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Carotid plaque inflammatory activity 
assessed by 2‑[18F]FDG‑PET imaging decrease 
after a neurological thromboembolic event
Laerke Urbak1*  , Rasmus S. Ripa2, Benjamin V. Sandholt1, Andreas Kjaer2, Henrik Sillesen1 and Martin Graebe1 

Abstract 

Background:  Atherosclerotic plaque vulnerability is comprised by plaque composition driven by inflammatory activ-
ity and these features can be depicted with 3D ultrasound and 2-[18F]FDG-PET, respectively. The study investigated 
timely changes in carotid artery plaque inflammation and morphology after a thromboembolic event with PET/CT 
and novel ultrasound volumetric grayscale median (GSM) readings. Patients with a single hemisphere-specific neuro-
logical symptom and the presence of an ipsilateral carotid artery atherosclerotic plaque were prospectively included 
to both 2-[18F]FDG PET/CT and 3D ultrasound scans of the plaque immediately after their event and again three 
months later. On PET/CT images the maximum standardized uptake value (SUVmax) was measured and the volumetric 
ultrasound acquisitions were analyzed using a semiautomated software measuring GSM values.

Results:  Baseline scans were performed by a mean of 7 days (range 2–14) after the symptom and again after 98 days 
(range 91–176). For the entire group (n = 14), we found a decrease in average SUVmax from baseline to follow-up 
of − 0.18 (95% confidence interval: − 0.34 to − 0.02, P = 0.034). GSM did not increase significantly over time (mean 
change: + 2.21, 95% confidence interval: − 17.02 to 21.44, P = 0.808).

Conclusion:  A decrease in culprit lesion 2-[18F]FDG-uptake 3 months after an event indicates a decrease in inflam-
matory activity, suggesting that carotid plaque stabilization over time. 3D ultrasound morphological quantitative 
differences in GSM were not detectable after 3 months.
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Introduction
Symptoms as transient ischemic attack, minor ischemic 
stroke or amaurosis fugax will in some patients pre-
cede a major disabling stroke [1, 2]. Therefore, when a 
concomitant stenotic plaque in the carotid artery ipsi-
lateral to the symptomatic hemisphere is believed to be 
the culprit lesion, immediate prophylactic measures are 
indicated. Depending on degree of stenosis, symptoms 
and demographic data, patients are either treated with 
carotid endarterectomy (CEA), carotid artery stenting 

(CAS) or in most cases by medical treatment only [3]. 
Most thromboembolic events arise from highly inflam-
matory active atherosclerotic lesions regardless of size 
or degree of stenosis [4, 5]. Among other inflamma-
tory cells macrophages have shown to play a central 
role in plaque destabilization causing degeneration of 
the fibrous cap and expansion of the necrotic core [6, 
7] that may lead to plaque rupture or erosion [8]. Thus, 
atherosclerosis, and in particular symptomatic athero-
sclerosis, may be considered an inflammatory disease 
[9]. Sub-analyses of large randomized trials have shown 
that CEA is most beneficial within the first weeks after 
symptom onset [10], indicating that the inflammatory 
activity leading to plaque vulnerability is a dynamic 
process that may diminish or increase rapidly over 
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time. It is not known which factors influence inflam-
matory activity, although recent years improvement in 
medical prophylactic treatment is believed to have an 
impact on both plaque stabilization and inflammatory 
activity.

Molecular imaging with positron emission tomogra-
phy (PET) or structural imaging with ultrasound (US) is 
capable of identifying inflammation and other features of 
plaque vulnerability. PET in conjunction with computed 
tomography (CT) is used in daily clinical practice to 
depict specific cellular metabolism on a molecular level. 
The tracer [18F]-fluoro-2-deoxyglucose (2-[18F]FDG) 
is a glucose analogue that accumulates in high-glucose-
utilizing cells and we have previously shown that 2-[18F]
FDG-uptake in symptomatic carotid plaques is correlated 
to inflammatory activity and macrophage abundance 
[11–13]. Statin treatment has shown to decrease the 
2-[18F]FDG-uptake in carotid plaque over 3–6  months 
[14, 15]. Furthermore, 2-[18F]FDG-uptake is increased 
in symptomatic carotid plaques compared to contralat-
eral asymptomatic plaques [16, 17], suggesting that PET/
CT 2-[18F]FDG-uptake quantification is a highly specific 
marker of plaque vulnerability and inflammation.

