Malherbe et al. EJINMMI Research (2020) 10:8
https://doi.org/10.1186/s13550-020-0591-9

EJINMMI Research

ORIGINAL RESEARCH Open Access

Quantitative 18F-FDG PET-CT scan
characteristics correlate with tuberculosis

treatment response

Stephanus T. Malherbe'”*

Check for
updates

, Ray Y. Chen”, Patrick Dupont™®, llse Kant®, Magdalena Kriel'#, André G. Loxton'?,

Bronwyn Smith'?, Caroline G. G. Beltran'%, Susan van Zyl'"?, Shirely McAnda'? Charmaine Abrahams'?,
Elizna Maasdorp'*’, Alex Doruyter®'", Laura E. Via*®, Clifton E. Barry III'**%, David Alland®,

Stephanie Griffith- Richards'®, Annare Ellman®, Thomas Peppard®, John Belisle'?, Gerard Tromp'*/,
Katharina Ronacher''®, James M. Warwick®, Jill Winter'* and Gerhard Walzl'

Abstract

dynamic changes of individual lesions.

Quantitative imaging analysis, Quantified lung analysis

Background: There is a growing interest in the use of F-18 FDG PET-CT to monitor tuberculosis (TB) treatment
response. Tuberculosis lung lesions are often complex and diffuse, with dynamic changes during treatment and
persisting metabolic activity after apparent clinical cure. This poses a challenge in quantifying scan-based markers of
burden of disease and disease activity. We used semi-automated, whole lung quantification of lung lesions to
analyse serial FDG PET-CT scans from the Catalysis TB Treatment Response Cohort to identify characteristics that
best correlated with clinical and microbiological outcomes.

Results: Quantified scan metrics were already associated with clinical outcomes at diagnosis and 1 month after
treatment, with further improved accuracy to differentiate clinical outcomes after standard treatment duration
(month 6). A high cavity volume showed the strongest association with a risk of treatment failure (AUC 0.81 to
predict failure at diagnosis), while a suboptimal reduction of the total glycolytic activity in lung lesions during
treatment had the strongest association with recurrent disease (AUC 0.8 to predict pooled unfavourable outcomes).
During the first year after TB treatment lesion burden reduced; but for many patients, there were continued

Conclusions: Quantification of FDG PET-CT images better characterised TB treatment outcomes than qualitative
scan patterns and robustly measured the burden of disease. In future, validated metrics may be used to stratify
patients and help evaluate the effectiveness of TB treatment modalities.
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Background

Understanding and accurately measuring the response
to tuberculosis (TB) treatment is complex and im-
portant. TB is one of the major global killers with an
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incidence of roughly 10 million and a mortality of
roughly 1.6 million people in 2017 [1]. It also com-
monly affects the most vulnerable communities and
often leads to disability associated with post-
tuberculosis lung impairment [2-8]. TB is still associ-
ated with stigma and ignorance, due to factors such
as the infectious nature, resultant chronic wasting,
and associations with poverty and other conditions,
such as HIV infection and addiction [9].

The protracted treatment of at least 6 months for
drug-sensitive pulmonary TB (PTB) increases the burden
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on health resources and likelihood of non-adherence. In
the literature, the reported rate of unfavourable out-
comes varies considerably; however, it usually ranges
from <5 to 19% in trials [10—15] to over 20% in national
health program conditions [1, 16]. Unfavourable treat-
ment outcomes include failure to convert to sputum cul-
ture negativity, treatment default, and disease
recurrence, which could be due to either endogenous re-
lapse or exogenous reinfection.

There is considerable effort to improve treatment
outcomes, shorten treatment duration, and reduce
disability. Nevertheless, testing new antibiotic regi-
mens or immunotherapy options is hampered by the
long duration of treatment and follow-up, required
because there is no gold standard to determine steri-
lising cure. Factors contributing to the uncertainty of
defining sterilising cure include the persistence of
radiological lung lesions [17, 18], clinical symptoms,
and Mycobacterium tuberculosis (MTB) DNA in spu-
tum [19, 20] after clinical cure. These attributes may
persist in spite of sputum culture negativity. Clinical
treatment programs, researchers, and investors in new
therapies urgently require improved methods to better
define TB treatment response. This need has triggered
an increasing interest in using 18-F fluorodeoxyglu-
cose positron emission tomography-computed tomog-
raphy (18-F FDG PET-CT) as a research tool in
tuberculosis. Due to its high sensitivity for metabolic
activity in infectious lesions, it has shown the poten-
tial to be a powerful and possibly cost-effective tool
in TB trials, despite the reported lack of specificity in
diagnosing active TB in high-incidence areas and its
dependence on expensive resources [21, 22].

