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Abstract 

Background:  In the context of nuclear medicine and theranostics, integrin-related research and development was, 
for most of the time, focused predominantly on ’RGD peptides’ and the subtype αvβ3-integrin. However, there are no 
less than 24 known integrins, and peptides without the RGD sequence as well as non-peptidic ligands play an equally 
important role as selective integrin ligands. On the other hand, multimerization is a well-established method to 
increase the avidity of binding structures, but multimeric radiopharmaceuticals have not made their way into clinics 
yet. In this review, we describe how these aspects have been interwoven in the framework of the German Research 
Foundation’s multi-group interdisciplinary funding scheme CRC 824, yielding a series of potent PET imaging agents 
for selective imaging of various integrin subtypes.

Results:  The gallium-68 chelator TRAP was utilized to elaborate symmetrical trimers of various peptidic and non-pep-
tidic integrin ligands. Preclinical data suggested a high potential of the resulting Ga-68-tracers for PET-imaging of the 
integrins α5β1, αvβ8, αvβ6, and αvβ3. For the first three, we provide some additional immunohistochemistry data in 
human cancers, which suggest several future clinical applications. Finally, application of αvβ3- and αvβ6-integrin trac-
ers in pancreatic carcinoma patients revealed that unlike αvβ3-targeted PET, αvβ6-integrin PET is not characterized by 
off-target uptake and thus, enables a substantially improved imaging of this type of cancer.

Conclusions:  Novel radiopharmaceuticals targeting a number of different integrins, above all, αvβ6, have proven 
their clinical potential and will play an increasingly important role in future theranostics.
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Introduction
Multimerization is a venerable concept, and its theoreti-
cal foundations have been established decades ago [1]. 
There is no general doubt about the potential benefits 
of combining more than one targeting moiety (receptor 
ligands, enzyme inhibitors, antibodies or -fragments, or 

others), in view of a solid body of evidence that multim-
ers invariantly exhibit a higher avidity than monomers [1, 
2]. Böhmer et al. nevertheless pointed out that in despite 
of the long-known, huge potential of multimers and a lot 
of pertinent research, such compounds have made no 
impact in molecular imaging beyond the in vitro or pre-
clinical levels [1], aside from full-size antibodies which 
are natural dimers of targeting proteins.

A similar situation—a sound and logical concept, 
intense long-term research, yet very limited clinical 
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impact—is observed for radiopharmaceuticals targeting 
integrins. In sharp contrast to the tremendous clinical 
and commercial success of prostate specific membrane 
antigen (PSMA) targeted radiopharmaceuticals since 
2015, radiolabeled integrin ligands have not been 
included in healthcare schemes, although they were 
clinically tested about one decade earlier [3–6], and 
selected ones even entered clinical trials several years 
ago [7–9]. It is therefore not surprising that the general 
attitude toward integrin-targeting radiopharmaceuti-
cals has considerably changed over time. Two decades 
ago, the development [10] and first successful clinical 
applications of the positron emission tomography (PET) 
radiopharmaceutical 18F-Galacto-RGD [3–5] caused a 
veritable enthusiasm and unleashed an avalanche of simi-
lar agents, which were initially celebrated as a new class 
of highly promising peptidic radioligands for imaging of 
(tumor) angiogenesis [11, 12]. These days, however, one 
cannot help noticing a certain fatigue or even resignation 
because none of the many integrin tracers, even of the 
respective multimers which occasionally showed supe-
rior in vivo properties [6], has become clinically relevant 
[2].

We argue that this sobering balance is caused by the 
fact that pertinent research focused predominantly 
on the subtype αvβ3—which is, however, only one of 
24 known integrins, whose wealth of biological impli-
cations and potential applications has been widely 
underestimated or even disregarded in the context of 
radiopharmaceuticals and molecular imaging agents for 
a long time. This article will shed light on both aspects—
integrins and multimers—and describe how the chal-
lenges of either of which have ultimately been overcome 
owing to continuous research within the framework of 
the Collaborative Research Centre 824 (CRC824), result-
ing in integrin targeted radiopharmaceuticals with a real-
istic clinical perspective.

αvβ3‑Integrin targeting radiopharmaceuticals—A 
critical analysis
A look on the wealth of pertinent literature reveals that 
the terms "integrin," "αvβ3," "RGD" and "(neo-)angio-
genesis" are often closely associated. Frequently, they are 
even used in a synonymous manner [13], which might be 
a result of historical development. As early as in 1984, it 
was discovered that some integrins accept the peptide 
motif arginine–glycine–aspartate, which is abbreviated 
by ’RGD’ in the one-letter code, as a minimal amino acid 
sequence for recognition of their natural ligands (extra-
cellular matrix proteins such as fibronectin, vitronectin, 
and fibrinogen) [14]. 1991 saw the first report on cyclic 
pentapeptides containing the RGD sequence, which 
were capable of antagonistic binding to αvβ3-integrin 

with high affinity and selectivity [15]. Some peptides of 
this class have become extraordinarily popular in the 
meantime, e.g., cyclo-[RGDfK], cyclo-[RGDyK], cyclo-
[RGDfE], or cyclo-[RGDf(NMe)V] (cilengitide, EMD 
121,974). These are widely referred to as ’RGD peptides,’ 
and a clear distinction between the different compounds 
is rarely made.

