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Abstract

Background: Lipopolysaccharide (LPS) is a classic immune stimulus. LPS combined with positron emission
tomography (PET) 18 kDa translocator protein (TSPO) brain imaging provides a robust human laboratory model to
study neuroimmune signaling. To evaluate optimal analysis of these data, this work compared the sensitivity of six
quantification approaches.

Methods: [11C]PBR28 data from healthy volunteers (N = 8) were collected before and 3 h after LPS challenge
(1.0 ng/kg IV). Quantification approaches included total volume of distribution estimated with two tissue, and
two tissue plus irreversible uptake in whole blood, compartment models (2TCM and 2TCM-1k, respectively)
and multilinear analysis-1 (MA-1); binding potential estimated with simultaneous estimation (SIME); standardized uptake
values (SUV); and SUV ratio (SUVR).

Results: The 2TCM, 2TCM-1k, MA-1, and SIME approaches each yielded substantive effect sizes for LPS effects (partial η2

= 0.56–0.89, ps <. 05), whereas SUV and SUVR did not.

Conclusion: These findings highlight the importance of incorporating AIF measurements to quantify LPS-TSPO studies.
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Introduction
Positron emission tomography (PET) imaging of the 18
kDa translocator protein (TSPO) provides a quantitative
measure of an in vivo neuroimmune system marker [1].
While interpretation of baseline TSPO levels is compli-
cated by several factors [2], TSPO response after lipo-
polysaccharide (LPS) challenge yields a measurement of
“neuroimmune response” to an acute immunogenic
stimulus. LPS is gram-negative bacteria that evokes clas-
sic pro-inflammatory responses via the toll-like receptor-
4 complex (TLR4). Preclinical PET studies indicate
intra-striatal LPS injection increases TSPO levels relative
to contralateral striatal levels and saline-injected con-
trols; findings confirmed by autoradiography and cold-
tracer studies [3, 4]. Prior research demonstrates LPS in-
creases brain TSPO levels across species, including ro-
dents [3, 4], nonhuman primates [5], and humans [6].
Thus, LPS challenge provides a robust experimental

model for investigating neuroimmune signaling in
people.
The dramatic LPS effects on specific binding motivate

reanalysis and confirmation of quantification ap-
proaches. In most cases, reference region approaches are
not appropriate for full quantification of TSPO radioli-
gands due to the lack of regions devoid of TSPO in the
brain, although pseudo-reference region approaches
have been validated for specific scenarios [7]. In this
study, we evaluated the sensitivity of different TSPO
quantification approaches to LPS effects, with careful
consideration of approaches incorporating an arterial in-
put function, using previously reported data with the
second-generation PET TSPO radiotracer [11C]PBR28
[6]. Specifically, we evaluated analytic approaches which
incorporate an arterial input function (AIF): total vol-
ume of distribution (VT) estimated with a two-tissue
compartment model (2TCM), a 2TCM variant which in-
cludes a parameter purported to describe irreversible up-
take in endothelial cells (2TCM-1k) [8], multilinear
analysis-1 (MA-1) [9], and estimation of binding poten-
tial (BPP) with simultaneous estimation (SIME) [10]. We
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also evaluated semi-quantitative metrics that do not in-
corporate an AIF: standardized uptake values (SUV) and
SUV ratio (SUVR). We hypothesized that models that
incorporate the AIF (2TCM, 2TCM-1k, MA-1, and
SIME) would be more sensitive to LPS-induced TSPO
increases.

Methods
Recruitment
The Yale University School of Medicine Human Investi-
gation Committee and the Radioactive Drug Research
Committee approved all study procedures. Subjects were
genotyped for the rs6971 polymorphism: only “high-”
and “mixed-affinity binders” were eligible (HABs and
MABs, respectively). Subjects (N = 8; 5 MABs, 24.9 ±
5.5 years old, 87.5 ± 12.3 kg, 8M) were recruited,
screened, and enrolled as previously described [6]. All
subjects provided written informed consent.

Experimental procedures
All subjects participated in one experimental session
consisting of two 120-minute [11C]PBR28 PET scans on
the same day. Following the baseline [11C]PBR28 PET
scan, subjects were injected with LPS (1.0 ng/kg IV),
NIH Clinical Center Reference Endotoxin E. coli sero-
type O:113. The second [11C]PBR28 PET scan started 3
h after the LPS injection.

Data processing
PET acquisition details have been fully described else-
where [11]. Briefly, [11C]PBR28 was synthesized with
high molar activity 569 ± 327 MBq/nmol (15.4 ± 8.8
mCi/nmol). [11C]PBR28 was injected via slow bolus (1
min), and PET data were acquired for 120 min on the
high resolution research tomograph (HRRT, Siemens)
with simultaneous optical head motion tracking (Vicra,
NDI Systems). Dynamic list-mode data were histo-
grammed into intervals ranging from 30 s to 5 min and
reconstructed using the MOLAR algorithm. T1-weighted
structural MR images were coregistered to PET data for
region of interest (ROI)-based extraction of time-activity
curves (TACs) determined in AAL template space. ROIs
assessed included the caudate, cerebellum, hippocampus,
thalamus, putamen, and frontal, parietal, temporal, and
occipital cortices. Arterial blood samples were collected
throughout each 120-minute scan to measure the
metabolite-corrected AIF and plasma free fraction (ƒp),
as previously described [6, 12].