FDG PET-CT is relatively non-specific for TB, since
malignancies and other inflammatory pathology demon-
strate similar FDG uptake. Although this limits its use as
a TB diagnostic tool in high burden settings [23], its
high sensitivity for TB lesions makes it an attractive op-
tion to monitor treatment response, once a diagnosis is
already established. Firstly, CT is more accurate than
traditional chest X-ray for correctly identifying most le-
sion types associated with TB, especially small nodules,
cavities, bronchial thickening, and tree-in-bud lesions
[24-26]. Secondly, the addition of PET to CT is reported
to further improve sensitivity by identifying small le-
sions, affected lymph nodes, and helping to distinguish
active from inactive lesions [23, 27-29].

Several animal infection models (mice, rabbits, non-
human primates) have effectively used FDG PET-CT
to shed light on TB progression to disease and re-
sponse to treatment [29-34]. FDG avidity decreases
in lung lesions of MTB-infected animals receiving
anti-TB treatment. The reduction in FDG avidity is
initially slow (first week of treatment), followed by a
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sharp decrease in avidity (week 4) after which it stabi-
lises. In untreated animals, FDG intensity shows a
variable correlation with MTB load (CFU) and a
strong correlation with the lesion size. FDG avidity
reduction often precedes reduction of lesion volume
and density on CT [29, 31]. The overall reduction in
FDG uptake over treatment time correlates with the
effectiveness of the bactericidal activity of different
treatment options [33].

In mouse models, FDG PET-CT is also able to detect
the development of relapse prior to microbiological evi-
dence [30]. Monitoring of the spatial evolution of PTB
lesions preceding relapse indicates that there is both
progression of existing pre-treatment lesions and the
formation of new lesions [35].

Human studies have also shown FDG PET-CT to
be promising in monitoring the effect of treatment in
pulmonary and extra-pulmonary TB [22, 28, 36-41].
While most of the studies used simple descriptive
techniques, two small trials aimed at the treatment of
drug-resistant TB, implemented whole lung quantifi-
cation of PET (using fixed thresholds) and semi-
quantified CT reader scores. These studies concluded
that quantified PET images were more robust than
reader-based CT scores, and both seemed to accur-
ately measure changes in disease burden over time
[42, 43].

We recently reported imaging findings in TB pa-
tients who underwent FDG PET-CT scans at baseline,
during, and after treatment (Catalysis treatment re-
sponse cohort) [44]. We documented strikingly com-
plex and heterogeneous lesion responses. During
treatment, a decrease in size and FDG avidity was
noted in most lesions. Unexpectedly, we did however
find lesions that appeared metabolically active, with
morphology in keeping with active disease in a sub-
stantial proportion of PTB patients after standard
treatment, including patients with a durable cure and
others who later developed recurrent disease.

In this report, we apply quantitative scan assess-
ment by semi-automated whole-lung analysis. We
show that these metrics are strongly associated with
clinical outcomes, patient factors, and microbiological
outcomes. Further, we discuss which identified scan
characteristics appear most meaningful for both the
interpretation of treatment response and the separ-
ation of favourable from unfavourable treatment out-
comes. This information is drawn from over 338
scans from 96 patients and points towards the most
meaningful metrics in the complex scan profiles of
TB treatment response. Some metrics already show
prognostic potential at diagnosis, while others that
track changes over time become more meaningful at
the end of treatment.
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Methods

Recruitment and study procedures

Participants considered for this report were 99 newly
diagnosed, culture-confirmed, pulmonary TB patients
who successfully completed follow-up as part of the
previously published Catalysis treatment response co-
hort [44-46]. They were HIV-uninfected adults, re-
cruited at primary health care clinics in the northern
regions of Cape Town, South Africa. Patients under-
went FDG PET-CT scans at diagnosis (Dx) and at
month 1 (M1) and month 6 (M6) of treatment. Fifty
patients also had FDG PET-CT scans 1year after the
end of treatment (EOT + ly). PET images were cor-
rected for attenuation and reconstructed to 4 x4 x
4 mm voxels using an iterative algorithm. The CT
scan parameters were set at 120 kV, 100 mAs, without
dose modulation with 1.17 x 1.17 mm pixels, and a 3-
mm slice thickness, reconstructed with I31 filter and
B31 s con kernel.
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Figure 1 shows a flow diagram of the study design and
scan settings as described in Additional file 1: Supplemen-
tary note 1.

Clinical samples and information were collected at day
0, week 1, 4, 8, 12, and 24 (month 6) for all participants.
Samples included liquid culture with speciation and
GeneXpert® MTB/Rif (Xpert) assays on sputum and the
analysis of multiple biomarkers in blood and urine.

