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Abstract 

Background:  To investigate the value of 18F-FDG PET/CT molecular radiomics combined with a clinical model in 
predicting thoracic lymph node metastasis (LNM) in invasive lung adenocarcinoma (≤ 3 cm).

Methods:  A total of 528 lung adenocarcinoma patients were enrolled in this retrospective study. Five models were 
developed for the prediction of thoracic LNM, including PET radiomics, CT radiomics, PET/CT radiomics, clinical and 
integrated PET/CT radiomics-clinical models. Ten PET/CT radiomics features and two clinical characteristics were 
selected for the construction of the integrated PET/CT radiomics-clinical model. The predictive performance of all 
models was examined by receiver operating characteristic (ROC) curve analysis, and clinical utility was validated by 
nomogram analysis and decision curve analysis (DCA).

Results:  According to ROC curve analysis, the integrated PET/CT molecular radiomics-clinical model outperformed 
the clinical model and the three other radiomics models, and the area under the curve (AUC) values of the integrated 
model were 0.95 (95% CI: 0.93–0.97) in the training group and 0.94 (95% CI: 0.89–0.97) in the test group. The nomo-
gram analysis and DCA confirmed the clinical application value of this integrated model in predicting thoracic LNM.

Conclusions:  The integrated PET/CT molecular radiomics-clinical model proposed in this study can ensure a higher 
level of accuracy in predicting the thoracic LNM of clinical invasive lung adenocarcinoma (≤ 3 cm) compared with the 
radiomics model or clinical model alone.
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Background
Lung adenocarcinoma accounts for over 30% of all lung 
cancers. Furthermore, approximately 20% of patients 
with invasive lung adenocarcinoma (≤ 3  cm) already 

have thoracic lymph node metastasis(LNM)at the time 
of diagnosis [1, 2]. Identifying the presence of tho-
racic LNM before surgery can indicate the necessity 
of intraoperative mediastinal lymph node dissection 
and subsequent radical resection in some invasive lung 
adenocarcinomas (≤ 3  cm) [2]. In addition, determin-
ing LNM status in advance is also important for the 
selection of the target range of radiotherapy [3]. Unfor-
tunately, conventional approaches to thoracic LNM 
detection, thoracoscopy and transbronchial biopsies 
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can lead to complications, including haemorrhage, 
infection and pneumothorax, which increases the cost 
of treatment despite high accuracy [4]. In addition, 
positron emission tomography/computed tomography 
(PET/CT), considered the most accurate thoracic LNM 
staging method, is subject to low diagnostic sensitivity 
due to several factors, such as lymph node hypertrophy, 
false positives caused by infection and inflammation 
and limited spatial resolution [5–9]. For example, Liu 
et al. showed that the sensitivity and specificity of PET/
CT in the preoperative diagnosis of mediastinal LNM 
in non-small-cell lung cancer (NSCLC) patients were 
65% and 96.8%, respectively [8]. On the one hand, the 
micrometastasis of certain lymph nodes with a diam-
eter smaller than the spatial resolution range of PET/
CT may cause false negatives [10]. On the other hand, 
long-term smoking and lung infections can lead to false 
positives [11]. In addition, PET/CT imaging reading is 
dependent on visual assessment and semiautomated 
measurements, which in turn rely on different interpre-
tations by different observers. The accuracy of PET/CT 
in predicting the incidence of occult LNM in NSCLC is 
only approximately 14–19% [12, 13].

As a supplement to the abovementioned approaches, 
radiomics can help improve the diagnostic efficiency of 
lung cancer LNM [14]. Coroller et  al. reported 35 CT 
radiomics features of lung adenocarcinoma for predict-
ing distant metastasis [15]. Yang et  al. demonstrated 
the value of CT radiomics in predicting lung adenocar-
cinoma LNM [16]. Cong et  al. used the random forest 
method to establish models to predict the LNM of lung 
adenocarcinoma [17]. Although the CT-based evalua-
tion of radiomics features has been shown to be a prom-
ising predictor of lung adenocarcinoma LNM, PET/CT 
molecular radiomics-clinical models, including PET/CT 
molecular radiomics features and clinical factors, have 
not been investigated for their potential in predicting the 
thoracic LNM of lung adenocarcinoma. To address the 
literature gap, we conducted a comparative study of five 
models, including integrated PET/CT molecular radi-
omics-clinical, PET/CT radiomics, PET radiomics, CT 
radiomics, and clinical models, for predicting the tho-
racic LNM of lung adenocarcinoma. Among them, for 
PET/CT radiomics, the primary lesions on PET and CT 
images were delineated before extracting and analysing 
radiomics features [18]. The current study explored the 
diagnostic efficacy of PET/CT, CT, and PET radiomics 
models in predicting the thoracic LNM of lung adeno-
carcinoma by analysing the features of PET/CT images 
of lung adenocarcinoma patients. The study aimed to 
develop an integrated PET/CT molecular radiomics-clin-
ical model for predicting the thoracic LNM of invasive 
lung adenocarcinoma (≤ 3 cm).

