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Abstract 

Background:  Positron emission tomography (PET) is routinely used for cancer staging and treatment follow-up. 
Metabolic active tumor volume (MATV) as well as total MATV (TMATV—including primary tumor, lymph nodes and 
metastasis) and/or total lesion glycolysis derived from PET images have been identified as prognostic factor or for 
the evaluation of treatment efficacy in cancer patients. To this end, a segmentation approach with high precision 
and repeatability is important. However, the implementation of a repeatable and accurate segmentation algorithm 
remains an ongoing challenge.

Methods:  In this study, we compare two semi-automatic artificial intelligence (AI)-based segmentation methods 
with conventional semi-automatic segmentation approaches in terms of repeatability. One segmentation approach 
is based on a textural feature (TF) segmentation approach designed for accurate and repeatable segmentation of 
primary tumors and metastasis. Moreover, a convolutional neural network (CNN) is trained. The algorithms are trained, 
validated and tested using a lung cancer PET dataset. The segmentation accuracy of both segmentation approaches 
is compared using the Jaccard coefficient (JC). Additionally, the approaches are externally tested on a fully independ-
ent test–retest dataset. The repeatability of the methods is compared with those of two majority vote (MV2, MV3) 
approaches, 41%SUVMAX, and a SUV > 4 segmentation (SUV4). Repeatability is assessed with test–retest coefficients 
(TRT%) and intraclass correlation coefficient (ICC). An ICC > 0.9 was regarded as representing excellent repeatability.

Results:  The accuracy of the segmentations with the reference segmentation was good (JC median TF: 0.7, CNN: 
0.73). Both segmentation approaches outperformed most other conventional segmentation methods in terms of 
test–retest coefficient (TRT% mean: TF: 13.0%, CNN: 13.9%, MV2: 14.1%, MV3: 28.1%, 41%SUVMAX: 28.1%, SUV4: 18.1%) 
and ICC (TF: 0.98, MV2: 0.97, CNN: 0.99, MV3: 0.73, SUV4: 0.81, and 41%SUVMAX: 0.68).

Conclusion:  The semi-automatic AI-based segmentation approaches used in this study provided better repeatability 
than conventional segmentation approaches. Moreover, both algorithms lead to accurate segmentations for both 
primary tumors as well as metastasis and are therefore good candidates for PET tumor segmentation.
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Introduction
Positron emission tomography in combination with com-
puted tomography (PET/CT) using the tracer fluorode-
oxyglucose (FDG) is an important imaging modality for 
cancer diagnosis, tumor staging, prognosis or treatment 
follow-up [1, 2]. The volume of the segmented tumor in 
the PET image, also known as metabolic active tumor 
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volume (MATV) as well as the total MATV (TMATV—
including metastasis and lymph nodes), is one impor-
tant metric for the evaluation of therapy response [3]. 
Observed differences in MATV/TMATV should reflect 
actual tumor volume differences and not segmentation 
errors. Therefore, a repeatable segmentation is of utmost 
importance. Hereby, a repeatable segmentation refers to 
a segmentation algorithm leading to comparable results 
when applied on two consecutive PET/CT images of 
the same patient under the same physiological condi-
tions. The implementation of a repeatable segmentation 
algorithm is not trivial due to the challenges associated 
with PET images. Among them are factors regarding 
the image quality, e.g., the low signal-to-noise ratio, low 
spatial resolution and partial volume effects. Especially 
for smaller lesions, the partial volume effect can reduce 
the apparent tumor uptake, making the lesion difficult to 
detect and segment.

Up to now, a manual segmentation by an expert or (if 
available) a consensus segmentation of several experts 
are considered as gold standard. However, manual seg-
mentations have several drawbacks, e.g., they are time-
consuming, non-reproducible and come with a high 
inter-observer variability [4–6]. A recent study also dem-
onstrated that even the consensus of several observers 
results in a low repeatability compared to automated seg-
mentations [7].

To overcome the limitations of manual segmentations 
and to increase repeatability, a large number of (semi-) 
automatic segmentation methods have been developed. 
The most basic and frequently used ones are thresholding 
algorithms defining voxels with an intensity value above 
a certain threshold as part of the tumor [8]. Also adap-
tive and iterative algorithms are available which adapt the 
threshold according to the actual image characteristics 
[9]. However, the performance of all these thresholding 
approaches depends on the scanner type, reconstruction 
algorithm, as well as image noise and have therefore limi-
tations [10].

Therefore, more robust segmentation algorithms have 
been developed aiming to improve segmentation accu-
racy and repeatability. These include methods using the 
statistical properties of the image as well as learning-
based methods [11, 12]. Nevertheless, most of these 
approaches have only been tested on limited datasets and 
are not widely available. Therefore, (semi-) automated 
segmentation methods used in the clinic are still mainly 
simple threshold-based approaches.