Ultrasound imaging can detect morphologic features 
of carotid plaques with increased vulnerability and high 
inflammatory activity. With conventional two-dimen-
sional (2D) US, low echogenicity has been found in 
symptomatic carotid plaques [18–20] and quantification 
of echogenicity can be used to calculate future stroke 
risk [21, 22]. To quantify the echogenicity of plaques, 
grayscale median (GSM) measurements is commonly 
used: A high GSM measurement (compatible with high 
echogenicity) indicates a large amount of fibrotic and 
calcified tissue [23] as found in “silent” or asymptomatic 
plaques, whereas low echogenicity and GSM corresponds 
to a high content of soft atheroma and lipids [20, 24, 25] 
which are typical features of the symptomatic or vulner-
able plaque. In 2D US only a single image is captured for 
GSM analyses, which is a hindrance for reproducibility 
and sensitivity in assessing risk on an individual patient-
specific level. In the current study, we implemented a 
novel three-dimensional (3D) US volumetric GSM evalu-
ation of the plaques to improve sensitivity and reproduc-
ibility [26, 27].

In the present study we hypothesized that inflam-
matory activity, in suspected culprit lesions depicted 
with PET, will diminish over a 3-month period of time 
on medical treatment following an acute neurological 
event. Furthermore, it was hypothesized that as inflam-
matory activity decreases, the plaque will stabilize lead-
ing to an increase in the amount fibrous tissue and 
thereby an increase in volumetric GSM in 3D ultrasound 
acquisitions.

Materials and methods
Patients
We prospectively included patients referred to the 
Department of Vascular Surgery (Copenhagen University 
Hospital, Copenhagen, Denmark) from regional neuro-
logical departments. Patients were referred in accordance 
with the regions fast-track protocol for diagnosis and 
treatment of symptoms of cerebral ischemia caused by 
ipsilateral atherosclerotic carotid plaques. Patients eligi-
ble to study inclusion were those with recent symptoms 
of minor ischemic stroke, transitory ischemic attack or 
amaurosis fugax and an ipsilateral carotid plaque defined 
as any atherosclerotic lesions independent of degree of 
stenosis. Only patients who were initially deemed not 
suitable for CEA were included, and in order to improve 
PET scans, exclusion criteria were dysregulated diabe-
tes (HbA1c > 13.3  µmol/L), blood glucose > 11  mmol/L, 
infection, cancer or vasculitis, renal insufficiency (cre-
atinine > 125  µmol/L) or known allergy to the used 
CT-contrast.

The 2-[18F]FDG PET/CT and 3D US scans were per-
formed ≤ 14  days after the last neurological symptom 
and scheduled again 3 months later. The two scans were 
performed the same day. Patients files were examined for 
new cardiovascular events 6 months after the last follow-
up scan. We selected a 14-day limit for the first scan as 
this is the time where CEA is most beneficial [10] sug-
gesting changes in plaque morphology already after the 
two weeks. All patients immediately started medical 
treatment with statin and anti-platelet medication after 
initial hospital admission to neurological departments. 
Medical history, current symptoms, previous known ath-
erosclerotic risk factors and medical use were obtained 
for all patients. Hypertension, diabetes, previous heart 
disease and stroke were defined present if noted in the 
patient’s file. Smoking history and cessation was regis-
tered according to patients’ intimation. Degree of carotid 
stenosis was measured with duplex ultrasound using 
peak systolic velocity and end diastolic velocity in accord-
ance with local and common Doppler ultrasound criteria 
[3]. Only the symptomatic carotid artery was scanned; 
thus, no contralateral plaques were included (if present).

Ultrasound
Image acquisition
Patients were scanned in supine position with the head 
turned slightly to the contralateral side. The transducer 
was a novel (at the time being under development and 
not yet commercially available) vascular matrix trans-
ducer (XL14-3 xMATRIX array transducer, Philips 
Healthcare, Bothell, WA, USA) supporting 3D imaging 
by scanning in two directions at the same time creating a 
block of the artery without any moving parts. The entire 
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extracranial carotid artery was scanned, and the 3D 
image acquisitions were centered on the largest plaque. 
The images were stored for later analysis. All US acquisi-
tions were performed by the same investigator (LU). The 
transducer was tested clinically with authorization from 
the Danish Health and Medicines Authority.