Methods
Patient selection and pathological evaluation
A retrospective analysis of 802 patients with lung adeno-
carcinoma (diameter ≤ 3  cm) was performed in Shang-
hai Chest Hospital from February 2016 to January 2021. 
The inclusion and exclusion criteria are illustrated in 
Additional file 1: Figure S1. A total of 528 patients with 
invasive lung adenocarcinoma were enrolled, including 
379 patients with lung adenocarcinoma without tho-
racic LNM, accounting for 71.78%, and 149 patients with 
lung adenocarcinoma with thoracic LNM, accounting for 
28.22%. Thoracic LNM was defined as lung cancer with 
N1 or N2 LNM. All patients underwent surgeries after 
diagnosis, including N1 and N2 resection. Two patholo-
gists evaluated the tumour histology of these patients by 
following the 2015 WHO classification of lung adenocar-
cinoma. Lymph node staging was defined according to 
the eighth version of the TNM staging method. The study 
protocol was approved by the institutional ethics review 
committee of Shanghai Chest Hospital. Informed con-
sent was not required because of the retrospective nature 
of the study. All the patient data were anonymized in this 
paper.

Clinical information of the selected lung adenocarcinoma 
patients
The clinical information of the patients included age, 
sex, smoking history, and the tumour marker carci-
noembryonic antigen (CEA). The CT features included 
lung tumour location, lobulation sign, burr sign, pleural 
traction, and solid component size. The PET parameter 
included the maximum standardized uptake value (SUV-
max). The clinical information of the enrolled patients is 
summarized in Table 1. The size of the solid component 
of pulmonary nodules, including mixed ground-glass 
nodules, refers to the average value of the longest cross-
section length and the vertical diameter length of the 
solid component on the pulmonary window [19].

PET/CT scan procedures
All patients were examined under the same scanning 
conditions on the same device (Siemens Biograph MCT-S 
PET/CT). A 64-slice spiral CT was used. 18F-fluorode-
oxyglucose (18F-FDG) was provided by Shanghai Atom 
Kexing Pharmaceuticals Co., Ltd. All patients had with-
held from eating and drinking for more than 6 h before 
the PET/CT procedure, thus keeping the blood glucose 
level below 150  mg/dL. All patients were injected with 
18F-FDG at 5  MBq/kg ± 10% of body weight and then 
rested for 60  min. The PET scan was divided into 5 or 
6 beds, and each bed was checked for approximately 
2 min. The CT data were used to attenuate corrected PET 
images, and Truex + TOF was used to reconstruct PET 
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images. The PET and CT scan thickness of all patients 
was 5 mm. The matrix size of all PET reconstructions was 
200 × 200, and the anisotropic voxel was 4.07 × 4.07 × 3.0 
mm3. After regular PET and CT scans, a 1 mm breath-
hold lung CT scan was added. CT was reconstructed by a 
conventional algorithm, while PET was reconstructed by 
an iterative method.

Lesion segmentation
The 5-mm slice thickness PET images and 1-mm slice 
thickness CT images of all patients were exported from 
the PACS workstation in DICOM format and then 
imported into ITK-SNAP software (version 3.8.0-beta, 
www.​itksn​ap.​org) to outline lung lesions in 3D mode. 
The entire delineation procedure was performed by two 
radiologists with over 10  years of work experience, and 
neither of the radiologists was informed of the patients’ 
pathological results. For CT image delineation, the lesion 
was observed on the lung window (window width 1600 
HU, window level -600 HU). The two radiologists delin-
eated the primary tumour on PET images using a 40% 
SUVmax threshold to characterize the volume of interest 

(VOI) [20–24]. To avoid including the physiologic uptake 
in the VOI, a combined CT and PET scan reading was 
performed [22, 24]. An example of VOI delineation is 
shown in Fig. 1.