Due to the mentioned limitations of available seg-
mentation algorithms, there is the need for new, more 
robust segmentation approaches. Artificial intelligence 
(AI)-based segmentations such as convolutional neural 
networks (CNN) have shown very promising results for 

various segmentation tasks [13] and yield great promise 
for the segmentation of tumors in PET images. However, 
only a few studies use AI-based segmentation approaches 
for metabolic active tumor segmentation in PET images. 
Moreover, most studies combine the information of PET 
and CT images in order to get reliable segmentation 
results [14] or use some post-processing for an improve-
ment of CNN segmentations [15]. Algorithms classifying 
each voxel as tumor or non-tumor using textural features 
of voxel neighborhoods have been used for the segmen-
tation of e.g., lung carcinoma or head-and-neck cancer 
[16–18]. All of these studies combine the information 
of PET and CT images. In many cases, the PET/CT is 
performed with a low-dose CT, the latter does not have 
an optimal image quality for segmentation purposes. 
Therefore, it is of interest to develop AI-based PET seg-
mentations that rely on PET information only. Addition-
ally, in previous papers, segmentation approaches were 
applied on primary tumors only, while for the calculation 
of TMATV, an accurate and repeatable segmentation of 
metastasis and lymph nodes is important. This task is 
especially challenging due to the small size of metastasis, 
different tumor-to-background ratios and different loca-
tions of the metastasis in the body.

While several studies already reported the segmenta-
tion accuracy of AI-based segmentation algorithm, to the 
best of our knowledge, no study reported yet the repeat-
ability of those algorithms. In this study, we investigate 
the repeatability of two AI approaches especially built to 
segment both primary tumors and metastasis accurately 
and repeatably. We focus on the segmentation task and 
do not consider lesion detection. This study includes a 
textural feature-based segmentation approach as well as a 
3D CNN. All algorithms are trained, validated and tested 
on a dataset of Non-Small-Cell-Lung-Cancer (NSCLC) 
patients. Moreover, the algorithms are applied to a fully 
independent test–retest dataset of ten NSCLC patients 
scanned on two consecutive days. The repeatabilities 
of the AI segmentation approaches are compared with 
those of conventional segmentation algorithms used in 
the clinic.

Materials and methods
Datasets
The study was registered at clinical trials.gov 
(NCT02024113) and was approved by the Medical 
Ethics Review Committee of the Amsterdam UMC 
and registered in the Dutch trial register (trialregis-
ter.nl, NTR3508). All patients gave informed consent 
for study participation and use of their data for (ret-
rospective) scientific research. Two datasets acquired 
at two institutions were included in this study with 
both datasets following the recommendations of the 
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EARL accreditation program [19, 20]. All images were 
converted to Standardized Uptake Value (SUV) units 
before the segmentation process started in order to 
normalize the images for differences in injected tracer 
dose and patient weight. This paper focuses on the seg-
mentation process and not on lesion detection. There-
fore, before the start of the segmentation process, a 
large bounding box was drawn around every lesion 
including also a large number of non-tumor voxels as 
illustrated in Fig. 1. The bounding box was drawn ran-
domly such that the tumor was not always appearing in 
the middle but on different locations in the box. This 
step was performed in order to avoid that the CNN 
remembers the location of the object instead of other, 
more important characteristics. As a CNN requires 
that all images have the same size, each bounding box 
had a size of 64 × 64 × 64.

Training and testing dataset
For training, validating and testing the segmentation 
approaches, 96 images of patients with NSCLC Stage 
III–IV were included. Patients fasted at least six hours 
before scan start and were scanned 60 min after tracer 
injection. All images were acquired on a Gemini TF 
Big Bore (Philips Healthcare, Cleveland, OH, USA). 
For attenuation correction, a low dose CT was per-
formed. All images were reconstructed to a voxel size 
of 4 × 4 × 4 mm using the vendor provided BLOB-OS-
TOF algorithm. More details about the patient cohort 
can be found in previous studies [21]. Fivefold cross-
validation was performed whereby randomly 70% of the 
images were used for training, 10% for validation and 
20% for independent testing.

Test–retest dataset
For a fully independent test–retest evaluation, ten PET/
CT scans of patients with Stage III and IV NSCLC were 
analyzed. These ten patients underwent two whole-
body PET/CT scans on two consecutive days. Images 
were acquired on a Gemini TF PET/CT scanner (Philips 
Healthcare, Cleveland, OH, USA) at a different institu-
tion (Amsterdam University Medical Center). Patient 
fasting time, time between tracer injection and scan start, 
as well as reconstruction algorithm and voxel size were 
the same as in the previous described dataset. A total of 
28 lesions were included in the analysis.

