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Abstract 

Background:  Surgically induced nerve damage is a common but debilitating side effect in oncological surgery. With 
the aim to use fluorescence guidance to enable nerve-sparing interventions in future surgery, a fluorescent tracer was 
developed that specifically targets myelin protein zero (P0).

Results:  Truncated homotypic P0 protein-based peptide sequences were C-terminally functionalized with the 
far-red cyanine dye Cy5. The lead compound Cy5-P0101–125 was selected after initial solubility, (photo)physical and 
in vitro evaluation (including P0-blocking experiments). Cy5-P0101–125 (KD = 105 ± 17 nM) allowed in vitro and ex vivo 
P0-related staining. Furthermore, Cy5-P0101–125  enabled in vivo fluorescence imaging of the Sciatic nerve in mice 
after local intravenous (i.v.) administration and showed compatibility with a clinical fluorescence laparoscope during 
evaluation in a porcine model undergoing robot-assisted surgery. Biodistribution data revealed that i.v. administered 
[111In]In-DTPA-P0101–125 does not enter the central nervous system (CNS).

Conclusion:  P0101–125 has proven to be a potent nerve-specific agent that is able to target P0/myelin under in vitro, 
ex vivo, and in vivo conditions without posing a threat for CNS-related toxicity.
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Background
Surgery, and science therein, has come a long way since 
Mr. Gunning and Lord Thurlow, respectively, stated to 
each other in 1796: “there is no more science in surgery”, 
in reply “than there is in butchery” [1]. Contradictory 
to these statements, the rapid translation of innovative 
minimally invasive surgical technologies has initiated 
the concept of “precision surgery” (2–5). This concept is 
mostly driven by engineering efforts in the form of medi-
cal devices such as endoscopic cameras, refined instru-
ments, and robotic manipulators that enable modern 
surgeons to intervene in the human body in ways that 
were previously not thought possible [3, 4, 6]. Imaging 

provides an alternative to impact surgical accuracy; the 
application of minimally invasive procedures is strength-
ened by the ability to map areas of disease in the context 
of healthy anatomy (so-called surgical roadmaps) using 
non-invasive preoperative imaging modalities such as 
MRI or PET/CT [7–9]. Unfortunately, intraoperative 
detection of preoperatively identified lesions/structures 
can be challenging. For instance, increased distancing 
between the surgeon and the patient limits the surgeon’s 
sensory experience in the form of palpation (e.g. when a 
surgical robot is used). This shortcoming can at least in 
part be compensated through the use of interventional 
molecular imaging. To date, this imaging sub-discipline 
has predominantly focused on intraoperative detec-
tion of cancerous lesions using either radio- or fluores-
cence guidance [10, 11]. Here the main applications have 
included complex anatomies such as the head-and-neck 
or pelvic area where image guidance is exploited for 
both detection of nodal metastases and primary tumour 
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margins [12–16]. However, in these same anatomies 
accidental surgical damage to nerves can yield debilitat-
ing side effects such as loss of sensory feeling or speech, 
incontinence and/or erectile dysfunction. This occur-
rence of surgically induced nerve damage is not uncom-
mon: despite the fact that more than 70% of prostate 
cancer patients receive nerve-sparing surgery, it is 
accepted that 30% of patients suffer from loss of erectile 
function at 1 year post-surgery [17]. Here, it should be 
noted that the extent of the damage may be hard to pre-
dict [18]. In addition, 10–15% of patients suffer from uri-
nary incontinence [19]. In head and neck cancer patients, 
nerve anatomies are complex [20] and recurrent laryn-
geal nerve injury and mandibular nerve injury is seen in 
14% of patients undergoing, respectively, thyroid surgery 
or neck dissection [21, 22]. Permanent paralysis is seen in 
4–7% of patients [22].

Nerve-specific fluorescence imaging has been poised as 
a means to allow high-resolution nerve identification in 
real time [23]. For this application, a number of different 

targeting strategies have been evaluated, ranging from 
neuronal tracing to targeting intracellular expressed pro-
teins in myelin sheets such as myelin basic protein [23–
27]. In some cases, the nerve-specific target is unknown 
[27–30]. When pursuing conventional receptor-targeted 
molecular imaging strategies, extracellularly expressed 
targets are generally sought after. In that sense, myelin 
protein zero (MPZ, or P0), a 124-amino-acid-residues-
large homotypic protein that makes up 80% of the pro-
tein content in peripheral myelin (Fig. 1A, [31]), and that 
is located on the outer membrane of the Schwann cells 
that form the myelin sheath, would most certainly be a 
target that is worth exploring. Uniquely, P0 is specific for 
the peripheral nervous system (PNS) and is not expressed 
in the central nervous system (CNS). In the CNS myelin 
sheath formation is facilitated by the adhesive properties 
of myelin proteolipid protein (PLP; [32]).