Qualitative scan assessment

We previously conducted and reported qualitative scan
assessments by comparing each lesion’s intensity at M6
to the intensity at Dx.** Three different response pat-
terns were described: (1) A ‘resolved’ scan response pat-
tern showed no lesion with more than minimally
increased FDG intensity when compared to surrounding
lung tissue M6. (2) An ‘improved’ pattern indicates that
all lesions improved during treatment, but one or more
lesion showed residual FDG avidity at M6. (3) A ‘mixed’

131 Culture positive PTB
patients enrolled

32 Excluded:
8 Negative culture at Dx
7 missed a scan visit.

99 underwent PET/CT scan at
Dx, M1, M6

5 lost to follow-up
8 withdrew consent
3 serious co-morbidities

8 failed treatment
6 had only telephonic

84 had formal EOT + 1yr study
visit

interview and medical
records review

27 already past time-point at
protocol change

50 had EOT + 1yr PET/CT scan

Fig. 1 Flow diagram of study design and participants included in analysis

8 not willing or available for
scan
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response indicated that while some lesions improved, at
least one intensified, or a new lesion was present at M6.
EOT + 1y scans were compared to M6 scans for qualita-
tive classification.

Quantitative scan assessment

Based on a previously described methodology [47], we
quantified the extent and severity of lung lesions concur-
rently on PET and CT for all scans (Dx, M1, M6, EOT +
ly). After co-registration of scans across time points
using the SPM toolbox [48] in MATLAB (Mathworks
Inc.), we created volumes of interest (VOIs) of lungs on
the CT component with MRICro [49]. The lung VOIs
were adapted by excluding areas affected by misregistra-
tion and created to fit all time points. In some cases, we
had to create a separate lung VOI for the EOT + 1y scan,
due to substantial lung volume changes related to fibro-
sis or poor inspiratory effort. In addition, we created
VOIs which appeared lesion-free on both PET and CT
on all time points to represent references for back-
ground FDG uptake in the lung.

We segmented the PET component by using a lesion-
to-background comparison. To reduce intra- and inter-
scan variability, we standardised uptake using patient-
specific reference volumes. We assigned a Z-score to
each voxel based on:

counts—
7 HNL

ONL

in which pyp and oy are the mean and standard devi-
ation of PET counts within the lesion-free lung VOIs for
each scan. All voxels exceeding a Z-score of 8 were seg-
mented as FDG-avid [47].

We used a previously reported method of density
thresholding to segment lesions on CT [42-47]. These
thresholds were as follows: (1) normal density, between —
950 Hounsfield units (HU) and - 500 HU; (2) soft lesions
(Vsot), from —500 to —300 HU, usually tree-in-bud le-
sions or nodules, but may also include regular, medium,
to large vasculature; (3) medium density lesions (Viedium)
from - 300 to — 100 HU, which usually consists of nodular
infiltrates, but may also include established lesions in early
progression or partial resolution; and (4) hard lesions
(Vhara), @bove — 100HU, are usually due to consolidation,
cavity walls, bronchial thickening, or calcified fibrosis. We
delineated cavity air volume using a gradient-based
region-grow technique, and on the M6 scan measured the
thickness of cavity walls at the level of the widest diameter
on the transverse view. We measured the wall thickness of
enclosed cavities at the level of widest cavity diameter, and
the area of maximum wall thickness where there was no
confluence with other lesions and structures, or fibrotic
changes (examples shown in Additional file 1: Figure S1).
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After segmentation, the following PET parameters
were quantified: (1) metabolic lesion volume (MLV); (2)
the mean Z-score in the MLV (Zean); and (3) total
glycolytic activity index (TGAI): the product of the MLV
and mean lesion- to- background intensity index:

(TGAI = MLV x meanlesioncounts/
meancountsinnormallung).

In addition, the program also measured the volumes of
each abnormal density category on CT, ie. Voo Vine.
diumy Vhard» and total volume with abnormal density > -
500 HU (Viota). We also measured a combined FDG
PET-CT metric: MLV, = the intersection of MLV and
area with increased density on CT (= - 500 HU).

To create a variable to combine all major contributing
factors on PET and CT, we assigned the Z,,, score to
the cavity volume (with no perfusion, thus no FDG up-
take). We then added this to the TGAI value to obtain a
composite measure of both metabolically active lesions
and cavities. The resulting formula was:

TGAIcom = TGAI + (cavityvolume(ml) x meanlesioncounts/meancountsinnormallung).

We previously published further detail regarding quan-
tification and evaluation of the described technique [47].