By 1994, Cheresh and coworkers found that αvβ3-
integrin plays a major role in angiogenesis, i.e., the 
sprouting of new vessels from existing ones (to be distin-
guished from de-novo formation of vasculature, called 
vasculogenesis) [16]. This process is not only of funda-
mental importance for embryonal development, wound 
healing, and chronic inflammation [17], it also represents 
a key step in the development of solid tumors. Upon 
reaching a critical size of a few millimeters in diam-
eter, their enhancing demand of nutrients and oxygen 
can no longer be satisfied by diffusion and thus, trig-
gers the formation of blood vessels (a signaling cascade 
referred to as ’angiogenic switch’) [16]. This resulted in 
the intriguing perspective of utilizing ’RGD peptides’ to 
block tumor angiogenesis and, therefore, tumor growth, 
in analogy to anti-VEGF antibodies like bevacizumab. 
The career of ’RGD peptides’ in nuclear medicine com-
menced with the idea to identify patients whose tumors 
express αvβ3-integrin and who, therefore, would benefit 
from such treatment, by noninvasive molecular imag-
ing using radiolabeled ’RGD peptides’ as tracers [11]. By 
and by, this seemingly simple and universally applicable 
concept of targeting angiogenic processes with ’RGD 
peptides’ became a popular narrative in life sciences [18]. 
The scheme was utilized and adapted in many ways for 
directing all kinds of vehicles, for example, radiophar-
maceuticals, contrast agents, fluorescent dyes, nanopar-
ticles, micelles, and chemotherapeutics, to angiogenic 
sites—preferably, to tumor lesions [11, 12, 19, 20].

This notion is somewhat problematic, not because 
it is incorrect, but because it does not picture reality in 
its entirety. First, there are also integrin-independent 
pathways that regulate angiogenesis, such as vascular 
endothelial growth factor receptor 2 (VEGFR2) signaling 
[21]. Second, it became apparent that neither the αv-[22] 
nor the β3-subunit [23] (and, therefore, αvβ3) is strictly 
required for angiogenesis. αvβ3-integrin is furthermore 
found on macrophages [24] and many tumor cells [20]. 
The expression of αvβ3-integrin in tissues is therefore 
neither a necessary nor a sufficient condition for angio-
genesis, and a causal relationship between these two 
instances does not exist [25]. Phrases like "angiogenesis 
imaging using RGD" [13] are therefore misleading and 
should be avoided. Actually, this assumed interdepend-
ency has already been widely denied in the course of 
preclinical evaluation of many αvβ3-integrin targeting 
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radiopharmaceuticals. These were frequently evaluated in 
mice bearing subcutaneous xenografts of cell lines with a 
strong membranous expression of αvβ3-integrin, such as 
U87MG [26] or M21 [10]. Accumulation of the respec-
tive radiopharmaceuticals in such tumors is therefore 
not unequivocally effected by binding to αvβ3-integrin 
expressed by the (murine!) endothelium, but at least 
partly (in most instances, predominantly) by binding to 
the human tumor cells [27]. αvβ3-integrin imaging does 
therefore not allow for an assessment of angiogenic activ-
ity or vessel density of the respective tumor xenografts.

This conceptual change was consequently transferred 
to clinical investigations. Radiolabeled ’RGD-peptides’ 
were frequently applied for tumor imaging, e.g., as a 
possible alternative to [18F]FDG, quietly disregarding 
the question whether a tracer uptake might actually be 
related to angiogenesis or not [2, 7]. It, however, seems 
to consolidate that the average αvβ3-integrin expres-
sion density on tumor cells and -endothelium is simply 
not sufficient to guarantee a clinical impact comparable 
to somatostatin receptor (SSTR)-, PSMA-, or fibroblast 
activating protein (FAP) targeted radiopharmaceuticals. 
On the way to theranostics, that is, the tandem applica-
tion of nuclear imaging agents and the matching thera-
peutics labeled with particle emitters such as 177Lu, 90Y, 
or 225Ac, another obstacle is encountered in the form 
of a non-negligible physiological αvβ3-integrin expres-
sion in some organs, which inevitably causes substantial 
background uptakes and thus, unwanted organ doses 
[7]. αvβ3-integrin targeted radiopharmaceuticals have 
therefore not made their way toward routine clinical 
diagnostics and therapy of cancer. After a long period 
of thorough clinical testing of various agents without 
convincing results, it is furthermore hardly imaginable 
that they will ever prevail. It remains to be seen whether 
promising non-oncological applications are eventually 
emerging, such as prediction of cardiac remodeling [28], 
or even completely new approaches, such as diagnostics 
of primarily endothelial diseases like the post-COVID-19 
syndrome.