Building on the truncation of the extracellular portion 
of P0 (Fig. 1B) that was previously proposed by Makowska 
et  al. [33] and the homotypic binding properties of P0 

a

b

Fig. 1  Myelin protein zero as a target for nerve imaging. A schematic overview of the localization of myelin protein zero (P0) in the peripheral 
nervous system with (I) the location of the nervus ischiadicus (encircled in grey), (II) myelinated axon within this nerve, (III) the myelin sheath 
encapsulating the axon, (IV) densely packed myelin within the myelin sheath, (V) homotypic binding of P0 within the myelin sheath (location P0 
on outer membrane and between layers annotated in black) and (VI) the crystal structure of the extracellular portion of P0 (P0ex). B Peptides P01–25, 
P021–45, P041–65, P061–85, P081–105, P095–120 and P0101–125 derived from the crystal structure of P0ex with the specific section of the amino acid 
sequence included in the peptide highlighted in blue and the location of Cy5 functionalization represented by a red-light bulb
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(e.g. intrinsic binding between P0 and P0), fluores-
cently labelled nerve-specific synthetic P0-derived pep-
tides were extrapolated from the crystal structure of P0 
(Fig. 1B; peptides in blue). After initial solubility, (photo)
physical and in vitro evaluation (affinity and microscopic 
localization) a lead compound that showed the most 
ideal properties was selected. This fluorescent tracer was 
further scrutinized in three-dimensional (3D) dorsal root 
ganglion (DRG) cell cultures, on ex vivo nerve specimens 
and in  vivo in mice (macroscopic localization, nerve/
myelin-specificity, biodistribution). In  vivo nerve visu-
alization in a porcine model was performed as a proof 
of principle for real-time nerve visualization in a robot-
assisted surgery setting.

Methods
General chemistry
All chemicals were obtained from commercial sources 
and used without further purification. DMF was dried 
over 4  Å molecular sieves. High-pressure liquid chro-
matography (HPLC) was performed on a Waters HPLC 
system (Waters Chromatography B.V., Etten-Leur, The 
Netherlands) using a 1525EF pump and a 2489 UV detec-
tor. For preparative HPLC, a Maisch ReproSil-Pur 120 
C18-AQ 10 μM (250 mm × 20 mm) column (Dr. Maisch 
HPLC GmbH, Ammerbuch-Entringen, Germany) was 
used at a flow rate of 12 mL/min. For analytical HPLC, a 
Maisch ReproSil-Pur C18-AQ 5 μM (250 mm × 4.6 mm) 
column was used with a gradient of 0.1% trifluoroacetic 
acid (TFA) in H2O/MeCN 95:5 to 0.1% TFA in H2O/
MeCN 5:95 in 20 min (1 mL/min). Low-resolution mass 
spectrometry (LRMS) was performed on a Bruker Micro-
flex LT/SH MALDI-TOF mass spectrometer using linear 
mode. High-resolution mass spectrometry (HRMS) was 
performed on a Waters Acquity H-class UPLC (Waters, 
Milford, USA) using a Acquity UPLC BEH C18 1.7  μm 
(2.1 × 50 mm) column with a gradient of 0.1% FA in H2O/
CH3CN 98:2 to 0.1% FA in H2O/CH3CN 60:40 in 1.8 min 
(0.6  mL/min) coupled to a high-resolution XEVO G2S-
XTOF Mass Spectrometer (Waters, Milford, USA). 1H 
and 13C NMR were performed on a Bruker Ascend 850 
(850 MHz) equipped with a CryoProbe (all from Bruker, 
Billerica, USA) in deuterated solvents. Crude peptides 
were analysed by a Waters Acquity UPLC-MS system 
using a Waters BEH C18 1.7 µm, 2.1 × 100 mm column, 
applying gradient from 5% CH3CN in H2O + 0.2% TFA to 
75% CH3CN in 7 min.

Peptide synthesis and Cy5 labelling
The peptides P01–25, P021–45, P041–65, P061–85, P081–

105, P095–120 and P0101–125 (Fig.  1B, Additional file  1: 
Table SI1) were synthesized by the peptide production 
facility of the LUMC employing (robotic) Fmoc SPPS 

using preloaded Tentagel® S AC resins (Rapp Polymere 
GmbH, Tübingen, Germany). A pseudoproline method 
was employed for P095–120 and P0101–125 [34]. Peptides 
P01–25 (52% isolated yield), P041–65 (41% isolated yield), 
P061–85 (22% isolated yield), and P081–105 (85% isolated 
yield) could be synthesized in fair yields. P095–120 and 
P0101–125 could only be effectively synthesized using 
pseudoprolines [34], resulting in a 57% and 50% yield. 
The synthesis of P021–45 failed repeatedly, meaning this 
peptide was excluded from further evaluation.