Statistical testing
We considered a P value smaller than 0.05 as significant.
We tested the association between categorical and con-
tinuous variables with a two-way T test for independent
samples (Tibco® Staticstica™ V13). For analysis of vari-
ance tests with multiple grouping variables (TTN group-
ing variables), we applied the more conservative
Kruskal-Wallis non-parametric test (R version 3.2.2). We
calculated P values for receiver operating curves in order
to test the null hypothesis that the area under the curve
equals 0.50 (GraphPad® Prism V8). We performed post
hoc analysis to distinguish favourable and pooled un-
favourable outcomes by applying thresholds suggested
by receiver operating curves. We used the Fisher exact
test to determine significant associations between cat-
egorical variables (GraphPad® Prism V8). In this de-
scriptive study, we did not correct for multiple testing.
We use the standard terms prognostic and predictive
when comparing the association between FDG PET-CT
parameters and outcomes. While the ability of a M6
marker to identify failed cases is strictly speaking diagnos-
tic since it applies to the same time point, in practice, cul-
ture results are delayed and failed and relapse cases are
grouped together when assessing treatment efficacy.

Results

Patient demographics and treatment outcome

We recruited 99 PTB patients, of which 95 had drug-
sensitive (DS) strains, 2 had isoniazid mono-resistant
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strains, and 2 multi-drug resistant strains. More details
regarding the treatment regimens are provided in Add-
itional file 1: Supplementary note 2.

We based patient clinical outcome classifications on
WHO definitions, except we used the more sensitive
sputum culture, instead of direct smear microscopy. The
outcomes for 3 patients were classified as un-evaluable
(UE) due to sputum culture contamination, and they
were excluded from the analysis. Of the remaining 96
participants, favourable treatment outcomes include 76
cured cases (achieved and maintained culture conver-
sion). Unfavourable outcomes included 8 failed treat-
ment cases (sputum culture positive at M6), and 12 with
recurrent PTB (initially culture converted, but re-
diagnosed with active TB within 2 years after treatment
completion). One of the 8 failed treatment cases was
asymptomatic in spite of a positive sputum culture at
M6 and declined to restart treatment and remained
symptom-free when assessed a year later. Of the patients
with recurrent PTB, 2 were culture confirmed; 5 were
confirmed by both Xpert and smear positivity by direct
microscopy (acid-fast bacillus positive); 3 were Xpert
negative at month 6 but converted back to positive; and
3 remained Xpert positive for more than 6 months and
deteriorated clinically. The absence of post-treatment
culture complicated the recurrence diagnosis and pre-
vented the distinction between relapse and reinfection.

Outcome was further stratified based on time to cul-
ture conversion and treatment adherence. Eighteen pa-
tients converted to sputum culture negative within 4
weeks, an additional 39 by week 8, another 22 by week
12, and a further 9 by week 24. Time to culture negativ-
ity (TTN) was un-evaluable (UE) for 3 patients due to
contaminated cultures. Fourteen patients took fewer
than approximately 80% of their treatment dosages dur-
ing the 6-month period, which is regarded as poor ad-
herence in most clinical trial designs. The failed
treatment group included 4 patients with poor treatment
adherence and 1 with MDR disease [12, 13]. Further
clinical information and demographics of the cohort
may be found in our previously published online
methods [44].

We performed a fourth scan 1year after the end of
treatment (EOT +1y) for 50 patients that culture-
converted at M6. Eight of these 50 patients were diag-
nosed with recurrent disease by healthcare providers
within 2 years of treatment completion (five before the
EOT + 1y scan and three after). The other 42 maintained
favourable treatment outcome status.

Qualitative FDG PET-CT results summary

The scans showed ongoing inflammation at the end of
treatment in the majority of the patients [44]. For 51
(52%), there was an improved response on the M6 scan
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(Fig. 2a, Fig. 3a). A mixed response was seen in 34 (34%)
patients (Fig. 2b, Fig. 3b), of which 14 had both new and
more intense lesion(s), 16 demonstrated only an increase
in the intensity of lesion(s), and 4 had only new FDG-
avid lesion(s). Only 14 (14%) patients had a resolved pat-
tern on their M6 scan (Fig. 2c).

The morphology associated with the most intense le-
sion of each mixed and improved M6 scan included CT
features suggestive of active PTB, such as cavities (in 26
cases), patchy consolidation (in 22), complex lesions in-
volving consolidation with cavitation (in 16), nodular in-
filtrates (in 17), enlarged hilar lymph nodes (in 3), and
pleural-based infiltrates (in 1). Smaller nodules and tree-
in-bud-lesions without calcification tended to resolve
during treatment, especially when present in the lower
lobes, and even if they were diffuse. Results for each pa-
tient are included in Additional file 2: Dataset 1.

Quantitative FDG PET-CT characteristics in relation to
sputum time to culture negativity

Lesion burden was significantly associated with TTN for
the three main independent FDG PET-CT parameters
(total cavity volume, TGAIL, Vi) at Dx, M1, and M6
(Fig. 4a, ¢, e). The differentiation between the TTN
groups became more pronounced during treatment.
Cavity volume showed the largest difference between
TTN groups at single time points (P < 0.001 at Dx, M1,
and M6 —Fig. 4c). Proportional TGAI changes (P=
0.031 at M1; P=0.002 at M6 —Fig. 4b) from baseline
(delta), were also significantly associated with TTN.
Similar trends were noted for cavity volume and Viyw
(Fig. 4d, f), but did not meet the threshold for signifi-
cance. Delayed sputum converters (between months 5
and 6) and failed treatment cases thus showed both a
larger burden of disease and a slower rate of reduction
in scan metrics. The recurrence group also showed a
slower rate of reduction in scan metrics, but did not
have a large baseline burden of disease (Fig. 4d).