RGD or not RGD—that is the question
In light of this situation, the recently cooled enthusiasm 
concerning integrin tracers comes as no surprise. How-
ever, a broader view on integrins is becoming more and 
more popular within radiopharmacy, nuclear medicine, 
and beyond. After all, there are no less than 24 different 
integrins, which are each formed by dimerization of one 
out of 18 α- and 8 β-subunits (Fig. 1). Eight of them rec-
ognize the RGD sequence (i.e., RGD is the primary rec-
ognition motif in their natural ligands). ’RGD peptides’ 
can therefore be utilized to address seven integrins other 

than αvβ3, necessitating to re-adjust the associations 
made with the term ’RGD peptide.’

The short RGD sequence can be extended on both 
termini, resulting in linear peptides which bind equally 
well, or even preferably, to integrins other than αvβ3 [29]. 
Incorporation of the RGD motif into cyclic peptides or 
three-dimensional peptide knots appears to be the most 
promising approach, because they are generally more 
resistant toward enzymatic cleavage than linear peptides. 
The conformationally stable, three-dimensional shape 
of such ring or cage structures is often further rigidified 
by intramolecular hydrogen bonds. Such rigid structures 
essentially fix a certain conformation (folded, distorted, 
bent, or stretched) of the RGD motif, which ideally facili-
tates selective binding to a certain integrin whose unique 
binding pocket perfectly accommodates just that particu-
lar conformation [29]. Some examples for such selective 
ligands are shown in Fig.  2 [15, 30–34], which further-
more illustrates that ligands for RGD-binding integrins 
do not necessarily have to comprise the RGD amino acid 
sequence at all. Some organic molecules with a more or 
less peptide-like structure (so-called peptidomimetics) 
have been described, which are highly selective for integ-
rins αvβ3 or αvβ6 [35], α5β1 [36], or αIIbβ3 (cf. tirofiban, 
an antiplatelet drug). Furthermore, the linear peptide 
RTDLDSLRT does not feature an RGD motif, but never-
theless shows a good affinity (30  nM) for the RGD-rec-
ognizing αvβ6-integrin, and furthermore a pronounced 

Fig. 1  The integrin receptor family: Integrin subunits and the 
known dimers formed. Each connecting line represents one 
integrin. Although small-molecule ligands have been developed 
for many subtypes, radiolabeled derivatives thereof were reported 
only for a fraction of integrins (blue and red lines). "Clinical 
translation" encompasses all hitherto reported applications of such 
radiopharmaceuticals in humans, i.e., not only clinical trials but also 
single cases and small cohorts
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selectivity over other RGD-binding integrins (tenfold 
over αvβ8, > 200-fold over αvβ3, αvβ5, α5β1, and αIIbβ3) 
[29]. These examples demonstrate that a particular, fre-
quently asked question—whether or not a selective ligand 
for a given integrin is a ’RGD peptide’—is largely irrel-
evant for practical application. Likewise, distinguishing 
between RGD-binding and other integrins unnecessar-
ily erects mental barriers on the way to integrin-targeted 
theranostics and their use in personalized medicine.

Toward a greater variety of targeted integrins
A far more important question is whether a given inte-
grin might be a useful target, i.e., whether its expression 
is correlated with a relevant clinical problem [37], and 
whether its physiological presence in normal tissue is low 
enough to minimize homing of diagnostic and/or thera-
peutic agents to non-disease areas. The available data are 
frequently not sufficient for a reliable prediction, which 
is admittedly quite difficult for integrins. The actual den-
sity of a fully functional and activated integrin on a cell 
surface, which is determining its value for in vivo target-
ing, cannot be quantified solely on the basis of upstream 
biomarkers, such as mRNA concentration [39]. It has to 
be kept in mind that integrins are composed of two sepa-
rate proteins, one α- and one β-chain, which are encoded, 
transcribed, and translated independently of each other. 
After dimerization and transport to the cell membrane, 

integrins require activation (i.e., a conformational 
change) initiated by intracellular signaling processes, 
enabling them to bind to their respective ligands (mostly 
extracellular matrix proteins) [38]. Being cell adhesion 
receptors, the expression of integrins is furthermore 
modulated to a certain extent by a cell’s surroundings, 
such as the tumor microenvironment. Hence, the actual 
quantification of fully functional integrins in (malignant) 
human tissues, e.g., by immunohistochemistry (IHC), 
appears to be the most reliable source of information on 
expression patterns and their relevance for disease man-
agement. With more pertinent data generated for each 
integrin subtype, their potential as targets for diagnostics 
and therapeutics will become more apparent. Albeit the 
availability of such data is limited for some integrins, the 
current state of knowledge nevertheless allows to identify 
some promising approaches.