Fluorescent labelling yielding Cy5-P01–25, Cy5-
P041–65, Cy5-P061–85, Cy5-P081–105, Cy5-P095–120 and 
Cy5-P0101–125 (see Additional file1: Scheme SI1) was 
achieved by dissolving 3.8  µmol of each peptide in 
phosphate buffer (100  mM, pH 7.4). Cy5-Maleimide 
(3.8 µmol, dissolved in DMF; See Additional file 1: Cy5-
Maleimide synthesis) was added, and the reaction mix-
ture was agitated for 2 h at room temperature followed 
by purification by (semi)preparative HPLC. Fluorescent 
conjugation yielded Cy5-P01–25 (3% isolated yield), 
Cy5-P041–65 (49% isolated yield), Cy5-P061–85 (5% iso-
lated yield), Cy5-P081–105 (35% isolated yield), Cy5-
P095–120 (29% isolated yield), and Cy5-P0101–125 (59% 
isolated yield). The implementation of the pseudopro-
line method not only increased the yield when synthe-
sizing P0101–125, but also increased the labelling yield 
(resulting in Cy5-P0101–125): An over sixfold increase in 
yield (9% isolated yield to 59% isolated yield) was seen 
after implementing this method; labelling of P0101–125 
and purification of Cy5-P0101–125 become more effi-
cient as this peptide could be obtained with less by-
products. For more synthetic, analytical and stability 
details on both the peptides and fluorescent peptides, 
see Additional file 1: Figure SI1.

Synthesis of labelled control compounds Cy5-P0ex 
(based on the extracellular portion of the P0 protein, 
Fig.  1B), Cy5-P0Ab-H60 (fluorescent variant of the anti 
P0 antibody clone H60 (P0Ab-H60)) and Cy5-NP41 
(based on the non-P0 staining peptide NP41 [27], and 
DTPA-P0101–125 (including its radiolabelling yielding 
[111In]In-DTPA-P0101–125) is described in Additional 
file 1: synthesis of control compounds.

Detailed analysis of the selected lead compound 
Cy5‑P0101–125
Cy5-P0101–125 was selected as lead compound and sub-
jected to more detailed chemical analysis. Methods and 
results for assessment of the (photo)physical properties 
of Cy5-P0101–125 (i.e. serum protein binding and LogPo/w, 
chemical stability, stability at different temperatures and 
the molar extinction coefficient and relative quantum 
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yield and brightness) are described in Additional file  1: 
chemical properties.

Cells and animal models
P0-expressing RT4 D6P2T myelinating Schwannoma 
cells (ATCC® CRL-2768™; [35]) and non-P0-expressing 
MDAMB 468 human breast cancer cells (ATCC® HTB-
132™) were grown in Dulbecco’s modified Eagle medium 
(Life Technologies, UK) containing penicillin, streptomy-
cin and foetal calf serum (All BD Biosciences) at 37  °C 
and 5% CO2.

In line with their use by Whitney et al. [27], transgenic 
B6.Cg-Tg(Thy1-YFP)-16Jrs/J (THY-1 YFP) mice were 
obtained from JAX (the Jackson Laboratory) and were 
used for ex  vivo and in  vivo nerve staining and in  vivo 
biodistribution studies (8–15  weeks old). THY-1 YFP 
mice express spectral variants of GFP (yellow fluorescent 
protein—YFP; ex 488, em 520) at high levels in motor 
and sensory neurons. The fluorescent signal in the nerves 
was used as an internal control for the staining (pattern) 
of the developed imaging agents. Balb/c nude mice were 
used as non-fluorescent control.

Flow cytometry
Analysis of the binding affinity (KD) of Cy5-P01–25, Cy5-
P041–65, Cy5-P061–85, Cy5-P081–105, Cy5-P095–120 and 
Cy5-P0101–125 for P0 was performed using P0-expressing 
RT4 D6P2T cells and a previously described flow cyto-
metric method [36]. For saturation, binding experiments 
were performed for each of the fluorescent peptides in 
a concentration range of 0–2000 nM. All measurements 
were taken in triplicate, and experiments were repeated 
at least three times per tracer. Fluorescence was meas-
ured using a FACSCanto II flow cytometry device (BD 
Biosciences) in the APC-A channel. The normalized geo-
metric means were fitted with equations in the GraphPad 
Prism 5 software. A fluorescence-linked immunoab-
sorbent assay (FLISA) that was used to confirm the speci-
ficity of Cy5-P0101–125 for P0 is described in Additional 
file 1: Fluorescence-linked immunoabsorbent assay.

Fluorescence microscopy of cells
Cells were trypsinized and seeded onto 35-mm culture 
dishes that contained a glass insert (MatTek co) on the 
day prior to the imaging experiment.

To all samples, 1  mL medium containing 1  µM Cy5-
P01–25, Cy5-P021–45, Cy5-P041–65, Cy5-P061–85, Cy5-
P081–105, Cy5-P095–120, or Cy5-P0101–125 was added at 
one hour prior to imaging (incubation at 4 °C; N = 3 per 
tracer). Peptide solutions were sonicated for 20 s prior to 
addition, in order to prevent aggregation of the peptides 
in solution. Cy5-functionalized derivatives of a P0-spe-
cific antibody (Cy5-P0Ab-H60), the extracellular portion of 

P0 (Cy5-P0ex) as well as a non-P0-specific peptide (Cy5-
NP-41) and non-functionalized Cy5-Maleimide were 
used as controls (1 µM). A lysosomal (lysotracker green; 
2 µL/mL, DND-26, Thermo Fisher) and nuclear stain 
(Hoechst 33342; 1  mg/mL, Thermo Fisher) were added 
as means to localize the cell nucleus and intracellular lys-
osomes. For blocking studies, 5 µL of a 1 mg/mL solution 
of non-functionalized P0Ab was added to the cells one 
hour prior to addition of Cy5-P0101–125. The synthesis of 
the control compounds is described in the methods sec-
tion of Additional file 1: Synthesis of control compounds.