Analytic approaches
Area under the curve (AUC) of the metabolite-corrected
AIF was calculated using numerical trapezoidal integra-
tion. Imaging data were analyzed using each approach:
1TCM, 2TCM, 2TCM-1k, MA-1, SIME, SUV, and

SUVR. Plasma uptake delay (τ) was estimated using a
1TCM from the first 10 min of data and was fixed for
2TCM and 2TCM-1k analyses. Compartment modeling
analyses were performed with the Compartment Model
Kinetic Analysis Tool (COMKAT [13]) in the MATLAB
environment. 1TCM poorly described ROI TACs; there-
fore, results are not reported. In the 2TCM model, four
rate constants were estimated: K1, k2, k3, and k4 [14].
The 2TCM-1k model includes a fifth parameter (kb) that
models purported irreversible uptake in endothelial cells
[8]. The corrected Akaike Information Criterion (AICc
[15]) indicated model preference for a fixed blood vol-
ume fraction (Vb = 5%) for 2TCM and 2TCM-1k. For
MA-1 [9], VT was estimated using t* = 30, consistent
with prior work [11]. Simultaneous estimation (SIME)
simultaneously fits TACs across all ROIs to estimate
whole-brain VND which, in combination with regional
VT values, can estimate ROI binding potentials specific
to total plasma concentration (BPP) [10]. Due to the low
free fraction (~ 2%) resulting in poor fP precision [16],
analyses incorporating ƒp in VT estimates are only in-
cluded for completeness as Additional file 1. Finally,
SUV was calculated as mean tissue activity concentra-
tion for each ROI during specified timeframes (60–90
min, 90–120 min) normalized by subject body weight
and injected [11C]PBR28 dose. SUVR was estimated by
dividing ROI SUV by whole-brain SUV. AICc was used
to compare model parsimony for 2TCM vs. 2TCM-1k
[15].
Repeated measures analyses of variance (rmANOVA)

were used to evaluate LPS effects on each calculated
endpoint (statistical transformations applied as needed
to normalize distributions) across ROIs (within-subject
factor) with rs6971 genotype (HAB vs. MAB) as a
between-subject factor (significance threshold: p < .05).
Partial eta-squared (η2) effect sizes were estimated from
rmANOVAs.

Results
The AIF AUC significantly decreased after LPS across
rs6971 genotypes (F (1, 6) = 41.06, partial η2 = 0.87; Fig. 2a;
group average time curves shown in Additional file 1: Figure
S1). In the brain, 2TCM VT and 2TCM-1k VT (inverse-
transformed) significantly increased after LPS by 47% and
24% on average, respectively (2TCM: F (1, 6) = 38.39, partial
η2 = 0.87; 2TCM-1k: F (1, 6) = 7.55, partial η2 = 0.56; Table
1; Figs. 1 and 2). Mean AICc values indicated 2TCM was
preferred to 2TCM-1k (2TCM, 20.0 ± 0.49 and 20.3 ± 0.78;
2TCM-1k, 23.5 ± 0.75 and 23.89 ± 1.38; pre- and post-LPS,
respectively). MA-1 VT and SIME BPP significantly increased
after LPS by 45% and 82% on average, respectively (F (1, 6) =
39.02, partial η2 = 0.87, and F (1, 6) = 49.29, partial η2 = 0.89,
respectively). Importantly, whole-brain SIME VND did not
significantly change from pre- to post-LPS (p = .39). SIME
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BPP, 2TCM VT, and MA-1 VT exhibited the largest LPS ef-
fects (partial η2 = 0.87–0.89; Table 1; Fig. 1; Additional file 1:
Figure S2). SUV and SUVR estimated smaller LPS effects
(partial η2 ≤ 0.35), which indicated an apparent decrease in
TSPO levels from baseline.

Discussion
This work indicates that peripheral LPS administra-
tion significantly reduced the [11C]PBR28 AIF AUC
by 33%. Approaches that incorporate the AIF (2TCM
VT, 2TCM-1k VT, MA-1 VT, and SIME BPP) yielded
large effect sizes for TSPO increases following LPS
administration. The SIME, 2TCM, and MA-1 ap-
proaches yielded nearly identical sensitivity (partial η2

= 0.87–0.89), while 2TCM-1k was less sensitive, albeit

still yielding a large effect size (partial η2 = 0.56).
AICc values preferred 2TCM to 2TCM-1k. SIME esti-
mates of BPP are directly proportional to TSPO levels
(i.e., do not include nondisplaceable uptake) and
therefore provide theoretically improved estimates of
specific binding. BPP yielded the largest percentage
increase following LPS challenge (82%), but also
greater variability and thus a nearly identical effect
size as 2TCM VT and MA-1 VT. Notably, VND esti-
mated with SIME did not change pre- to post-LPS.
Estimation of VT/ƒp also yielded significant LPS-
induced increases (Additional file 1) but smaller effect
sizes than VT due to the variability in ƒp estimation.
No evidence for LPS effects on ƒp measurements was
found. Therefore, we conclude that 2TCM, MA-1,