αvβ6: The cancer integrin
Unlike αvβ3, αvβ6-integrin is not expressed by endothe-
lial, but epithelial cells, and is furthermore widely absent 
in adult human tissues [39]. Its most important func-
tion is the activation of transforming growth factor β 
(TGFβ), a pleiotropic cytokine whose highly conserved 
isoforms TGFβ1–3 are produced by virtually all mam-
malian cells [40]. TGFβ is a powerful growth-inhibiting 
factor, and in order to control and regulate its signaling, it 

Fig. 2  Examples of selective integrin ligands [15, 30–34] whose radiolabeled derivatives were developed and/or evaluated in the framework of 
CRC 824. Note that all addressed integrins (αvβ3, αvβ6, αvβ8, α5β1) belong to the class of RGD receptors (see Fig. 1), but not all of the peptides 
contain the RGD sequence, and one ligand (FR366) is not a peptide but a peptidomimetic. The colors highlight the RGD sequence or their structural 
equivalents, respectively. The dashed bonds on the terminal amines indicate the conjugation sites
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is secreted into the intracellular space in a latent, inactive 
complex with another protein called latency-associated 
peptide (LAP). αvβ6-integrin activates TGFβ by bind-
ing to an RGD sequence of LAP, and by transmitting an 
actual pulling force, the protein complex is deformed and 
releases TGFβ [41, 42]. Hence, the expression of αvβ6-
integrin is tightly connected to diseases rooted in, or 
related to, altered TGFβ signaling.

The apparent most important implication of the 
described biochemistry is that αvβ6-integrin is a driver 
for invasion and metastasis of epithelial cancers (carcino-
mas) [43]. This is because TGFβ normally regulates tissue 
growth by inhibiting several proliferative signaling cas-
cades. Carcinoma cells, however, frequently lose certain 
components of the respective downstream pathways, for 
example, p53 [44] or Smad4 [45], and become insensitive 
to TGFβ-induced growth inhibition. Thus, they benefit 
from a high TGFβ level in their surroundings, because 
it inhibits proliferation of the surrounding normal cells 
but not their own [46]. Overexpression of αvβ6-integrin 
therefore helps carcinomas to invade normal tissues. 
Consistent with this picture, the highest αvβ6 expression 
densities are found in infiltrative tumor margins [47].

αvβ6-integrin therefore represents an extremely valu-
able theranostic target, because it potentially enables a 
precise delineation of carcinoma margins and/or assess-
ment of their invasiveness by molecular (nuclear) imag-
ing, as well as therapeutic intervention with targeted 
radioligands at the most critical locations. It is found 
in many carcinomas, such as squamous cell, basal cell, 
lung adeno, and colon [48], and also in pulmonary fibro-
sis [49], which expands the potential of αvβ6-targeted 
imaging beyond oncology. From a clinical perspective, 
it is important to note that one of the cancers with the 
worst prognosis, the pancreatic ductal adenocarcinoma 
(PDAC), has been shown to be most closely associated 
with αvβ6-integrin, which is found in 88% of primaries, 

virtually all metastases, and also in its immediate precur-
sor lesions (PanIN3) [50]. Figure  3 shows an exemplary 
IHC for a non-metastatic PDAC resected from the pan-
creatic tail. Most of the tumor cells express β6-integrin 
(A), and in accordance with the proposed biochemical 
mechanism, a higher density is found in the infiltrative 
area (B). A frequent feature in PDAC is an upregulation 
of β6-integrin expression in tumor cells directly adjacent 
to the surrounding stromal tissue (C), which is consist-
ent with the aforementioned mechanistic considerations. 
Fibroblasts and other abundant components of the 
stroma are β6-negative. Addressing αvβ6-integrin thus 
allows to guide theranostic agents (which includes, but is 
not limited to, radiopharmaceuticals) to the tumor cells, 
in contrast to other recently emerging carcinoma-target-
ing agents like FAP inhibitors (referred to as FAPI) which 
bind to the tumor-associated fibroblasts [51]. αvβ6-
integrin could thus be a preferred target for all thera-
peutic schemes which benefit from a specific homing of 
the respective agents to carcinoma cells, such as targeted 
drug delivery, or targeted alpha therapy (TAT) in view of 
the short range of alpha particles (3–4 cell diameters) in 
tissues.