In vitro and ex vivo fluorescence confocal images were 
acquired using a Leica SP8 WL at sequential settings and 
10 × or 63 × magnification. Image analysis was performed 
using Leica Confocal Software (Leica Microsystems). For 
blocking studies, quantification of the fluorescence sig-
nal intensity (N = 10 for blocked and non-blocked) in the 
obtained images was performed using ImageJ according 
to previously described methods [37, 38]. Statistical eval-
uation was performed based on a Student’s t test.

More detailed ex vivo and in vivo studies with lead 
compound Cy5‑P0101–125
Culture and imaging of 3D dorsal root ganglion (DRG) 
explant cultures from THY‑1 YFP mouse embryos
For evaluation of the staining pattern of P0, 3D DRG 
explant cultures were used (all N = 3 per peptide or 
control staining). Description of the methods used for 
ex vivo culture and imaging of 3D DRG explant cultures 
from THY-1 YFP mouse embryos are provided in Addi-
tional file 1: 3D culture of DRG explants. Cy5-P0Ab-H60, 
Cy5-P0ex as well as Cy5-NP-41 were used as controls.

Ex vivo tissue of mice
Fluorescence immunohistochemistry was performed on 
fresh frozen samples of the nervus ischiadicus that were 
embedded in Tissue-Tek and cut into 5  µM frozen sec-
tions. Cryo-sections were fixed in pre-cooled acetone 
(VWR Chemicals, 67-64-1) for 10 min and dried on air 
for 1  h and washed with 1 × phosphate-buffered saline 
(PBS) (Life Technologies, 10010-015) to remove Tissue-
Tek. Slides were incubated for one hour at room tem-
perature with 1  µM of Cy5-P0101–125. Sections were 
rinsed and dehydrated using ethanol and mounted with 
ProLong Gold Antifade Mountant with DAPI (Fisher, 
P-36931). Images were obtained using a fluorescence 
confocal microscope. Standard antibody-based immuno-
histochemistry was used as control; for details, see Addi-
tional file 1: Immunohistochemistry.

For direct ex  vivo assessment of freshly excised, non-
treated tissue non-fixed sections of the nervus ischi-
adicus (mouse; N = 3) were incubated in 1.5-mL vials 
(Eppendorf, Falcon) containing 1  µM Cy5-P0101–125 for 
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1 h. Confocal imaging was performed after washing with 
PBS. Non-incubated sections of the nerve were used as 
control.

In vivo assessment in mice
For evaluation of in vivo staining in mice, Cy5-P0101–125 
was administered (20 μL; 5 nmol) either intravenously 
in the v. femoralis or directly into the nerve sheath 
(intraneural) of THY-1 TFP mice (N = 3 per injection 
method) or Balb/c nude mice. Injection was performed 
under general anaesthetics (hypnorm/dormicum/H2O 
solution (1:1:2; 5  µL/g) via intraperitoneal injection). 
After placement of the mouse in the microscope stand, 
images were collected prior and during the dissection 
of the Nervus Ischiadicus. Staining was evaluated at 
1 h after injection; N = 3. Mice were killed via cervical 
dislocation before the start of the imaging session. Ani-
mals that received no tracer or that received an intrave-
nous (v. femoralis) injection of Cy5-NP-41 were used 
as control. In  vivo fluorescence confocal microscopy 
was performed using a Zeiss 710 NLO upright confo-
cal microscope. For collection and evaluation of the 
in vivo images, ZEN 2011 software was used. Further-
more, the nervus ischiadicus (in vivo; mouse model) 
and the Pudendal Nerve (excised after in vivo imaging; 
porcine model) were imaged using a Dino-lite handheld 
digital fluorescence microscope (AM4115T-DFRW for 
Cy5 imaging; Dino-lite Digital Microscope; λex 620 nm, 
λem 650  nm). In-house developed image-processing 
software [39] that allowed colour coding of the fluores-
cence signal for improved visualization and distinction 
of intensity differences was used to depict the nerve-to-
background ratio (NBR; ratio between relative fluores-
cence units in the tumour and surrounding tissue). The 
provided pseudo-coloured fluorescence overlay was 
accompanied by an intensity-based scalebar represent-
ing the NBR (fluorescence signal intensity differences 
represented via a colour spectrum). Confirmation of 
the TBR values was obtained using ImageJ software by 

dividing the fluorescent signal intensity in the tumour 
by the fluorescent signal intensity in background tissue.

Biodistribution of [111In]In‑DTPA‑P0101–125 in mice
Synthesis and radiolabelling of DTPA-P0101–125 with 
111In is described in Additional file  1: synthesis of con-
trol compounds. For quantitative assessment of the bio-
distribution of [111In]In-DTPA-P0101–125, 10  MBq of 
the labelled tracer was injected intravenously (tail vein). 
The percentage of the injected activity per gram of tissue 
(%IA/g) was assessed at 2 h post-injection as previously 
described [40, 41]. Excretion was defined as: (MBq pre-
sent in animal at 24 h post-tracer administration/injected 
activity) * 100%.