Image analysis
The US image analyses were carried out by the same 
author who also performed the US acquisitions (LU). To 
increase reliability and blind data co-author BS manu-
ally anonymized US images for patient data and the 
order of the scans before the image analyses. An offline 
research software, developed by Philips Research France, 
Medisys (Suresness, France), was used for image analy-
sis. The common carotid artery (CCA), the flow divider 
of the bifurcation, proximal and distal internal carotid 
artery (ICA) and the proximal and distal part of external 
carotid artery (ECA) were marked by the user. The vessel 
wall was automatically outlined, visually inspected and 
adjusted manually. Plaque was then outlined, inspected 
and adjusted and plaque in ECA was excluded. The 
plaque volume was segmented axially in 2-mm blocks 

according to the flow divider permitting data to be 
aligned with data from the PET/CT image.

The software automatically provided measurements for 
the segmented blocks: Volume, maximum plaque thick-
ness and GSM. As each ultrasound scan was individually 
adjusted before acquisition to optimize quality of bright-
ness, a normalization of the gray scale was performed 
to secure a standardized comparability of GSM read-
ings between patients. The normalized GSM values were 
computed by scaling the original GSM value using a fac-
tor 190/X, where X denote the average gray value (0–255) 
of the adventitia. The maximum plaque thickness was 
detected, and the software automatically calculated the 
normalized GSM for the 1 cm volume around the maxi-
mum plaque thickness (Fig.  1). Partial plaque volume 
sampling has previously, in a similar setting, been found 
to increase reproducibility of 3D volumetric plaque anal-
yses [28].

PET/CT
Image acquisition
After 6  h fasting, 4  MBq/kg 2-[18F]FDG was injected 
intravenously. To reduce tracer uptake in the muscles 
near neck and jaw, patients rested without talking for 

Maximum plaque thickness

Flow divider

2 mm 1 cm

ECA

ICA
CCA

Fig. 1  Schematic example of the calculated average max standardized uptake value (aSUVmax) and grayscale median (GSM). ECA = external carotid 
artery. ICA = internal carotid artery. CCA = common carotid artery. The 3D ultrasound acquisition of the plaque was sliced in 2-mm segments from 
the flow divider, and the slice containing the maximum plaque thickness was identified. The slice with the maximum plaque thickness and the two 
slices on each side were used in analyses. For the PET/CT, the flow divider was used as landmark for alignment of SUVmax readings to the ultrasound 
readings. An average SUVmax was calculated for this 1 cm long plaque volume. GSM was automatically calculated by the software for the volume of 
the 10-mm-long plaque segment
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30  min after injection. Two hours after 2-[18F]FDG 
administration patients were placed in a combined PET/
CT scanner (Siemens Biograph mCT, Siemens, Erlangen, 
Germany) in supine position with the arms down the 
side and head fixed. First, an attenuation correction CT 
scan (120 keV, 50mAs) with 2-mm slices was performed. 
Then PET bed position of 5  min over 15  cm was per-
formed, and for perfect postprocessing fusion and visu-
alization of the carotid artery high resolution, CT scan 
(120 keV, 200mAs) in arterial phase with contrast (100 ml 
Optiray [patients 70–100  kg: 300  mg iodine/ml and 
patients > 100  kg: 350  mg iodine/ml]; Guerbet, F-9342 
Villepinte, France) was performed over the neck.

Image analysis
PET/CT images were analyzed by a trained investiga-
tor (RSR) blinded to patient data and scan time. After 
automatic fusion of PET and CT images, OSIRIX MD 
(Pixmeo SARL, Bernex, Switzerland) regions of interest 
(ROIs) were manually placed on each 2-mm slice around 
the CCA and ICA. The first slice where the ECA and 
ICA separated was noted as the flow divider used for US 
alignment. For 2-[18F]FDG-uptake, the maximum stand-
ardized uptake value (SUVmax) was computed for each 
ROI. Images were not corrected for partial volume effect.