Although this potential has been known for a long time, 
αvβ6-integrin as a clinical target has certainly not yet 
attracted the attention it deserves. Nonetheless, several 
research groups have made long-term efforts toward lift-
ing this hidden treasure, discovering novel selective αvβ6 
ligands [52–55] and transforming them into tracers for 
single-photon computed emission tomography (SPECT) 
[56–58] and PET imaging [59–63]. Just recently, some of 
these radiopharmaceuticals were evaluated in humans 
for imaging of various carcinomas [64–69] or idiopathic 
pulmonary fibrosis (IPF) [69–71]. A proof-of-principle 
could be delivered in all instances, i.e., αvβ6-integrin tar-
geted imaging was shown to be feasible with all agents, 
for example, of PDAC, head-and-neck squamous cell 

Fig. 3  β6-integrin immunohistochemistry of a non-metastatic pancreatic ductal adenocarcinoma (PDAC) localized in the pancreatic tail. Bars 
indicate 50 µm. The integrin is expressed by most tumor cells (A), and a substantial higher expression is observed in the infiltration margin (B). 
Invading tumor cells directly adjacent to the surrounding stroma (examples indicated by arrows) regularly show intense upregulation of β6-integrin 
expression (C). Note that the β6-subunit dimerizes only with the ubiquitous αv (see Fig. 1), which is why β6-IHC is indicative for actual αvβ6 expression 
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carcinoma (HNSCC), lung-, mammary-, colon-, and cer-
vical cancer, as well as in IPF. In our opinion, this clearly 
underscores that a clinical breakthrough of αvβ6-integrin 
targeted radiopharmaceuticals is only a matter of time.

αvβ8: The great unknown
The integrin subunit β8 was discovered 30  years ago 
[72] and is quite similar to β6—it pairs only with αv, the 
resulting dimer recognizes the RGD sequence, and it is 
an activator of TGFβ, although by a different mecha-
nism [73]. Contrary to αvβ6, the available data do not 
obviously point toward a particular clinical application. 
Although a recent study by Takasaka et al. indicated that 
various human carcinomas (ovarian, uterine endometri-
oid, skin, in  situ breast ductal, gastric adenocarcinoma, 
and particularly oral squamous cell carcinoma) contain 
large fractions of β8 positive tumor cells, the relatively 
small numbers of investigated specimen (3–22 per entity) 
call for more detailed investigations [74]. Interestingly, 
Takasaka and colleagues hypothesize that the αvβ8-
integrin expression could be a biomarker for immune 
checkpoint therapy.

According to our experience, β8-integrin is rarely 
expressed in human PDAC, but if so, the expression 
shows a moderate to strong membranous localization in 
nearly all tumor cells (Fig. 4A). Whether or not this has 
any clinical implication remains to be elucidated, but we 
assume that αvβ8-integrin imaging might help in further 
patient stratification for tailored therapies, or improved 
prognosis. In human HNSCC, β8-integrin IHC only 
reveals a slight cytoplasmic positivity of a basal subset 
of tumor cells. Infiltrative immune cells regularly show a 
strong β8-integrin expression (Fig.  4B). Further clinical 

applications in this tumor entity remain to be elucidated 
as well.

In the past, αvβ8-integrin related discovery was pre-
sumably hampered by a lack of selective small-mole-
cule ligands. We would like to remind the reader that 
the wealth of data and knowledge about αvβ3-integrin 
is, to a large extent, a result of the early development 
and wide availability of αvβ3-targeting ’RGD peptides’ 
which, likewise, has not been the case for αvβ8-integrin 
but now has changed. We believe that the recent devel-
opment of the selective αvβ8-integrin binding peptide 
cyclo[GLRGDLp(NMe)K] [34] (see Fig.  2) and the cor-
responding PET imaging agents (see below) will advance 
the pertinent research.

α5β1: Angiogenesis, now more than ever!
As outlined above, αvβ3-integrin is not a suitable tar-
get to quantify angiogenesis by noninvasive imaging 
methods. Contrary to that, α5β1-integrin is only poorly 
expressed on quiescent murine and human endothelial 
cells [75]. The majority of blood vessels in tumor sec-
tions of human colon and breast carcinoma, as well as 
in subcutaneous xenografts of M21 melanoma cells, are 
α5β1-integrin positive, while endothelial cells in normal 
tissue do not express this integrin [76]. This close rela-
tion between activation of endothelial cells, angiogenesis, 
and α5β1-integrin expression underscores the potential 
of in  vivo imaging of angiogenesis using α5β1-targeted 
radiopharmaceuticals. Despite the ambiguous results 
obtained with αvβ3 in this context, we strongly advocate 
to give it another try with α5β1-integrin targeted agents, 
all the more because a highly potent PET radiopharma-
ceutical is already available (see below) [27].