In vivo assessment in a porcine model
To evaluate whether Cy5-P0101–125 (100  μg, 25.6  nmol) 
was compatible with a real-life surgical setting, its use 
evaluated was in a porcine model undergoing robot-
assisted surgery using a da Vinci Si or Xi system (Intui-
tive). Pigs (N = 3) were injected directly in the Pudendal 
nerve (intraneural administration). Using a prototype 
and Cy5 dedicated KARL STORZ fluorescence laparo-
scope [42] introduced through the assistant trocar, a sim-
ilar set-up was initially applied in the clinical setting [43, 
44]; fluorescence imaging of the nerve and surrounding 
tissues was performed at 1 h after tracer administration. 
Animals were maintained under Isoflurane anaesthesia 
for the complete duration of the surgical training and 
subsequent nerve imaging experiments and were eutha-
nized before awakening from the anaesthesia. After 
resection, fluorescence microscopy images were made of 
the fresh nerve to confirm staining. Image processing was 
performed using in-house custom-developed software as 
described above.

Table 1  Fluorescently labelled P0 peptides, sequences and outcome synthesis

a Italic alanine residue replacing the cysteine from native P0, bolded and underlined residues were implemented via the above-mentioned pseudoproline method 
[34], underlined cysteines were non-native residues added to the C-terminus

Peptide Amino acid sequence Negative/positive 
charges

Solubility in H2O 
(µM)

KD in nM

Cy5-P01–25 H-IVVYTDREVHGAVGSQVTLHC(Cy5)SFWS-NH2 4+/4− 12  > 1000

Cy5-P041–65 Ac-PEGGRDAISIFHYAKGQPYIDEVGTC(Cy5)-NH2 3+/7− 45  > 1000

Cy5-P061–85 Ac-DEVGTFKERIQWVGDPRWKDGSIVIC(Cy5)-NH2 5+/8− 6  > 1000

Cy5-P081–105 Ac-GSIVIHNLDYSDNGTFTC(Cy5)DVKNPPD-NH2 2+/6− 68  > 1000

Cy5-P095–120 Ac-TFTADVKNPPDIVGKTSQVTLYVFEKC(Cy5)-NH2
a 4+/5− 150  > 1000

Cy5-P0101–125 Ac-KNPPDIVGKTSQVTLYVFEKVPTRY​C(Cy5)-NH2
a 4+/6− 172 105 ± 17
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Results
Peptide synthesis
As can be seen in Table 1 and Additional file 1: Scheme 
SI1, the various P0-peptides contain multiple amino 
acids that can drive self-association through ionic 
interactions, hydrogen bonding, hydrophobic- and van 
der Waals interactions [45]. These interactions may 
play a role in peptides Cy5-P041–65, Cy5-P061–85, and 
Cy5-P081–105 forming particles in solution. Although 
sonication could be used to (partially) overcome this 
aggregation, Cy5-P095–120 and Cy5-P0101–125 show a 2- 
to 29-fold higher solubility which promotes their use.

In vitro analysis
Quantitative assessment of the binding affinity based 
on saturation binding experiments revealed a nanomo-
lar (or submicromolar) binding constant (KD) of 
105 ± 17  nM for Cy5-P0101–125 (Additional file  1: Fig-
ure SI3A/B, Table 1). For the five other Cy5-P0 peptides 
within the matrix KD values of > 1000  nM was found 
(Table 1).

Fluorescence confocal microscopy of P0-expressing 
Schwannoma cells revealed clear differences in stain-
ing patterns between the tracers (Fig.  2A). While no 
clear staining was seen for Cy5-P01–25, Cy5-P041–65, 
Cy5-P061–85 or Cy5-P085–105 (Fig.  2A I–IV), stain-
ing of the Schwannoma cells with Cy5-P095–120, and 
especially Cy5-P0101–125 resulted in a densely spotted 
pattern on both the cell body and the cell outgrowths 
(Fig. 2A V and VI; Cy5 in red). Cy5-P0101–125 was supe-
rior in both the degree of staining and signal intensity, 
which helped finalize its selection as lead compound. 
3D assessment of the cell specimens confirmed that 
localization of staining of Cy5-P0101–125 was distinctly 
different to that of lysosomes, confirming extracellular, 
instead of intracellular, staining (Fig.  2B I and Addi-
tional file 1: Figure SI4). The location of Cy5-P0101–125 
accumulation was in agreement with staining of an 
anti-P0 antibody (Cy5-anti-P0Ab-H60; Fig. 2B II) as well 
as staining with the extracellular portion of P0 (Cy5-
P0ex; Fig. 2B III). P0-related staining was not seen with 
the non-P0-specific control peptide (Cy5-NP41; Fig. 2B 
IV; [27]) nor was a similar staining seen in P0-negative 
cells stained with Cy5-P0101–125 (Fig. 2B V), Cy5-anti-
P0Ab-H60 (Fig.  2B VI) or when the non-functionalized 
Cy5-Maleimide dye was applied (Fig. 2C I).