Image preprocessing
The original 5  mm PET, 1  mm breath-holding thin-
layer CT (DICOM format), and outlined VOI of each 
lung tumour were imported into IBSI-compatible Arti-
ficial Intelligence Kit software (AK analysis kit, GE 
healthcare, 3.2.2) for image preprocessing [23–27]. The 
μ ± 3σ method was used to remove data with a bright-
ness greater than 3σ to normalize image brightness [23, 
24, 28]. The images were resampled to 1 × 1 × 1 mm3 by 
using linear interpolation to improve the image resolu-
tion. The preprocessed images were then imported into 
ITK-SNAP to delineate the VOI.

Feature extraction and selection
The inter- and intraclass correlation coefficients (ICCs) 
were evaluated, in which 50 cases were randomly 
selected from the enrolled study cases. Two observers 

Table 1  Clinical features of 528 patients enrolled in this study

Clinical characteristics Training (n = 371) Testing (n = 157)

Lymph node (−) Lymph node (+) p value Lymph node (−) Lymph node (+) p value

Age, year (median;IQR) 62; 55 ~ 67 62; 55 ~ 68 0.62 63; 56 ~ 69 60; 50 ~ 70 0.166

Gender

Male 103 46 0.369 48 23 0.555

Female 163 59 65 21

Smoke

Yes 84 36 0.617 38 15 0.958

No 182 69 75 29

Location

Upper lobe, right 109 30 0.024 48 12 0.101

Middle lobe, right 46 18 21 10

Lower lobe, right 13 8 5 1

Upper lobe, left 60 29 26 15

Lower lobe, left 38 20 13 6

CEA, ng/ml (median; IQR) 2.32; 1.53 ~ 3.93 3.67; 2.11 ~ 8.50 0.273 2.21; 1.53 ~ 3.52 3.59; 2.01 ~ 6.27 0.251

Lobulation

(+) 260 103 0.836 112 44 0.279

(−) 6 2 1 0

Burr

(+) 249 102 0.176 112 44 0.688

(−) 17 3 1 0

Pleural traction

(+) 45 53 < 0.001 15 18 < 0.001

(−) 221 52 98 26

Solid components, cm (median; IQR) 0.85; 0.50 ~ 1.3 2.05; 1.65 ~ 2.45 < 0.001 0.95; 0.55 ~ 1.4 2.1; 1.65 ~ 2.49 < 0.001

SUVmax (median;IQR) 3.68; 2.1 ~ 7.45 11.11; 8.92 ~ 15.31 0.145 3.57; 2.08 ~ 6.99 10.25; 7.1 ~ 13.36 0.279

http://www.itksnap.org
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(Observers A and B) with more than 10  years of work-
ing experience in PET and CT applications delineated the 
VOIs. Observer A delineated the VOIs of CT and PET 
images twice at an interval of 4 weeks, and the intraob-
server correlation coefficients of the extracted features 
were evaluated between the two delineations of Observer 
A. Observer B delineated the VOIs independently once, 
and the interobserver correlation coefficients between 
the radiomics features extracted by Observers A (the first 
delineation) and B were evaluated. ICC > 0.75 indicates 
good agreement. Observer A then finished the remain-
ing delineation work. Based on the VOIs of lung tumours 
outlined by Observer A on CT and PET images, 402 radi-
omics features were extracted from every image by using 
AK software, including 42 histograms features, 154 grey 
level co-occurrence matrix (GLCM) features, 15 form-
factor features describing the shape of the VOI, 180 run 
length matrix (RLM) features and 11 grey level size zone 
matrix (GLSZM) features. The bin width was set to 25 
during feature extraction.

Model construction and validation
The patients were randomly assigned into training (371 
patients) and test groups (157 patients) at a ratio of 7 to 3 
using a stratified sampling method to ensure the balance 

of positive and negative samples in both groups [20, 23, 
28]. Bootstrapping was used to split the data into training 
and validation groups. For the bootstrap samples, simple 
random sampling was used. To improve the representa-
tiveness of the minority group in the training group, the 
synthetic minority oversampling technique (SMOTE) 
was used to generate samples of the minority group from 
the joint weighting of optimal features. In the training 
group, the maximum relevance minimum redundancy 
(mRMR) and least absolute shrinkage and selection oper-
ator (LASSO) methods were applied to select the most 
valuable radiomics features (ICC > 0.75) for predicting 
lung adenocarcinoma LNM. Three multivariate logistic 
regression models based on PET/CT, CT, and PET were 
then established in the training group.