We furthermore hypothesized that α5β1-integrin 
could also be overexpressed by tumors of vascular ori-
gin. α5-IHC of a small cohort of 12 human angiosarco-
mas from different body sites indeed revealed a strong to 
medium α5-expression in 11 out of 12 specimens, result-
ing in a very encouraging incidence of > 90% (see Fig. 5). 
We therefore envisage a potential field of application for 
clinico-radiological confirmation of angiosarcoma vs. its 
differential diagnoses.

Multimers of integrin ligands
In view of the popularity of cyclic pentapeptides of the 
cyclo[RGDxK] (x = y, f ) type, it is hard to imagine that a 
greater variety of conjugates has been generated for any 
other small-molecule targeting motif. The same might 
apply to multimers thereof [2]. The impact of multiplicity 
has been evaluated for c[RGDxK]’s in several systematic 
studies, which invariantly showed that a higher degree 
of multiplicity increased the affinity of the constructs 

Fig. 4  β8-integrin immunohistochemistry of pancreatic ductal 
adenocarcinoma (PDAC, A) and head-and-neck squamous cell 
carcinoma (HNSCC, B). Bars indicate 50 µm. Note that the β8-subunit 
dimerizes only with the ubiquitous αv (see Fig. 1), which is why β8-IHC is 
indicative for actual αvβ8 expression 
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[78–85] and frequently resulted in improved in vivo tar-
geting properties, i.e., higher target-specific uptake [86, 
87].

68 Ga‑labeled trimers based 
on the Triazacyclononane‑triphosphinate (TRAP) chelator 
core
In the framework of the German Research Foundation’s 
Collaborative Research Centre 824, we pursued a unique 
approach toward multimeric integrin ligands for applica-
tion in nuclear imaging. We utilized the 68  Ga-chelator 
TRAP (1,4,7-triazacyclononane-1,4,7-tris[methylene-
(2-carboxyethylphosphinic acid)], which was originally 
developed at Charles University in Prague in the late 
2000’s [87], to generate trimeric conjugates whose three 
conjugated peptides are connected to the chelator core in 
an identical fashion owing to the system’s formal molecu-
lar C3 symmetry [88]. TRAP (the acronym referring to 
triazacyclononane-triphosphinate) bears three chemi-
cally equivalent carboxylic acid moieties which are not 
involved into radiometal complexation and, therefore, 
can be functionalized by amide formation with a large 
variety of biologically active compounds comprising 
primary amines [90, 91]. Elongation of the carboxylate 
conjugation handles with short linkers, bearing termi-
nal alkynes or azides on the other end, paved the way 
to a more convenient conjugation protocol, employing 
copper(I)-mediated [91] or strain-promoted [92] alkyne–
azide cycloaddition (commonly referred to as the arche-
type of ’click chemistry’). This approach has the obvious 
advantage that even biomolecules comprising chemi-
cal groups that could interfere with peptide-coupling 
conditions (amines, carboxylic acids, alcohols, phenols, 
guanidines, and others) do not have to be equipped 
with protecting groups [93], thus facilitating the rapid 

synthesis of a variety of trimeric ligands for biological 
evaluation (Fig. 6).

TRAP furthermore provides the advantage of excep-
tionally efficient gallium(III) complexation [94], which 
enables 68  Ga-labeling of the respective trimers with 
unparalleled molar activity [95]. It tolerates comparably 
high concentrations of frequently occurring metal ion 
contaminants in 68Ge/68 Ga generator eluates and 68 Ga 
labeling solutions, such as FeIII [96], ZnII, and CuII [97], 
giving rise to very robust labeling protocols and a reliable 
supply of radiopharmaceuticals. Altogether, the TRAP 
technology represents a convenient and straightforward 
route toward symmetrical 68  Ga-labeled integrin ligand 
trimers, which enabled us to investigate the effect of inte-
grin ligand multimerization in a systematic fashion.

From monomers to trimers: patterns of enhanced 
performance
During the entire 12-year term of CRC824, we sys-
tematically investigated the properties of trimeric 
integrin ligands in order to identify regular patterns 
of affinity enhancement and altered in  vivo perfor-
mance upon switching from monomers to multimers 
(see Fig.  7). Building on the achievements made with 
18F-Galacto-RGD in the early 2000’s [3–5, 99, 100], we 
first investigated a series of c[RGDfK] trimers [83] and 
chose a PEG4-linked conjugate because it showed the 
best affinity (initially referred to as 68  Ga-TRAP(RGD)3, 
but later renamed to 68  Ga-Avebetrin for typographic 
simplicity, allowing for a more consistent transfer into 
abstract databases and other repositories) [27, 100]. Its 
nearly 23-times higher αvβ3-integrin affinity compared 
to 18F-Galacto-RGD resulted in an improved delinea-
tion of αvβ3-expressing M21 tumors in µPET because of 
a drastically enhanced tumor retention (Fig. 7). We also 