Blocking experiments revealed the specificity of 
Cy5-P0101–125 for P0 (Fig.  2CII and III); Quantifica-
tion of the fluorescence intensity of Cy5-P0101–125 
with (Fig.  2CIII, in red) or without addition of P0Ab 
(in black) showed that only 13.5 ± 7.1% of Cy5-related 
fluorescence that can be contributed to binding of 

Cy5-P0101–125 remained after blocking (p = 0.001). A 
customized FLISA set-up further underlined the speci-
ficity of Cy5-P0101–125 for P0 by confirming the binding 
to the extracellular portion of P0 (P0ex) for both Cy5-
P0101–125 and Cy5-P0Ab-H60. No binding was observed 
for the non-P0-specific control Cy5-NP41 (Additional 
file 1: Figure SI3).

More detailed studies with lead compound Cy5‑P0101–125
Chemical analysis
Chemical analysis of Cy5-P0101–125 revealed that this 
tracer was 99% stable after incubation in serum for 24 h 
at 37  °C and > 99% stable at temperatures > 0  °C for at 
least 4 h (Additional file 1: Figure SI2). Additional chemi-
cal- and photophysical features of Cy5-P0101–125 are pre-
sented in Additional file 1: Table SI2.

Imaging of 3D dorsal root ganglion (DRG) explant cultures 
from THY‑1 YFP mouse embryos
3D cultures based on DRG explants obtained from 
THY-1 YFP mouse embryos provided an intermediate 
step between in vitro and in vivo evaluation (Fig. 3A, B). 
These 3D cultures contained a centre ganglion (*) and 
axonal outgrowths (white arrow) and are known as well-
established neuronal cultures for drug discovery for neu-
ronal neuropathies [46]. Incubation with Cy5-P0101–125 
resulted in a spotted staining pattern of cells residing 
along the course of the developed axonal outgrowths 
as well as in the DRG explant itself (Fig. 3AII and AIII). 
Again, staining with Cy5-P0ex (Fig. 3AIII and BIII) con-
firmed the findings.

Ex vivo assessment of murine nerve tissue
Immunohistochemical assessment of concurrent fresh-
frozen sections of the nervus ischiadicus of THY1-YFP 
mice revealed a clear overlap between the location of P0 
between staining obtained after incubation with Cy5-
P0101–125 (fluorescence immunohistochemistry; Fig. 3C) 
and an anti-P0 antibody (standard immunohistochemis-
try; insert Fig. 3C).

More detailed microscopic assessment of viable (non-
frozen, non-pretreated) samples of the nervus ischiadicus 
that were incubated ex vivo with Cy5-P0101–125 revealed 
an identical wavy staining pattern (Fig. 4AI; in red). Here, 
the intrinsic YFP signal within the axons of the THY-1 
YFP mice provided an extra confirmation that staining of 
Cy5-P0101–125 co-localized with the myelin sheath sur-
rounding the axons.

In vivo assessment in mice
To reduce the dose and staining beyond the area of inter-
est, in  vivo administration intraneural (Fig.  4AII) and 
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a

b

Fig. 2  Localization of binding of P0 peptides to myelinating Schwannoma cells. Fluorescence confocal images of RT4 D6P2T Schwannoma cells 
after incubation with A C-terminally Cy5-labelled P01–25(Cy5-P01–25; I), P041–65 (Cy5-P041–65; II), P061–85 (Cy5-P061–85; III), P085–105(Cy5-P0185–105; IV), 
P095–120 (Cy5-P095–125; V) or P0101–125 (Cy5-P0101–125; VI). B Fluorescence confocal images of RT4 D6P2T Schwannoma cells after incubation with 
Cy5-P095–120 represented in 3D (I), and the extracellular portion of P0 (Cy5-P0ex; II), Cy5-labelled anti-P0 antibody clone H60 (Cy5-P0Ab-H60; III), a 
non-P0-specific peptide (Cy5-NP41; IV). Staining of non-P0-expressing MDAMB 468 cells with Cy5-P0101–125 (V), Cy5-P0Ab (VI) and Cy5-Maleimide 
(CI) were used to show specificity for P0. Blocking experiments showed a clear decrease in the mean fluorescence intensity for Cy5-P0101–125 after 
pre-incubation with P0Ab (II). Quantification of fluorescence intensity with and without blocking (III; Cy5-P0101–125 in red, blocked conditions in 
black) further underlined specificity (p = 0.001). In all confocal images, Cy5 is represented in red, nuclear staining (Hoechst) in blue and lysosomes 
(lysotracker green) in green
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intravenous (v. femoralis; Fig. 4AIII and B) administration 
were applied. Both tracer administration routes provided 
identical results compared to ex  vivo incubation with 
Cy5-P0101–125. Similar to assessment in vitro (Fig. 2), the 

non-P0-specific peptide CY5-NP41 (Fig.  4AIV) did not 
provide staining corresponding to the location of myelin 
after intravenous administration (v. femoralis). Intraop-
erative fluorescence confocal microscopy after adminis-
tration of Cy5-P0101–125 allowed clear visualization of the 