The 2-mm-thick volume plaque slices from the ultra-
sound dataset were manually aligned with the PET 
slices according to the flow divider. An average SUVmax 
(aSUVmax) was calculated for the slice with the maximum 
plaque thickness and the two slices adjacent, on each side 
(Fig. 1).

Statistics
Image data (aSUVmax and GSM) were tested for nor-
mal distribution with histograms and residual plots and 
presented as mean with standard deviation (SD). Differ-
ences in aSUVmax and GSM were investigated in a lin-
ear mixed model with time as fixed effect and with an 
unstructured covariance to account for the correlation 
between replicated measurements on the same subject. 
This is presented with mean change and 95% confidence 
interval (CI 95%). Analysis of covariance (ANCOVA) was 
used for post hoc analysis to estimate whether popula-
tion means of the dependent variables (aSUVmax and 
GSM) were the same across levels of independent vari-
ables (time), adjusting for difference in co-variates as sex, 
age, body mass index (BMI), smoking, hypertension, sta-
tin treatment and degree of carotid stenosis. To test for 
linear correlation between aSUVmax and GSM a linear 
regression model was used for baseline data, follow-up 
data and delta data (i.e., change in dependent variables 
over time). Significance level was set at 0.05. Statistical 

analyses were performed using SAS enterprise guide 7.1 
(SAS institute, USA).

Results
In a two-year period between 2016 and 2019, we included 
19 symptomatic patients whereof 15 were analyzed at 
baseline (Fig. 2) and 14 again at follow-up. All included 
patients were referred from a neurological department, 
diagnosed with stroke (53%) or transitory ischemic attack 
(TIA) (47%), and all were started in medical treatment 
with statin and antiplatelet therapy before referral to dept 
of vascular surgery. In 8 patients, CEA was not indicated 
due to a low degree of stenosis < 50%. For the remain-
ing 7 patients, the vascular surgeon refrained from CEA 
because of a moderate degree of (near 50%) stenosis and 
type of symptoms, taken together with the patients gen-
eral condition. Patients included (Table 1) were primarily 
male sex and were scanned by a mean of 7  days (range 
2–14) after symptom onset and again after a mean of 
98 days (range 91–176).

For the entire patient group, we found a decrease in 
aSUVmax from baseline (mean: 2.56, SD: 0.37) to fol-
low-up (mean: 2.35, SD: 0.32) (mean change: − 0.18, 
CI 95%: − 0.34 to − 0.02, P = 0.034) on the sympto-
matic artery (Fig. 3). No change of 2-[18F]FDG-uptake 
(mean change: − 0.05, CI 95%: − 0.28 to 0.17, P = 0.613) 
was found analyzing the 12 contralateral asymptomatic 
arteries (two patients had occluded carotid and one 

Included
n = 19

- High crea�nin level: 28
- Uncontrolled diabetes mellitus: 28

- >14days since symptoms: 28
n = 84

- Underwent CEA: 38
- No consent: 11

n =  49

Lost to follow-up 
- Withdrawal of consent: 2

- Scans lost: 1
- Died: 1

n = 4

Eligible pa�ents 
n = 68

Screened
n = 152

Analysed
Baseline: n =15

Analysed
Follow-up: n =14

- New symptoms and CEA: 1
n =  1

Fig. 2  Flowchart of the included patients. Of the 19 included four 
were excluded. Two were excluded after withdrawal of consent, one 
died because of an, at the time of inclusion, undiagnosed cancer and 
one scan was lost
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no plaque). GSM did not increase significantly from 
baseline (mean: 64.60, SD: 23.56) to follow-up (mean: 
65.86, SD: 36.35) (mean change: 2.21, CI 95%: − 17.02 
to 21.44, P = 0.808). In a post hoc analysis neither male 
sex, age, body mass index (BMI), smoking, hyperten-
sion, high-dose statin treatment, statin treatment 
before neurological symptom nor degree of stenosis 
showed an impact on either outcome. Neither did time 
in days between scans have an impact on outcome. An 
example of both image modalities is shown in Fig. 4.

There was no correlation between aSUVmax and GSM 
at baseline (P = 0.414), follow-up (P = 0.308) nor when 
comparing the change in aSUVmax and GSM over the 
period of time (P = 0.291).