We also evaluated the individual components of the
TGAI (Zeans the SUV ., MLV —Additional file 1: Fig-
ure S3), and high-density lesions on CT (Vhardr Vinediums
Vsort —Additional file 1: Figure S4), as well as the inter-
section of high-density lesions on CT and FDG-avid le-
sions on PET (MLV,,,—Additional file 1: Figure S5).
We found a significant correlation between TTN groups
and single time-point values for indicators of lesion vol-
ume (MLV, Viards Vinediumy Vsofte MLVapn), but not for
indicators of PET intensity (Zyean, SUVmax). The pro-
portional change from Dx to M6 in these variables was
significantly associated with TTN groups for all these
variables (Zeans MLV, Viards Vinediums Vsofte MLVapbn) €X-
cept SUV ax. None of these variables, however, showed
a clear advantage over the main independent FDG PET-
CT variables (cavity volume, TGAIL Viya1)-
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Fig. 2 Dx, M1, M6 and EOT + 1y FDG PET-CTs for three representative cases that received 6 months of standard treatment and maintained cure.
Three-dimensional anterior and transverse slices at the level of horizontal blue line. a Residual cavity with moderate FDG avidity at M6 improves
over the next year, leaving nodular infiltrate with mild activity. b New nodule with high intensity seen at M6. It resolved at EOT + 1y, but two new
nodules have formed. c All lesions resolved at M6, but three new areas with small nodular and tree-in-bud infiltrates seen at EOT + 1y
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Fig. 3 FDG PET-CTs for three representative cases that received 6 months of standard treatment. Three-dimensional anterior and transverse slices
at the level of horizontal blue line. a Bilateral upper lobe cavitation at Dx, which demonstrate increased intensity at M1. At M6, the left cavity has
changed to fibrotic tissue with mild uptake, but the right cavity still has a thick wall and high uptake. b Failed treatment case with bilateral upper
lobe cavities that retain very high intensity at Mé. ¢ Case diagnosed with recurrent disease subsequent to EOT + 1y scan. All lesions improved to
moderate intensity uptake at M6, but a large new area of patchy consolidation is seen at EOT + 1y

Scan characteristics of failed treatment an area under the curve (AUC) of 0.81 (P =0.006) at Dx,
As expected from TTN correlation results, cavity volume  0.83 (P =0.005) at M1, and 0.87 (P =0.004) at M6 (Add-
had the strongest association with treatment failure, with  itional file 1: Figure S6). Apart from cavity volume, other
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metrics reflecting lesion extent (Viow, MLV, MLV,,)
also showed promise to differentiate failed cases from
cured at Dx, M1, and M6, while parameters reflecting
the intensity of FDG uptake (SUVmax, Zc.,) did not
show prognostic value at baseline, but only at M6. A
summary of AUC’s for various scan parameters to differ-
entiate failed treatment cases is in Additional file 1:
Table S1. Of note, the one asymptomatic, failed treat-
ment case (participant identification number 43) had

quantified values in keeping with a good response to
treatment.

In addition to cavity volume, M6 cavity wall thickness
was also associated with treatment failure. In most cured
cases, M6 cavity wall thickness ranged from 0 (no cavity)
to 3mm. M6 cavity wall thickness in failed cases was
significantly greater than cured cases’ (Student’s T test
for independent samples; P< 0.001) and ranged from
2.5 to 8 mm. At end of treatment, recurrent cases were
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not significantly different from other cured cases; their
M6 cavity wall thickness ranged from 0 to 4 mm.
Treatment outcome was also associated with the quali-
tative scan response pattern (Fisher’s exact test;
P< 0.01) and showed high sensitivity, in that a mixed

response was found in all failed patients at M6. How-
ever, neither a mixed response nor a high maximum le-
sion intensity was specific for an unfavourable outcome,
and 21 (28%) of cured patients had a mixed response,
while 55 (72%) still had M6 lesions with moderate to
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very high intensity. This was similar to the intensity
range seen in some untreated cases at diagnosis.

Scan characteristics of recurrence

The 12 patients diagnosed with recurrent disease within
2years after treatment had a similar sputum culture
conversion rate to cured cases (median TTN 8 weeks)
and did not show a comparatively large lesion burden at
Dx (Fig. 4). Nevertheless, irrespective of TTN, during
treatment they exhibited a relatively slow rate of reduc-
tion in TGAI, cavity volume, and to a lesser extent Vi,
(Fig. 4b, d, f).