a

b

c

Fig. 3  Staining of 3D DRG explant cultures with Cy5-P0101–125 and Cy5-P0101–125 fluorescence immunohistochemistry of a murine nervus ischiadicus. 
A brightfield image of a 3D DRG explant (*) with axonal outgrowths (white arrow) after staining with (II) Cy5-P0101–125 or (III) Cy5-P0ex. B Zoom-in 
with focus on the axonal outgrowths and fluorescence confocal imaging of DRG explants after staining with (II) Cy5-P0101–125 or (III) Cy5-P0ex. C 
Fluorescence immunohistochemistry of the nervus ischiadicus of THY1-YFP mice in (I) transverse orientation and (II) sagittal orientation after staining 
with Cy5-P0101–125. The top insert shows standard anti-body-based standard immunohistochemistry and the bottom insert H&E staining of a 
concurrent/adjacent tissue section
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nervus ischiadicus based on the emitted fluorescence sig-
nal (Fig. 4B).

Macroscopic in vivo assessment of the nervous ischi-
adicus (whitelight image; Fig.  5C) resulted in a mean 
NBR of 6.0 ± 2.2 after administration of Cy5-P0101–

125 (Fig.  4CIII). Comparable results in non-YFP mice 
(Fig. 5CIV; mean NBR: 3.7 ± 1.0) help exclude the pos-
sibility of spectral overlap between YFP and Cy5.

Biodistribution (mouse)
Radiolabelling of DTPA-P0101–125 with 111In (yielding 
[111In]In-DTPA-P0101–125) allowed quantitative assess-
ment of the biodistribution at 1 and 4  h after intrave-
nous tracer administration (Fig. 5). At both time points 
(1 and 4 h) renal clearance, low overall tissue uptake (in 
%IA/g) and a substantial level of excretion were seen. 
Most importantly, uptake in the CNS was neglectable 
(0.12 ± 0.03%IA/g at 4 h p.i.).

a

b

c

Fig. 4  Ex vivo and in vivo imaging of the nervus ischiadicus of mice. A 63 × magnification of the nervus ischiadicus after (I) ex vivo incubation, 
(II) intraneural administration or (III) intravenous (v. femoralis) administration of Cy5-P0101–125. (IV) Fluorescence confocal image of the nervus 
ischiadicus F after intravenous (v. femoralis) administration of Cy5-NP41 or (V) when no tracer was applied. B In vivo fluorescence confocal image 
of a large field of view of the nervus ischiadicus of a THY-1 YFP at 1 h after intravenous (v. femoralis) administration of Cy5-P0101–125. Cy5 in red and 
intrinsic YFP located in the axons of THY-1 YFP mice in green. C In vivo Dinolight microscopy images showing (I) a whitelight image of the nervus 
ischiadicus and (II) the intrinsic YFP signal in a THY-1 YFP mouse. Image processing after illumination of the nervus ischiadicus after intraneural 
administration of Cy5-P0101–125 in (III) a THY-1 YFP mouse, (IV) a non-YFP Balb/c nude mouse and (V) when no tracer was applied. Inserts show 
unprocessed fluorescence image. Scalebar represents the nerve-to-background ratio (NBR)
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In vivo assessment in a porcine model
The compatibility of Cy5-P0101–125 with clinical grade 
imaging modalities applied during robot-assisted mini-
mally invasive surgery was evaluated in a porcine model 
(Fig.  6). Here, the use of a dedicated Cy5 fluorescence 
laparoscope (KARL STORZ; [42]) allowed in  vivo visu-
alization of the pudendal nerve (Fig. 6B, C; white arrow). 
Image processing based on colour coding of the fluores-
cence signal helped assess differences in fluorescence 
intensity along the nerve (Fig.  6C insert). Back-table 
imaging of the excised specimen confirmed the fluores-
cence of the nerve (Fig. 6D).

Discussion
By using the P0-derived synthetic peptide Cy5-P0101–125, 
we were able to explore the homotypic P0 protein as 
molecular target that is widely expressed in myelin in the 
PNS. Specific binding was demonstrated in  vitro, in 3D 
DRG nerve cultures, ex vivo, as well as in vivo.

Truncation of the homotypical P0-protein into pep-
tides yielded Cy5-P0101–125 as lead compound. In  vitro 
and in vivo studies indicate that this compound is able to 
provide nerve-specific staining with nanomolar affinity, 
which is in the same range as reported affinities for other 
fluorescently labelled targeted tracers [36, 47, 48]. Speci-
ficity of Cy5-P0101–125 for P0 was shown both in  vitro 
(Fig.  2 and Additional file  1: Figure SI3) and in  vivo 
(Fig.  4). An approximate 90% decrease in fluorescence 
intensity after pre-incubation with a P0-specific antibody 
was seen (Fig. 2CIII), while no staining was observed for 

the non-P0-specific control (Cy5-NP41) and the free 
dye (Cy5-Maleimide). As the Cy5-Maleimide dye vari-
ant was used for functionalization of both P0101–125 and 
NP41, these results also exclude a targeting effect of the 
dye itself. This was corroborated by a markedly different 
staining pattern using free dye alone [30]. An additional 
beneficial factor for Cy5-P0101–125 is that the production 
is scalable and can be done at reasonably low cost. More-
over, the peptide benefits from the superior pharmacoki-
netics that have been claimed for peptides over proteins 
such as antibodies [49, 50].