The radiomic score of each patient was calculated 
based on the combination of the retained features 
weighted by their LASSO logistic regression coeffi-
cients (Additional file 6: Methods). The area under the 
curve (AUC) was used to evaluate the diagnostic effi-
cacy of the three radiomics models in predicting the 
thoracic LNM of lung adenocarcinoma. The efficacy of 
predicting the thoracic LNM of lung adenocarcinoma 
was evaluated in the test group. The DeLong test was 
employed to compare the performance of the three 

Fig. 1  Workflow for developing a radiomics model based on PET/CT images to predict the thoracic LNM of lung adenocarcinoma. GLCM, gray level 
co-occurrence matrix; GLSZM, grey level size zone matrix; RLM, run length matrix; mRMR, maximum relevance minimum redundancy; LASSO, least 
absolute shrinkage and selection operator; ROC, receiver operating characteristic



Page 5 of 11Chang et al. EJNMMI Research           (2022) 12:23 	

different models based on PET/CT, CT, and PET to 
determine the most powerful predictive model. To ver-
ify the reliability of the model, a cross-validation test 
was performed 100 times. The workflow of radiomics 
analysis is shown in Fig. 1.

Construction of the radiomics nomogram
The clinical factors (p < 0.1) were analysed using univari-
ate logistic regression to identify whether the features 
were discriminative (p < 0.05). Then, multivariate logistic 
regression was applied to these discriminative clinical 
features to construct a clinical model, and the clinical fea-
tures, as well as the radiomics score, were integrated to 
establish a predictive nomogram. Moreover, the variance 
inflation factor (VIF) was used for collinearity analysis, 
and factors with VIF > 10 were eliminated. All the mod-
els were constructed in the training group and then vali-
dated in the test group.

Statistical analysis
In this study, the programming language R (software 
version 3.5.1) was used for statistical analysis. For clini-
cal data, the chi-square test was applied to features 
with a normal distribution, which were presented as the 
mean ± SD, while the Wilcoxon test was applied to fea-
tures with a nonnormal distribution, which were pre-
sented as the median (lower and upper quartiles). In this 
study, the ModelGood package of R was used to construct 
the calibration curve. Decision curve analysis (DCA) was 
used to evaluate the clinical value of the PET/CT molec-
ular radiomics-clinical model in predicting lung adeno-
carcinoma LNM in the test group.

Results
Radiomics feature extraction and selection
For the radiomics features extracted twice by Observer 
A, the intra-ICC ranges in the CT group and PET group 
were 0.06–1 and 0.32–1, respectively. For the features 
extracted by Observer A (for the first time) and Observer 
B, the inter-ICC ranges in the CT groups and PET group 
were 0.15–1 and 0.3–1, respectively, and the features 
with ICC > 0.75 in both the intragroup and intergroup 
comparisons were retained for further analysis (Addi-
tional file  5: Table  S1). The PET/CT, CT, and PET data 
sets were further analysed by the mRMR algorithm and 
LASSO regression model. After feature extraction and 
selection, 10 PET/CT (6 CT and 4 PET), 12 CT, and 10 
PET radiomics features were retained. These features and 
their corresponding coefficients are shown in Additional 
file 2: Figures S2–4.

Evaluation of the performance of the three radiomics 
models
The results showed that all three models (PET/CT, CT, 
and PET) could predict LNM with cut-off values of 
-0.66, -0.75, and -0.13, respectively (Additional file 2: Fig-
ures S2C, S3C and S4C). The cut-off values were obtained 
based on Youden’s J statistic, and the optimal cut-off was 
defined as the threshold that maximizes the distance to 
the identity (diagonal) line. The value can be abbrevi-
ated as “y.” The optimum criterion is the max sensitiv-
ity + specificity. To determine the stability of the models, 
100 rounds of repeated cross-validation were performed 
(Additional file  1: Figure S2D). The AUC values of the 
PET/CT, CT and PET radiomics models in the training 
group were 0.92 (95% CI: 0.89–0.95), 0.87 (95% CI: 0.83–
0.90), and 0.83 (95% CI: 0.78–0.86), respectively. The 
AUC values of these three models in the test group were 
0.91 (95% CI: 0.86–0.95), 0.87 (95% CI: 0.80–0.92), and 
0.80 (95% CI: 0.73–0.86), respectively (Fig.  2). The sen-
sitivity, specificity, and accuracy of the PET/CT, CT, and 
PET radiomics models for predicting the thoracic LNM 
of lung adenocarcinoma in the training and test groups 
are shown in Table 2. The DeLong test showed that the 
PET/CT model outperformed the PET and CT models 
(p < 0.05) in the training group (Table 3).