At M1, there was a trend for the recurrent disease
group to have a smaller reduction in TGAI and TGAI-
com burden. At M6, the difference between the groups
was significant (P=0.003). No other parameters were
significantly different between cured and recurrent dis-
ease groups.

Patients who reported previous PTB episode(s) tended
to have a higher TGAI burden at Dx and showed signifi-
cantly less TGAI reduction on treatment (P =0.003,
Additional file 1: Figure S7). They also showed less re-
duction in cavity volume, but no clear difference in ab-
normal CT density (Vioa1). See Additional file 1: Table
S2 for additional summary statistics on previous TB.

Scan characteristics of pooled unfavourable outcomes

We pooled patients with unfavourable outcomes (failed
and recurrent treatment) and analysed the most promis-
ing scan parameters’ distribution per groups, combined
with receiver operating curve analysis to determine the
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most informed thresholds. A failure to reduce TGAI by
less than 80% from Dx to M6 was the scan characteristic
most associated with unfavourable outcomes and carried
an almost sevenfold risk. Table 1 shows indicators of M6
scan parameter associations with unfavourable outcomes
and the suggested cut-offs, and Fig. 5 compares the dis-
tribution of scan metrics for outcome groups.

A total M6 cavity volume greater than 7 ml and a M6
TGALI of greater than 600 (equivalent to a SUV-based
total glycolytic activity of roughly 200 if calculated using
SUV) also carried a fourfold increased risk of an un-
favourable outcome. Cavity volume was slightly more
sensitive and TGAI more specific in predicting un-
favourable outcomes. Combining the variables did not
improve prognostic accuracy, either when merged into a
single variable or when used in Boolean selection. TGAI-
com performed very similarly to TGAIL We also tested
whether either M6 cavity volume >7 ml or TGAI > 600
put a patient in the high-risk group, but this generated
the same sensitivity but lower specificity than single
variables.

Quantitative parameters at M6 out-performed lesion-
based qualitative measurements. A mixed response pat-
tern (either new or intensified lesions) at M6 was associ-
ated with a 2.86 times increased risk of unfavourable
outcome, which was comparable to the prognostic po-
tential of the quantitative parameters at M1. At M1,
both a cavity volume greater than 20 ml and a less than
33% cavity volume reduction from Dx were significantly
associated with unfavourable outcome, showing a 2.5-
and 2.8-times increased risk of unfavourable outcome
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Table 1 Summary of contingency table statistics for scan parameters
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No. that met criteria (n = 96)

Parameter P value Relative risk ~ 95% Cl Sens Spec PPV NPV AUC  Criteria Cured Fail Recur
TGAI change M6 <0.0001 697 253-1922 080 075 046 094 080 <80% 19 7 9
TGAlcom change M6 <0.0001  6.67 242-1840 080 074 044 093 080 80% 20 7 9
Cavity M6 <0.001 436 2.09-9.12 055 08 052 088 065 >7ml 10 7 4
Cav change M6 <001 4.30 1.91-9.64 0.65 0.79 045 090 068 <60% 16 6 7
M6 TGAlcom <0.001 4.05 1.98-8.32 050  0.88 052 087 068 >1000 9 6 4
TGAI M6 <0.001 4.05 1.98-833 050 083 053 087 069 >600 9 6 4
Cavwall M6 0.00 3.95 1.90-7.90 050  0.88 053 087 070 =23mm 9 6 4
Mixed response M6 0.02 2.86 1.30-6.31 060 072 036 087 N/A Intensified 21 8 4
Viotal M6 0.05 220 103-456 045 077 035 084 064 >7% 17 6 3
SUVmax Mé 0.19 1.82 0.85-3.85 050 068 029 084 060 >4 24 6 4
Cav change M1 0.01 2.80 133-5.92 050  0.80 040 086 052 <33% 15 5 5
Cavity M1 0.04 250 1.18-5.32 035 087 041 084 057 >20mm*> 10 6 1
TGAI change M1 0.07 224 105-478 040 082 036 084 067 <5% 14 4 4
TGAlcom change M1 0.16 1.80 0.83-3.89 040  0.76 031 083 066 15% 18 3 5
Viotal Change M6 0.01 2.89 1.39-5.77 040 087 044 085 066 <50% 10 5 3
Cavity Dx 0.18 1.72 0.79-3.71 045 072 029 083 053 >165ml 22 6 3

Ranked according to relative risk of unfavourable outcome. Fisher exact test was performed to determine significance. Sens (sensitivity), spec (specificity), PPV
(positive predictive value), NPV negative predictive value. Change (change from baseline), intensified (at least one intensified or new lesion), month 6 (M6),
percentage change from baseline to M6 (change), total glycolytic activity index (TGAI), composite TGAI (TGAl.nm), cavity wall thickness (Cavwall), total abnormal

density volume (V;ora)

respectively (P=0.04 and P=0.01 respectively). Total
TGAI values at Dx and M1 did not perform well as a
predictor of pooled unfavourable outcomes, but a trend
(P =0.07) suggests an increased risk of unfavourable out-
come when there is less than 5% reduction in TGAI
(from Dx to M1).