One included patient experienced repeated mild neu-
rological symptom after baseline scanning and was after 
re-evaluation treated with CEA before the second scan. 
This patient had a higher aSUVmax at baseline (3.19) than 
any other patient included. GSM was 84 in this patient. 
None of the 14 patients with both scans had recurrent 
symptoms in the time between the primary scan and 
the follow-up scan, nor any new symptoms in a 6-month 
period after the follow-up scan.

Discussion
This study shows that 2-[18F]FDG-uptake in sympto-
matic carotid plaques decreases during a 3-month period 
after initiation of non-surgical prophylactic treatment. 
The decrease in inflammatory activity did not lead to a 
detectable change in plaque morphology quantitated by 
novel 3D ultrasound plaque GSM measurements.

The study was scheduled to 2 years inclusion and due 
to low inclusion rate, it did not meet pre-calculated 
power (40 participants) to detect a minimal relevant dif-
ference in GSM measurements. Experience from the pre-
sent and previous studies of PET scans in patients with a 
recent minor stroke is that the scan is cumbersome and 
time-consuming from the often-fragile patients’ point of 
view. Thus, population selection in conjunction with the 
conservative inclusion and exclusion criteria explains the 
poor inclusion rate. Despite being underpowered, it is the 
authors opinion from data acquisitions and image analy-
ses that 3D GSM measurements in our current setting is 
not sensitive enough as a standalone to detect significant 
changes in plaque morphology. Also, the relatively short 
time frame of 90 days set in the present study might have 
been too short for detecting plaque substance changes. 
Previous morphologic plaque studies using MRI have 
shown carotid plaque lipid-rich necrotic cores are sub-
stantially reduced after 12-month medical treatment, 
even though plaque volume is not reduced [29]. We are 
currently developing supplemental techniques to investi-
gate other morphological features pivotal for identifica-
tion of the vulnerable plaque. Volumetric assessment of 
plaque surface and ulcerations would improve sensitivity 
further, as would ultrasound contrast enhanced acquisi-
tions in order to accurately display fibrous cap thickness 
and echo-poor plaque areas that otherwise might be 
missed because of resemblance to blood echogenicity as 
both are black in B-mode imaging.

The association between high 2-[18F]FDG uptake 
in carotid artery plaques, a high inflammatory activity 
and vulnerability leading to thromboembolic events has 
been established from studies of molecular pathology to 
recent clinical studies [11, 16, 17, 30]. In previous studies 
a change in 2-[18F]FDG uptake of around 10% has been 
observed with statins and pioglitazone [31–33], drugs 

Table 1  Demographic data

Data are given in mean and range or percentage in brackets

BMI = body mass index, COPD = chronic obstructive lung disease, 
TIA = transitory ischemic attack
*  Treatment after neurological symptoms. Low intensity defined as 
Simvastatin ≤ 40 mg or Atorvastatin ≤ 20 mg. High intensity was defined as 
Simvastatin > 40 mg and Atorvastatin > 20 mg

Blood samples are missing for two patients

Carotid stenosis degree > 50% was defined as a peak systolic velocity > 125 cm/
second

N = 15 patients

Male sex 14 (93%)

Age (years) 71.2 (54–87)

BMI 27.43 (18.65–36.29)

Smoking

 Currently 2 (14%)

 Ever 12 (79%)

Diabetes mellitus 1 (1%)

Hypertension 11 (73%)

History of coronary disease 2 (13%)

COPD 1 (1%)

Previous TIA 1 (1%)

Previous stroke 1 (1%)

Newly diagnosed atrial fibrillation 3 (20%)

Statin lowering treatment*

 Low intensity 8 (53%)

 High intensity 7 (47%)

Statin treatment before current stroke/TIA 6 (40%)

Total cholesterol (mmol/L) 4.78 (2.4–6.7)

LDL cholesterol (mmol/L) 2.72 (0.8–3.5)

HDL cholesterol (mmol/L) 1.50 (0.61–4.7)

Creatinine (µmol/L) 88.00 (55–116)

GFR (mL/min) 72.62 (50–93)

Leucocytes (/L) 7.86 (4.3–10.9)