Fig. 5  α5-integrin immunohistochemistry of angiosarcoma. A high-grade (A), or a homogeneous (B) or heterogeneous (C) medium-grade 
expression was observed in 11 out of 12 specimens, and a weak expression in one (D). Note that the α5-subunit dimerizes only with the ubiquitous β1 
(see Fig. 1), which is why α5-IHC is indicative for actual α5β1 expression 
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investigated 68  Ga-NODAGA-c[RGDyK] in the same 
setting and found that its in vivo properties were nearly 
identical to 18F-Galacto-RGD [101], confirming that the 
observed superiority of the multimer is likely to apply in 
comparison with any RGD monomer [83].

A similar improvement of integrin affinity (≈ 26-fold), 
PET imaging performance, and tumor retention was 
observed upon trimerization of the α5β1-selective pep-
tidomimetic FR366, as shown by comparison of data 
for 68  Ga-NODAGA-FR366 [102] and the trimer 68  Ga-
Aquibeprin [27, 100] (Fig.  7). The latter was assembled 
by means of click-chemistry due to serious issues with 
protecting group chemistry which made trimerization by 
amide coupling a cumbersome endeavor. The overall sim-
plicity and almost quantitative coupling yields prompted 
us to employ this protocol (see Fig.  6, route B) for all 
further work with TRAP. Of note, 68  Ga-Avebetrin and 
68 Ga-Aquibeprin turned out to be a nearly perfect com-
plementary pair of tracers for αvβ3- and α5β1-integrin. 

Their virtually identical biokinetics but opposite selec-
tivities for the two addressed integrin subtypes (IC50 for 
αvβ3 and α5β1: 68 Ga-Avebetrin: 0.22 and 39 nM; 68 Ga-
Aquibeprin: 620 and 0.08  nM) allowed for independent 
mapping of the two angiogenesis-related endothelial 
integrins that were simultaneously expressed by M21 
tumors [27]. 68  Ga-Aquibeprin furthermore enabled the 
sensitive imaging of arthritic joints in collagen-induced 
arthritis (CIA) rats even before the onset of clinical 
symptoms (swelling, redness), which interestingly did 
not rely on angiogenesis-related expression but on a high 
α5β1-integrin density on the proliferating cartilage sur-
face [103].

The same pattern of affinity enhancement, increased 
tumor uptake, and prolonged tumor retention was also 
observed for αvβ8- and αvβ6-integrin binding peptides 
upon trimerization, which yielded the radiopharmaceu-
ticals 68  Ga-Triveoctin [104] and 68  Ga-TRAP(SDM17)3 
[105]. Figure  7 shows that although the effect is less 

Fig. 6  Synthesis of trimeric TRAP bioconjugates. The preferred route B for elaboration of trimeric integrin ligands by means of ’click chemistry’ 
(CuAAC) is indicated by red arrows [91]. Of note, the CuAAC coupling was occasionally conducted with azide-decorated integrin ligands and 
alkyne-functionalized TRAP (obtained by amide coupling of propargyl amine, H2N–CH2–C≡CH, in step 1), e.g., for synthesis of 68 Ga-Aquibeprin (see 
Fig. 7)
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pronounced than for the αvβ3- and α5β1-integrin 
ligands, a substantial gain of image quality is nonethe-
less achieved. Whether the concomitant increase in kid-
ney retention is related to increased molecular size or 

unspecific uptake in renal tubular cells requires further 
investigation.

