholar
Simon N, Feitelberg S: Scanning bremsstrahlung of yttrium-90 microspheres injected intra-arterially. Radiology 1967, 88: 719–724.
Article
CAS
PubMed
Google Scholar
Gnanasegaran G, Buscombe JR, O'Rourke E, Caplin ME, Purfield D, Hilson AJW: Bremsstrahlung imaging after intra-arterial 90Y lanreotide radionuclide therapy for carcinoid liver metastases. Nucl Med Commun 2005, 26: 284–285.
Google Scholar
Luo J, Rao P, Zimmer M, Polis M, Mistretta M, Spies S: Imaging technique in estimating lung shunting of yttrium-90 microspheres. Med Phys 2005, 32: 1913.
Google Scholar
Walrand S, Flux GD, Konijnenberg MW, Valkema R, Krenning EP, Lhommel R, Pauwels S, Jamar F: Dosimetry of yttrium-labeled radiopharmaceutical for internal therapy: yttrium-86 or -90 imaging? Eur J Nucl Med Mol Imaging 2011.
Google Scholar
Lhommel R, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Bilbao JI, Walrand S: Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging 2009.
Google Scholar
Lhommel R, van Elmbt L, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Walrand S: Feasibility of yttrium-90 TOF-PET based dosimetry in liver metastasis therapy using SIR-spheres. Eur J Nucl Med Mol Imaging 2010.
Google Scholar
Werner MK, Brechtel K, Beyer T, Dittmann K, Pfannenberg C, Kupferschläger J: PET/CT for the assessment and quantification of 90Y biodistribution after selective internal radiotherapy (SIRT) of liver metastases. Eur J Nucl Med Mol Imaging 2009.
Google Scholar
Lhommel R, Walrand S, van Elmbt L, Pauwels S, Jamar F: Dose-response relationship in liver-SIRT: Y90 TOF-PET versus Tc99m-MAA SPECT based dosimetry. Eur J Nucl Med Mol Imaging 2010, 37: S201. 10.1007/s00259-009-1319-2
Article
Google Scholar
Gates VL, Esmail AAH, Marshall K, Spies S, Salem R: Internal pair production of 90Y permits hepatic localization of microspheres using routine pet: proof of concept. J Nucl Med 2010, 52: 72–76.
Article
PubMed
Google Scholar
Walrand SH, van Elmbt LR, Pauwels S: Quantitation in SPECT using an effective model of the scattering. Phys Med Biol 1994, 39: 719–734. 10.1088/0031-9155/39/4/005
Article
CAS
PubMed
Google Scholar
Cao ZJ, Frey EC, Tsui BMW: A scatter model for parallel and converging beam SPECT based on the Klein-Nishina formula. IEEE Trans Nucl Sci 1994, 41: 1594–1600. 10.1109/23.322954
Article
Google Scholar
Rault E, Staelens S, Van Holen R, De Beenhouwer J, Vandenberghe S: Accurate Monte Carlo modelling of the back compartments of SPECT cameras. Phys Med Biol 2011, 56: 87–104. 10.1088/0031-9155/56/1/006
Article
CAS
PubMed
Google Scholar
Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS: Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007, 48: 471–480.
PubMed
Google Scholar
Vanhove C, Andreyev A, Defrise M, Nuyts J, Bossuyt A: Resolution recovery in pinhole SPECT based on multi-ray projections: a phantom study. Eur J Nucl Med Mol Imaging 2007, 34: 170–180. 10.1007/s00259-006-0225-0
Article
PubMed
Google Scholar
Shen S, DeNardo GL, DeNardo SJ: Quantitative bremsstrahlung imaging of yttrium-90 using a Wiener filter. Med Phys 1994, 21: 1409–1417. 10.1118/1.597198
Article
CAS
PubMed
Google Scholar
Stabin MG: Fundamentals of Nuclear Medicine Dosimetry. New York: Springer; 2008.
Google Scholar
Walrand S, Jamar F, van Elmbt L, Lhommel R, Bekonde EB, Pauwels S: 4-Step renal dosimetry dependent on cortex geometry applied to 90Y peptide receptor radiotherapy: evaluation using a fillable kidney phantom imaged by 90Y PET. J Nucl Med 2010, 51: 1969–1973. 10.2967/jnumed.110.080093
Article
PubMed
Google Scholar
Niemierko A: A unified model of tissue response to radiation. In Proceedings of the 41st AAPM Annual Meeting: July 25–29 1999; Nashville, Tennessee Edited by: William Hendee: AAPM. 1999, 1100.
Google Scholar
Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M: Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991, 21: 109–122.
Article
CAS
PubMed
Google Scholar
Gay HA, Niemierko A: A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Physica Medica 2007, 23: 115–125. 10.1016/j.ejmp.2007.07.001
Article
PubMed
Google Scholar
Luxton G, Keall PJ, King CR: A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD). Phys Med Biol 2008, 53: 23–36. 10.1088/0031-9155/53/1/002
Article
PubMed
Google Scholar
KUKA
[http://www.kuka-robotics.com/en/products/industrial_robots]
Kraus-Tiefenbacher U, Scheda A, Steil V, Hermann B, Kehrer T, Bauer L, Melchert F, Wenz F: Intraoperative radiotherapy (IORT) for breast cancer using the intrabeam™ system. Tumori 2005, 91: 339–345.
PubMed
Google Scholar
Bjorken JD, Drell SD: Relativistic Quantum Mechanics. New York: McGraw-Hill Inc.; 1964.
Google Scholar
Kamphuis C, Beekman FJ, van Rijk PP, Viergever MA: Dual matrix ordered subsets reconstruction for accelerated 3D scatter compensation in single-photon emission tomography. Eur J Nucl Med 1997, 25: 8–18. 10.1007/s002590050188
Article
Google Scholar