In line with P0 expression, biodistribution studies per-
formed with the radiolabelled analogue [111In]In-DTPA-
P0101–125 helped rule out accumulation of P0101–125 
(MW = 3024  Da) in the CNS. Obviously, the chance of 
toxic side effects is also impacted by dosing and uptake 
in non-target organs. In nuclear medicine, disease-spe-
cific tracers are therefore applied using a micro-dosing 
regimen (< 100 µg/patient). Although the ability of using 
fluorescence at micro-dosing levels looks promising [51], 
this topic remains a subject of debate [52], and many 
studies still use high dosing regimens to realize in  vivo 
functionalization of molecular targets [16, 53–55]. Local 
tracer deposition (an image-guided surgery concept that 
has proven valuable in e.g. lymphatic mapping and dur-
ing occult lesion localization) limits dosing to 100  µg/
patient [12, 51]. Recent experimental studies underscore 
that local deposition may also be valid when targeting 
peripheral nerves within a certain surgical anatomy [24, 
37]. Substantiated by previous reports [28] Fig. 4 AIII and 
B indicate that local tracer administration is feasible for 
nerve imaging applications.

While most image-guided surgery studies promote the 
use of near-infrared (NIR) Cy7 analogues [53, 54, 56], 
far-red Cy5-labels are also increasingly being applied in 
clinical trials [39, 57–59]. In fact, fluorescence-guided 
surgery trials have been reported for the full fluorescent 
light spectrum [60]. Uniquely, in a head-to-head com-
parison, Cy5 analogues even were shown to outperform 
Cy7-analogies in terms of signal intensity [42] and impact 
on tracer kinetics [36]. Moreover, Cy5 analogues, both a 
free dye and conjugated to a peptide, have shown to have 
a high fluorescence brightness in the presence of human 
serum albumin (Additional file 1: Table SI2; [36, 41, 61]). 
These factors combined with the fact that most groups 
are creating tumour-receptor-targeted tracers using NIR 
Cy7 analogues support the future implementation of 
multi-wavelength imaging applications, a concept that is 
gaining traction in the clinic [60].

Although intraneural injection provides a perfect 
proof of principle in both mice and pigs (Figs.  4AII, C 
and Additional file  1: Figure SI6), administration into a 
blood vessel near the target organ, such as the femoral 

Fig. 5  In vivo biodistribution. Quantitative in vivo biodistribution 
and excretion of [111In]In-DTPA-P0101–125 at 1 (light blue) and 4 h 
(dark blue) post-intravenous tracer administration (tail vein). Uptake 
per organ presented as percentage of the injected activity per gram 
of tissue (%IA/g). Excretion was defined as: (MBq present in animal at 
24 h post-tracer administration/injected activity) * 100%
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vein (Fig. 4A), still provides further optimization before 
it can be used in a human setting. Hence, the exact route 
for local tracer administration in large animals, minimi-
zation of the dose and the specificity of targeting remain 
the subject of ongoing studies. Another potential limita-
tion of the approach presented is that myelinization of 
nerves in the PNS may vary, where sensory nerves are 
highly myelinated (and conductive), the level of myeli-
nation decreases substantially in autonomous nerves. 
Despite the fact that myelin is one of the most widely 
explored targets for nerve imaging, it is therefore not 
clear if myelin-specific tracers will help address all surgi-
cal nerve imaging demands.

Conclusion
By truncating the P0 protein, we have been able to suc-
cessfully create a nerve-specific fluorescent tracer that is 
able to specifically stain P0/myelin expression in the PNS.

Abbreviations
MPZ, or P0: Myelin protein zero; PNS: Peripheral nervous system; CNS: Central 
nervous system; PLP: Myelin proteolipid protein; 3D: Three-dimensional; DRG: 
Dorsal root ganglion; HPLC: High-pressure liquid chromatography; LRMS: Low-
resolution mass spectrometry; SI: Supporting information; PBS: Phosphate-
buffered saline; FLISA: Fluorescence-linked immunoabsorbent assay; NIR: 
Near-infrared.

Fig. 6  Translation of Cy5-P0101–125 into large animal models using clinical grade imaging modalities. A Surgical set-up showing the Da Vinci 
surgical robot and the use of a clinical grade STORZ fluorescence laparoscope dedicated for Cy5 imaging [42]. B Brightfield image of the pudendal 
nerve (white arrow). C In vivo fluorescence imaging of the pudendal nerve after intraneural administration of Cy5-P0101–125 as visible on the 
screen of the imaging set-up. Insert showing a colour-coded processed image of the fluorescence in the nerve. D Ex vivo fluorescence image 
of the excised nerve (left image) with corresponding colour-coded image-processing (right image) and scale bar depicting the corresponding 
nerve-to-background ratio (NBR)
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