Development of a clinical model for predicting the thoracic 
LNM of lung adenocarcinoma
Further steps were taken to establish a clinical model for 
predicting the thoracic LNM of lung adenocarcinoma. 
After the screening of clinical models using univari-
ate logistic analysis of clinical features, it was found that 
clinical characteristics, including pleural traction, size 
of the solid component, and location, were statistically 
significant in predicting thoracic LNM in the training 
group (Table 4). According to the results of multivariate 
logistic regression analysis, size of the solid component 
and location of the lesion were independent predictors 
(p < 0.05) of the LNM of lung adenocarcinoma, as shown 
in Table 5. The AUC values of the clinical model in the 
training and test groups were 0.93 (95% CI: 0.90–0.95) 
and 0.91 (95% CI: 0.85–0.95), respectively (Table 2).

Construction of an integrated PET/CT radiomics‑clinical 
model for predicting the thoracic LNM of lung 
adenocarcinoma
The integrated PET/CT molecular radiomics-clinical 
logistic regression model was constructed using the radi-
omics score and two independent clinical risk factors, 
and the results are shown in the nomogram in Fig.  3A. 
In both groups, the PET/CT molecular radiomics-clini-
cal model showed satisfactory performance in predicting 
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LNM (Table 2). The AUC values of the training and test 
groups were 0.95 (95% CI: 0.93–0.97) and 0.94 (95% CI: 
0.89–0.97), respectively. The AUC values of the PET/CT 

Fig. 2  ROC curve analysis of five predictive models, including the clinical model, CT radiomic model, PET radiomic model, PET/CT radiomic model, 
and combined PET/CT radiomics-clinical model in the training group (A) and test group (B), respectively

Table 2  The performance of 5 different models for prediction of lymph metastasis of lung adenocarcinoma

AUC: area under the curve; CI: confidence interval; ACC: accuracy; SEN: sensitivity; SPE: specificity; PPV: positive predictive value; NPV: negative predictive value. The 
PET/CT, CT, and PET models represent PET/CT, CT, and PET radiomics models, respectively

Models AUC (95% CI) ACC (95% CI) SEN SPE PPV NPV

Training group

PET/CT 0.92 (0.89–0.95) 0.865 (0.826–0.898) 0.865 0.867 0.943 0.717

CT 0.87 (0.83–0.90) 0.741 (0.694–0.785) 0.688 0.876 0.934 0.526

PET 0.83 (0.78–0.86) 0.765 (0.719–0.808) 0.759 0.781 0.898 0.562

Clinical 0.93 (0.90–0.95) 0.838 (0.797–0.974) 0.664 0.94 0.867 0.827

PET/CT + Clinical 0.95 (0.93–0.97) 0.879 (0.841–0.91) 0.717 0.974 0.943 0.853

Test group

PET/CT 0.91 (0.86–0.95) 0.873 (0.81–0.92) 0.885 0.841 0.935 0.74

CT 0.87 (0.80–0.92) 0.771 (0.697–0.834) 0.717 0.909 0.953 0.556

PET 0.80 (0.73–0.86) 0.79 (0.718–0.851) 0.832 0.682 0.87 0.612

Clinical 0.91 (0.85–0.95) 0.783 (0.711–0.845) 0.578 0.925 0.841 0.761

PET/CT + Clinical 0.94 (0.89–0.97) 0.847 (0.781–0.89) 0.656 0.978 0.955 0.805

Table 3  DeLong test of ROC curves between different models

The PET/CT, PET, and CT models represent PET/CT, PET, and CT radiomics 
models,respectively; integrated model represent PET/CT radiomics-clinical 
model