Scan results: EOT + 1y

Most residual lesions were smaller and less intense 1 year
after the end of treatment. Metabolic lesion volume de-
creased to an average of only 2.03% of lung volume at
EOT + 1y, compared to 4.21% at M6 in the same pa-
tients. Mean total cavity volume also decreased from 7.6
ml at M6 to 2ml at EOT + 1y. Abnormal CT density
showed less reduction during treatment than other pa-
rameters after treatment, and the mean Vi, at EOT +
1y was 4.53%, compared to 5.7% at M6. Figure 6 shows
the distribution of TGAI and cavity volume across time
points.

Remarkably, only 32% of EOT + 1y scans were com-
pletely resolved. The remaining 68% had FDG-avid re-
sidual lesions, of which half had improvement of all
lesions compared to M6 (Fig. 2a), and the other half had
a mixed lesion response compared to the M6 scan
(Fig. 2b, ¢, Fig. 3c). Morphology of new FDG-avid lesions
at EOT + 1y included nodular infiltrates (found in 4
cases), hilar lymph nodes (in 1), cavitation (in 2), con-
solidation (in 2), or lesions with combined morphology

(in 3). There was no association between the develop-
ment of new lesions during Dx-M6 and during M6-
EOT + 1y. Morphology of residual M6 lesions showing
similar or more intense FDG uptake at EOT + 1y in-
cluded consolidation (2), cavitation (4), and nodules (2).
All three patients who developed recurrent PTB after
EOT + 1y had mixed scan outcomes at this time point
(Fig. 2¢), while none with resolved EOT + 1y scans were
diagnosed with recurrence. Figure 2 and Fig. 3 show ex-
amples of dynamic lesion progression and resolution
during and after treatment.

We found no significant association between M6 and
EOT + 1y for TGAI or cavity volume (Additional file 1:
Figure S8a and S8b). However, we found a moderate
correlation between the time points for Vi, and SUV-
max (Additional file 1: Figure S8c and S8d).

Discussion

Summary of main findings

Quantification of the FDG PET-CT images provides
metrics that show stronger association with clinical out-
comes compared to qualitative scan patterns. Qualitative
scan response patterns are more challenging to interpret,
due to varying responses of individual lesions and in-
complete resolution of inflammation during treatment.
The most promising quantitative marker (TGAI not re-
ducing by >80% from Dx to M6) carried a 6.97 relative



Malherbe et al. EJINMMI Research (2020) 10:8

risk of unfavourable outcome, compared to 2.86 if a
mixed response pattern was observed.

Various scan metrics measured in this study showed
prognostic potential at Dx and M1 and stronger associa-
tions with unfavourable outcomes by M6. A high cavity
volume showed the strongest association with a risk of
treatment failure, while a suboptimal reduction of the
total glycolytic activity throughout the lung had the
strongest association with recurrent disease. Both of
these variables also correlated with time to culture nega-
tivity. This suggests a correlation between the quantified
lesion burden and the MTB load that is clearer when
using quantitative rather than qualitative analysis.

The volume of high-density lesions on CT (Vi) also
shows a strong association with TTN and failed treat-
ment, even at early time points (Dx and M1). Unlike
TGAI however, Vi, shows no association with recur-
rent disease and subsequently, pooled unfavourable out-
comes. This is likely due to residual scarring and fibrotic
changes and the related residual abnormal density le-
sions on CT after treatment. Values indicating FDG up-
take intensity alone (SUVmax and Z,e.,) do not show
association early in treatment. However, the propor-
tional intensity changes are associated with TTN and
outcome, though not as strongly as TGAI, which com-
bines information from intensity and volume. Combined
PET and CT parameters perform similarly to their
underlying components, but they do not appear to be
clearly superior to individual variables.

Quantification of EOT + 1y scans confirms our previ-
ous observations that there is a tendency for all parame-
ters to decrease after treatment, but that a lack of
complete resolution is still common and new or intensi-
fying lesions are often seen. Dynamic changes after treat-
ment are common for PET parameters resulting in a
poor correlation between M6 and EOT + 1y measure-
ments, compared to CT lesions which appear to be more
persistent after treatment.