Fig. 7  Comparison of µPET images (MIPs of static scans; αvβ3, α5β1, αvβ6: 75 min p.i.; αvβ8: 60 min p.i.) in SCID mice bearing subcutaneous 
xenografts of integrin-expressing tumor cell lines (M21: αvβ3 and α5β1; MeWo: αvβ8; H2009: αvβ6) for the radiolabeled monomers 18F-Galacto-RGD 
[83], 68 Ga-NODAGA-FR366 [102], 68 Ga-TRAP-AvB8 [34], and 68 Ga-TRAP-SDM17 [32], with their corresponding TRAP trimers 68 Ga-Avebetrin 
[27, 83], 68 Ga-Aquibeprin [27], 68 Ga-Triveoctin [104], and 68 Ga-TRAP(SDM17)3 [105], respectively. Structures of comprised integrin ligands (see 
Fig. 2) are highlighted in blue. IC50 values (given in nM) are denoted for the respective targeted integrins (see left column). Time-activity curves 
in the right column were derived from ROI-based analysis of 90-min dynamic µPET scans (the high initial uptakes for 18F-Galacto-RGD and 
68 Ga-NODAGA-FR366 are signal crosstalk artifacts resulting from non-optimal tumor position close to the main vein)
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Clinical translation of 68 Ga‑labeled trimeric 
integrin ligands
Although the discussed molecular design strategies 
yielded convincing results in rodent models, it is all but 
obvious that the enhanced performance of the trimeric 
radiopeptides or -peptidomimetics actually translates to 
a higher diagnostic value in a clinical setting [2]. αvβ3-
integrin PET with 68 Ga-Avebetrin nonetheless showed a 
good image contrast and enabled, for example, the locali-
zation of a PDAC lesion (Fig. 8A) [106]. However, we also 
observed a prominent physiological uptake pattern that 
was quite similar to other radiopharmaceuticals address-
ing the same target, including 18F- and 68  Ga-labeled 
c[RGDxK] monomers [6]. The clinical value of 68  Ga-
Avebetrin and other αvβ3-integrin tracers thus appears 
to be largely independent from the molecular design and, 
as discussed above, is always limited by organ uptake pat-
terns which presumably originate in physiological αvβ3-
integrin expression.

A different situation is encountered for αvβ6-integrin 
targeted radiopharmaceuticals due to the generally low 
level of αvβ6 expression in adult human tissues [39]. All 
αvβ6-integrin PET tracers that were hitherto tested in 
humans nevertheless showed substantial non-specific 

organ uptakes, particularly in the gastrointestinal tract 
[64–68, 68], which could complicate the interpretation of 
images in these areas. Based on our encouraging results 
with other integrin ligands (see Fig.  7), we also synthe-
sized a trimer of the highly selective cyclic nonapeptide 
c[FRGDLAFp(NMe)K] [33], which, however, showed far 
too high non-specific organ uptake in mice [107]. Trim-
erization of a slightly modified version of the same pep-
tide, comprising tyrosines instead of phenylalanines, 
finally resulted in a more suitable radiopharmaceutical 
named 68  Ga-Trivehexin. Its favorable preclinical data 
encouraged a clinical translation for imaging of head-
and-neck cancers as well as metastatic pancreatic ductal 
adenocarcinoma [108]. Figure 8B shows that apart from 
excretion-related kidney uptake, 68  Ga-Trivehexin only 
accumulated in a PDAC lesion [109]. A comparison of 
αvβ3- and αvβ6-integrin PET of PDAC patients, obtained 
with 68 Ga-Avebetrin and 68 Ga-Trivehexin, clearly dem-
onstrates that radiopharmaceuticals targeting αvβ6-
integrin could indeed possess a higher theranostic value 
(Fig. 8). The fact that the standard PET tracer [18F]FDG 
is not suitable for diagnosis of pancreatic cancer in its 
early stages [110] underscores the relevance of 68  Ga-
Trivehexin for PET imaging of PDAC and might open 

Fig. 8  Imaging of pancreatic cancer in humans (tumor positions indicated by arrows). A: 68 Ga-Avebetrin PET (144 MBq, 46 min p.i.) of a female 
patient with poorly differentiated PDAC, showing focal uptake in the tumor (SUVmax = 8.5) [106]. The uptake pattern in the organs is comparable to 
other αvβ3-integrin tracers [6] and most likely originates in physiological αvβ3-integrin expression. B: 68 Ga-Trivehexin PET (87 MBq, 70 min p.i.) of a 
male patient with histologically proven PDAC (SUVmax = 13.1) [109]. Apart from excretion-related activity in the kidneys, no significant organ uptakes 
are observed, which is in accordance with a generally low expression of αvβ6-integrin in adult human tissues
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new avenues for planning of surgery and monitoring of 
chemotherapies.

Conclusions
The functional diversity of the 24 different integrins 
bears a huge, largely untapped potential for novel ther-
anostic approaches, particularly in the field of nuclear 
medicine. In this review, we outlined some lines of 
thought on how this hidden treasure could be lifted 
in the future, driven by novel, selective ligands, and 
optimized radiopharmaceuticals. We described that 
multimers of integrin ligands often display superior 
performance at the preclinical stage and furthermore 
demonstrated that a 68  Ga-labeled trimeric αvβ6-
integrin-targeted PET radiopharmaceutical shows 
excellent performance for imaging of pancreatic carci-
noma in a clinical setting. Hence, we believe that mul-
timeric probes in molecular imaging are no longer a 
future vision but, from now on, should be considered 
clinical reality [2]. We are furthermore convinced that 
tracers for integrins other than αvβ3—first and fore-
most, for αvβ6—will define the future of integrin imag-
ing and re-shape the general perception of integrins as 
theranostic targets.
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