Comparisons Training Testing

Z score p value Z score p value

PET/CT vs. PET model 5.157 < 0.001 3.653 < 0.001

PET/CT vs. CT model 3.514 < 0.001 1.931 0.054

PET vs. CT model 1.299 0.194 1.35 0.177

Integrated vs. PET/CT model 3.943 < 0.001 1.65 0.099

Integrated vs. Clinical model 3.257 < 0.001 2.011 0.044

PET/CT vs. Clinical model 0.484 0.628 0.268 0.788

Table 4  Univariate logistic analysis of clinical features and lymph 
node metastasis

Variables OR p value

Pleural traction 5.01 (3.05–8.29) < 0.001

Solid composition 37.99 (18.69–87.63) < 0.001

Locations 1.18 (1.02–1.36) 0.027
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radiomics-clinical, PET/CT radiomics, and clinical mod-
els were compared using the DeLong test. It was found 
that the PET/CT radiomics-clinical model significantly 
outperformed the PET/CT radiomics model and the clin-
ical model alone (Table  3). The calibration curve of the 
nomogram, shown in Fig.  3B, displays good calibration 
of the nomogram. Finally, the clinical usefulness of these 
models was compared using DCA. When the threshold 
probability of predicting lung adenocarcinoma LNM 
is between 1 and 70%, the application of the PET/CT 
molecular radiomics-clinical model in predicting the tho-
racic LNM of lung adenocarcinoma has greater advan-
tages than the clinical model (Fig. 3C).

Discussion
Patients with occult thoracic LNM of lung adenocarci-
noma tend to have short disease-free survival and over-
all survival. Although CT has been routinely used in the 
diagnosis of LNM of lung cancer, it shows tumour lesions 
based on only morphological characteristics and thus 
suffers from significant limitations. In contrast, PET/CT 
provides a high accuracy rate in diagnosing local LNM, 
as it relies on the metabolic characteristics of a tissue, 
and metabolic changes often occur ahead of morpho-
logic changes [5]. Upon the intake of an imaging rea-
gent, metastatic lesions of lung adenocarcinoma can be 
judged from the perspective of molecular metabolism 
[5, 29]. Importantly, PET/CT radiomics has been inves-
tigated in lung cancers [30–32]. For example, Mu et  al. 
reported that deep learning of PET/CT images could 
predict PD-L1 status and immunotherapy response in 

NSCLC [33]. Du et al. reported that a PET/CT radiom-
ics nomogram showed potential for the individualized 
differential diagnosis of solid active pulmonary tubercu-
losis and lung cancer [34]. In our previous studies [23, 
24], a PET/CT radiomics model was developed to predict 
epidermal growth factor receptor (EGFR) mutation and 
anaplastic lymphoma kinase (ALK) rearrangement sta-
tus in lung adenocarcinoma. This study aimed to predict 
the thoracic LNM of lung adenocarcinoma by PET/CT 
radiomics.

Multiple studies have demonstrated the value of CT 
radiomics in predicting the LNM of lung cancer [16, 
17, 35]. For example, Yang et  al. developed a nomo-
gram with 14 CT radiomics features to predict LNM in 
solid lung adenocarcinoma, and the results showed that 
the AUC values for the training and validation cohorts 
were 0.871 and 0.856, respectively [16]. Moreover, the 
LASSO algorithm was used to choose the best set of 
CT radiomics features and develop a predictive LNM 
model in IA NSCLC patients based on radiomics and 
clinical features. The predictive performance for LNM 
of the combined model was further improved (the AUC 
values for training and testing were 0.911 and 0.860, 
respectively) [17]. In addition, PET/CT has also been 
used to predict LNM in NSCLC [8, 9]. However, only 
one PET/CT parameter was used alone to predict the 
LNM of NSCLC in these studies, which yielded high 
specificity but low sensitivity of diagnosis [8, 9]. In this 
study, 10 parameters of PET/CT images were extracted 
using the LASSO algorithm and were used to construct 
a predictive radiomics model, thus showing more sen-
sitivity in predicting the thoracic LNM of lung adeno-
carcinoma. The AUC value of the ROC curve of the 
radiomics model was 0.92 in the training group and 
0.91 in the test group. In addition, the clinical model 
(the visual assessment) was constructed by the subjec-
tive sign of the solid component and location of lung 
adenocarcinoma after feature selection, and the AUC 
value reached 0.93 in the training group and 0.91 in the 
test group. It was found that both the clinical model 
and radiomics model achieved similarly good perfor-
mance outcomes in predicting LNM. Furthermore, 