CRP (mg/L) 5.81 (1–16)

Carotid artery with stenosis degree > 50% 7 (46%)
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that have a proven effect on cardiovascular endpoints. 
This indicate that a change of around 10% in 2-[18F]FDG 
uptake could potentially have clinical relevance. Use of 
upcoming more specific inflammatory tracer might have 
been able to detect a greater change over time [34–36] 
which will be of interest in future studies. The use of the 
maximal standardized uptake value (SUVmax), which 
takes patient weight and isotope decay into account, is 
a well-established marker of activity. It can be discussed 
if, e.g., target-to-background ratios is superior as it takes 
the background uptake in consideration. However, back-
ground activity in the blood pool differ grossly between 
subjects and clearance of 2-[18F]FDG differs with indi-
vidual blood glucose level, current level of liver metabo-
lism, etc., and is therefore not ideal either. One measure 
has not been found superior to the other. When using 
SUVmax the tomography should, as done in this study, 
be delayed to a minimum of 2 hours after injection of the 
isotope to diminish any spill-over activity from adjacent 
tissue and the blood pool [37].

An additional finding was that the one patient with 
recurrence of neurological symptoms, who was operated 

with thromboendarterectomy during the follow-up 
period, had the highest baseline 2-[18F]FDG-uptake. 
This single finding corroborates the results of the larger 
study by Kelly et  al. suggesting the feasibility in using 
plaque 2-[18F]FDG-uptake quantification for qualitative 
individual risk assessment [30]. Seemingly, the method 
of 2-[18F]FDG PET in carotid plaques in symptomatic 
patients shows high sensitivity in detecting vulnerable 
plaques and patients at risk for recurrence. Specificity, 
on the other hand is questionable, especially in the pre-
sent study, with no ascertainment other than clinical 
presentation, that the suspected carotid plaque actually 
is the culprit lesion and two patients having newly diag-
nosed atrial fibrillation. Another limitation with 2-[18F]
FDG PET is the radiation dose of 6–8 mSv. This will most 
likely decrease with newer more sensitive tracers and the 
higher age of relevant patients will in most cases make 
the radiation less problematic.

The fluctuating changes in inflammatory activity in 
atherosclerotic disease are yet not understood, and the 
molecular pathology behind the diminished activity that 
occurs in some patients as plaques stabilizes and no 

mean 95% confidence interval each pa�ent

aS
U

V m
ax

Follow-upBaseline

Time

Fig. 3  Change in average maximum standardized uptake values (aSUVmax) from baseline to follow-up. The black diamonds represent the mean 
aSUVmax at baseline and follow-up with the 95% confidence interval as the dotted line. Mean difference in aSUVmax of − 0.18, CI95%: − 0.34 to − 0.02, 
P = 0.034. The light blue lines represent each patient with the circles marking the aSUVmax at baseline and follow-up. The patient with recurrent 
symptoms undergoing carotid endarterectomy before the follow-up scan is marked as a filled circle
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further events are experienced, are not fully enlightened. 
Clinical data points toward a pleiotropic (possibly anti-
inflammatory) effect of the HMG-CoA reductase inhibi-
tors [38] and statins have shown to decrease 2-[18F]
FDG-uptake in plaques in asymptomatic patients [14, 
15]. Therefore, although we studied the culprit lesion 
in symptomatic patients, it is plausible to presume that 
the effect of immediate prophylactic medical treatment 
in patients with symptomatic atherosclerosis is, to some 
extent, derived from statins. However, in our population, 
six patients were already on statin treatment before their 
primary neurological event, underscoring the multifacto-
rial influence on atherosclerotic plaque disease progres-
sion and regression. Underlining what statin treatment 
does not eliminate cardiovascular events and suggest that 
the change in 2-[18F]FDG-uptake in part are due to the 
natural history of a culprit lesion which have not been 
shown before.

Conclusion
2-[18F]FDG-uptake decreases in suspected carotid artery 
atherosclerotic culprit lesions 3 months after symptoms. 
The decrease in inflammatory activity and thereby sug-
gested plaque stabilization over time when studying only 
one aspect of the vulnerable plaque was not detectable in 
plaque morphology using ultrasound volumetric GSM 
readings.
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