We found notable differences between failed and re-
current treatment cases. Failed treatment is associated
with extensive lung lesions at baseline and large cavities
with thick walls at M6, as well as poor adherence. On
treatment, a reduction in the FDG avidity and thickness
of cavity walls is usually also associated with a reduction
in cavity volume. Interestingly, it is relatively common
for cavities to show a reduction in both FDG avidity and
wall thickness (thus appearing inactive), but to show an
increase in size after M1. This may reflect a loss of
structural wall strength and progress towards the forma-
tion of bullae (Additional file 1: Figure S1b). Recurrent
cases display a comparatively low lesion burden at base-
line, average adherence, and time to sputum culture
negativity, but insufficient reduction in lesion burden
during treatment. We also found insufficient reduction
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in lesion burden in patients with a history of previous
PTB episodes.

Comparison with previous literature

The catalysis treatment response cohort is the largest
prospective study conducted on the use of FDG PET-CT
in human patients with PTB and the first report on the
fate of residual FDG PET-CT lesions after PTB treat-
ment [45]. In this report, we found that a quantitative
analysis of scan characteristics shows a stronger associ-
ation with outcomes than a qualitative analysis of these
same characteristics. In related publications, these quan-
titative metrics also correlate well with host biomarkers,
namely gene expression signatures [46], and urinary con-
centration of the recently discovered metabolite, seryl-
leucine core 1 O-glycosylated peptide [50]. The potential
of quantitative FDG PET-CT variables to identify pa-
tients with a low risk of treatment failure was also ana-
lysed in combination with other patient variables and is
currently being tested in the PredictTB trial [51].

Our quantitative findings correspond well with previ-
ous reports on animal models [29-31, 52] and validate
findings from two studies in drug-resistant TB cases,
which also show that the quantified inflammation bur-
den, as measured by FDG, corresponds with the effect-
iveness of treatment [41, 43]. Our results are consistent
with those of previous reports in humans in which cavi-
tary disease is associated with an unfavourable outcome
[11, 53, 54]. The persistence of density changes in the
lungs is also in keeping with reports of the high inci-
dence of post-tuberculosis lung impairment [6, 8]. We
found no published reports in human tuberculosis that
compare as many quantified parameters in either PET
or CT scans for a sample size this large or suggest cut-
off values that may be used for direct comparison in
future studies.

Study limitations

Although this is the largest prospective cohort of FDG
PET-CT in TB treatment response, it is still a limited
sample size with a small number of unfavourable out-
comes, and we did not have sufficient data to differenti-
ate relapse from recurrence. On account of these
limitations, we did not perform multivariable logistic re-
gression analysis, due to both the risk of false-positive
findings from overfitting a model and false-negative
findings due to confounding unfavourable outcomes by
reinfection cases. In the absence of a ground truth, we
also cannot exclude the possibility that other analysis
methods could improve on the prognostic ability of scan
characteristics or that different PET-CT scanner models,
acquisition, and reconstruction protocols will affect the
results. With regard to EOT + 1y scans, the variation in
timing between the scan and the recurrent disease
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diagnosis limited the conclusions we can draw from the
data. The study design excluded HIV-infected partici-
pants to ensure a more homogenous group for bio-
marker discovery. As such, the suitability of the variables
and cut-offs will have to be re-evaluated in this import-
ant subset of TB patients. We did not perform pharma-
cokinetic studies.

Implications

At month 6, the best indicator of unfavourable outcomes
(treatment failure and recurrences) shows 80% sensitivity
and 75% specificity, which is modest for a diagnostic test
but far superior to currently used predictive biomarkers
for poor treatment outcomes, such as month 2 sputum
culture conversion or AFB smear conversion. The
thresholds defined in this report require further valid-
ation before direct application to clinical practice, but
the associations with quantified patient and microbio-
logical data suggest that most prominent FDG PET-CT
scan characteristics can be used as part of risk stratifica-
tion and treatment response monitoring in therapeutic
trials. In combination with clinical evidence, it may also
assist treatment decisions in complicated clinical cases,
such as treatment of drug-resistant TB and evaluation of
adverse reactions to medication. Quantification of cen-
tral trends in lesion burden provides continuous vari-
ables that allow multiple options for statistical analysis.
This approach holds promise for improving the accuracy
of clinical reporting.

Future research

Quantification methods should be further improved to
be less operator-dependent, more user-friendly and
widely available to both researchers and clinicians. Sug-
gested thresholds should be validated and tested in
shortened TB regimens. Further translational research
may implement FDG PET-CT scan characteristics to ex-
plore complex interactions between host, MTB, and
anti-tuberculous drugs, to help develop improved regi-
mens, host-directed therapy, and diagnostic tests.

Conclusions

Quantification of FDG PET-CT images better charac-
terised TB treatment outcomes than qualitative scan pat-
terns and robustly measured the burden of disease. This
approach requires validation in future studies.
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MLV: Volume with high intensity (> Z-score 8); MLV,p,,: Volume with high
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