Table 1 LPS effects

Model Parameter LPS Effect

Partial η2 95% CI Overall (%) MABs (%) HABs (%)

AIF AUC AUC 0.87** 0.47–0.92 − 32.6 − 30.0 − 38.1

2TCM VT 0.87** 0.45–0.92 46.7 56.4 38.9

2TCM-1k VT 0.56* 0.03–0.74 24.3 10.4 34.6

MA-1 VT 0.87** 0.46–0.92 44.9 53.3 37.8

SIME BPP 0.89** 0.53–0.93 81.9 94.1 61.5

SUV, 60–90min SUV 0.35 0.00–0.61 − 9.9 − 1.4 − 19.8

SUV, 90–120min SUV 0.07 0.00–0.39 − 1.5 8.7 − 13.6

SUVR, 60–90 min SUVR 0.34 0.00–0.61 − 3.0 − 1.4 − 5.5

SUVR, 90–120min SUVR 0.15 0.00–0.46 − 1.3 − 0.7 − 4.3

LPS effect % = [(Post-LPS − Pre-LPS)/Pre-LPS] × 100. Partial η2 effect size interpretation: “Small” ≤ 0.09, “Moderate” = 0.10–0.24, “Large” ≥ 0.25. 95% CI 95%
confidence interval for the partial η2 effect size at p = .05. Significant LPS effects are noted
*p ≤ .05
**p < .01

Fig. 1 LPS effect sizes (partial η2) and 95% confidence intervals for each analytic approach are depicted
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and SIME are the most sensitive quantitative ap-
proaches to estimate TSPO availability in the context
of this LPS paradigm.
In contrast, semi-quantitative approaches that do not in-

corporate AIF measurements (SUV and SUVR) failed to de-
tect significant LPS-induced TSPO increases in the brain.
The significant reduction in AIF AUC suggests increased
[11C]PBR28 specific binding in the periphery and may ex-
plain the poor performance of SUV in this context. The glo-
bal [11C]PBR28 VT increase after LPS confirms the lack of
suitable reference region for TSPO in this context and con-
tributed to the poor performance of SUVR. Taken together,
these findings highlight the importance of the metabolite-
corrected AIF for LPS challenge studies, and support previ-
ous cautionary conclusions in the use of SUV-based quantifi-
cation of TSPO [17, 18].
LPS is a classic immune stimulus shown to evoke ro-

bust neuroimmune responses. Preclinical findings indi-
cate LPS increased brain TSPO levels which were co-
localized with activated microglia (CD11b and OX2 im-
munoreactivity) and astrocytes (GFAP immunoreactiv-
ity), increased expression of toll-like receptors (TLR-2

and TLR-4), and increased brain cytokine levels [3, 4,
19]. LPS administration substantially increases TSPO
immunohistochemical markers, mRNA levels, and pro-
tein expression in rodents [20, 21]. PET imaging studies
confirm that LPS upregulates TSPO levels across species
[3–5], including humans [6]. In sum, this literature
strongly supports our expectation that brain TSPO
should increase in response to systemic LPS
administration.
Limitations of this work include our inability to con-

firm whether LPS activates microglia and/or astrocytes
and recruits additional TSPO-expressing cells, or any
combination of these or other properties [22]. Addition-
ally, future research is needed to investigate if less inva-
sive approaches, i.e., venous input functions, can replace
the AIF.
In conclusion, our findings indicate that analytic ap-

proaches that incorporate the AIF are necessary to de-
tect LPS effects on brain TSPO levels. The findings
highlight the importance of the metabolite-corrected
AIF for quantification of LPS-induced [11C]PBR28 brain
changes.

Fig. 2 Individual subject data are depicted as means across ROIs (HABs = dashed lines; MABs = solid lines). a AIF AUC. b 2TCM VT. c MA-1 VT. d
SIME BPP. e 2TCM-1k VT. f 2TCM-1k kb. g SUV 60–90 min. h SUVR 60–90 min. i SIME VND
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13550-020-0605-7.

Additional file 1: Supplemental Material. Table S1. Figure S1. Mean
AIF data are depicted separately for rs6971 genotype HABs (C/C; gray
lines) and MABs (C/T; black lines) pre-LPS (solid lines) and post-LPS
(dashed lines). Figure S2. Individual values, pre- and post-LPS, are
depicted for each brain region for models that incorporate the AIF: A)
2TCM VT; B) 2TCM-1k VT; C) MA-1 VT (t*=30); and D) SIME BPP. The same
color marker was used to depict each subject’s data across models and
LPS dose (pre- vs. post-LPS). Figure S3. A Time-Activity Curve was
extracted from the occipital cortex (OCC) of a representative subject and
kinetic model fit are depicted: A) pre-LPS 2TCM; B) post-LPS 2TCM; C)
pre-LPS 2TCM-1k; and D) post-LPS 2TCM-1k.
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