Table 5  Multivariate logistic analysis of clinical and radiomic 
features and lymph node metastasis

Variables OR p value

Solid composition 13.32 (5.92–33.61) < 0.001

Locations 1.28 (1.01–1.63) 0.044

Radscore 2.04 (1.55–2.78) < 0.001

Intercept 0.01 (0–0.04) < 0.001

(See figure on next page.)
Fig. 3  Evaluation of the performance of the integrated PET/CT molecular radiomics-clinical model. A The nomogram was developed by combining 
the PET/CT radiomic score and the clinical features of solid composition and location/body part (1, 2, 3, 4, 5 represent the upper lobe, middle lobe, 
and lower lobe of the right lung and the upper lobe and lower lobe of the left lung, respectively). B Calibration curve with the Hosmer–Lemeshow 
test of the nomogram in the training cohort (left panel) and test cohort (right panel). The calibration curve shows the calibration of the model in 
terms of the consistency between the predicted risk of thoracic LNM and the real observed thoracic LNM status. The x-axis represents the predicted 
risk of thoracic LNM, and the y-axis represents the real thoracic LNM status. C Decision curve analysis of the nomograms. The y-axis measures the 
standardized net benefit. The dark line represents the PET/CT molecular radiomics-clinical nomogram model, the red line represents the clinical 
features nomogram, the grey line represents the assumption that all patients are negative for thoracic LNM, and the blue line represents the 
assumption that all patients are positive for thoracic LNM
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Fig. 3  (See legend on previous page.)
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compared with the PET/CT clinical model, the inte-
grated PET/CT molecular radiomics-clinical model 
shows more power for predicting the local LNM of lung 
adenocarcinoma. The AUC value increased from 0.93 
to 0.95 in the training group and from 0.91 to 0.94 in 
the test group.

The present results are significant in several major 
aspects as follows. First, the location of lung cancer 
is closely related to LNM [36, 37]. Ketchedjian et  al. 
showed that the incidence of LNM increased as the 
size of peripheral T1 tumours of lung adenocarcinoma 
increased, whereas central T1 tumours demonstrated 
a 50% incidence of lymph node involvement irrespec-
tive of tumour size [36]. This study found that the loca-
tion of lung adenocarcinoma was an important factor 
in predicting the LNM of lung adenocarcinoma. Sec-
ond, it has been reported that there is a strong corre-
lation between the diameter of solid components on 
CT images and the invasive components revealed by 
pathology, and the size of the solid component is an 
important factor affecting prognosis [19, 38, 39]. In this 
study, the solid component size was shown to serve as 
an effective predictor of thoracic LNM. Third, the nom-
ogram provides a quantitative and intuitive method for 
clinicians to predict the LNM of lung adenocarcinoma. 
Finally, our study addresses the limitation of the CT 
radiomics model where the LNM of lung adenocarci-
noma is predicted from CT morphology alone, while 
incorporating PET radiomics to indicate the level of 
tumour molecular metabolism. The overall objective of 
the current study is to further confirm the application 
value of PET radiomics. To date, there is no literature 
report comparing PET/CT and CT radiomics models 
in the prediction of the LNM of lung adenocarcinoma. 
This study found that PET/CT radiomics was superior 
to CT radiomics in the training group, indicating that 
PET radiomics has certain diagnostic value in predict-
ing the LNM of lung adenocarcinoma.

Despite the promising statistical results, several limi-
tations of this study need to be acknowledged. First, in 
view of the single-centre retrospective nature of the cur-
rent study, a multicentre study with a larger sample size 
should be conducted for further verification. Second, 
it is time-consuming for radiologists to semi-manually 
delineate the segmentation of lung adenocarcinoma 
lesions by means of ITK software. It is expected that with 
the development of artificial intelligence software such 
as deep learning, fully automatic computer segmenta-
tion can be realized [20, 40, 41]. Third, this study lacks 
external validation to refine the proposed model. Finally, 
due to limited time after surgery and incomplete follow-
ups, a predictive model for survival rate has yet to be 
established.

Conclusion
In summary, the PET/CT molecular radiomics-clinical 
model demonstrated its high diagnostic value in predict-
ing the thoracic LNM of lung adenocarcinoma. A PET/
CT molecular radiomics-clinical nomogram model was 
developed as a visualization tool to help predict thoracic 
LNM in newly diagnosed lung adenocarcinoma patients.
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