Reference segmentations
The reference segmentations used for training, validating 
and testing the algorithm were obtained by applying an 
automatic segmentation which identified all voxels with 
a SUV above 2.5 as tumor (here after SUV2.5). The seg-
mentations were manually adjusted by an expert medical 
physicist (RB) with more than twenty years of experience 
in PET tumor segmentation. This approach was chosen 
as it has been demonstrated that the manual adaption of 
a (semi-) automatic algorithm is more robust than a pure 
manual segmentation [22].

Segmentation algorithm
All segmentation algorithms were implemented in 
Python 3.6 using the libraries keras and scikit-learn.

Convolutional neural network (CNN)
A 3D CNN following the U-Net architecture proposed 
by Ronneberger et  al. [23] was implemented with the 
keras library. U-net is one of the most famous and 
most frequently used CNN architectures for biomedi-
cal image segmentation, and it was especially designed 
for scenarios where only a small number of train-
ing examples are available. An illustration of the used 
architecture is displayed in Fig. 2. An U-Net consists of 
an encoding and decoding part. In the encoding part, 
the images are subsequently down-sampled while the 
number of features is increased. In the decoding part, 
the images are up-sampled while the number of fea-
tures decreases. In both parts, three layers consisting 
of one convolutional block (= two convolutional layers 
with a kernel size of 5 followed by a Rectified Linear 
Unit (ReLu) layer), a max-pooling layer for down-sam-
pling in the encoding or a convolutional up-sampling 
layer in the decoding part, a batch normalization layer 
to increase network convergence and a drop-out layer 
to avoid overfitting. Due to the relatively small data-
set, the CNN was trained with 8 initial features in the 
first layer. The number of layers and initial features 

Fig. 1  Two examples of a bounding box: A large bounding box is 
drawn around each lesion so that it also includes a large amount 
of background. For each lesion, the lesion is placed in a different 
position in the bounding box such that the CNN is not learning 
mainly the position of the lesion in the bounding box. On the left (a), 
the lesion is placed in the middle of the box, while on the right (b), 
the lesion is placed at the lower right border



Page 4 of 11Pfaehler et al. EJNMMI Res            (2021) 11:4 

were determined iteratively until the validation accu-
racy was optimal and at the same time comparable to 
the accuracy in the training set. The latter is important 
as a large difference in training and validation accuracy 
is a hint for overfitting. Details about training and vali-
dation accuracy for different number of initial features 
can be found in the Additional file 1: Tables S1 and S2. 
The CNN was trained for 1000 epochs with a batch size 
of 25. The learning rate was set to 0.001 and an Adam-
optimizer was used for weight adaptation. The negative 
Dice-coefficient was used as loss function measuring 
the overlap of two segmentations. A Dice coefficient of 
1 is reflecting a perfect overlap. A U-Net requires that 
all images have the same size.

In order to increase the amount of training data and 
to avoid over-fitting, data augmentation was performed. 
This included rotations within − 20° to 20°, shifting in 
width and height direction within 20% of the side length, 
a rescaling of the images within 25%, intensity stretching, 
as well as adding Gaussian noise to the image.

For training, testing and applying the CNN, the dataset 
was divided into smaller (≤ 12.8 ml) and bigger tumors. 
The threshold was chosen empirically, and it was found 
that this threshold led to the best performance. For each 
tumor size category, one separate CNN was trained. 
Splitting the dataset by lesion size was performed as this 
led to more accurate and repeatable segmentations (illus-
trated in Additional file  1: Section  4). In order to train 
the two separate networks, lesions were selected using 
the volume of the ground truth mask. Depending on this 
tumor size, the lesion was used for training the corre-
sponding CNN. After training and testing the CNNs, the 
appropriate CNN for a specific lesion was selected based 
on an initial guess of the tumor size. The latter is obtained 
using a majority vote (MV) segmentation. This MV seg-
mentation uses four standard threshold approaches as 
input (see explanation below and Additional file  1: Sec-
tion  5). The MV segmentation was chosen for this task 
because it provided the most accurate segmentations 
when compared with manual segmentations in previous 

Fig. 2  CNN architecture: In the encoding path, the images are subsequently downsampled while the number of features increases. In the decoding 
path, the images are upsampled while the number of features decreases. Encoding and decoding path are connected with skip connections
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work [7], and it is easy to implement. This initial tumor 
MV segmentation was only performed to select the cor-
responding CNN, i.e., to distinguish between smaller and 
bigger lesions.

Textural feature segmentation (TF)
In the TF segmentation approach, textural features of 
voxel neighborhoods were used for the voxel-wise seg-
mentation of the tumor. For every view (axial, sagittal, 
coronal), a separate segmentation was performed, and 
the summed probability was used to generate the final 
segmentation. The workflow of the TF segmentation 
for one image view is illustrated in Fig. 3. As illustrated, 
every voxel was regarded as center of a scanning win-
dow. For each scanning window, statistical and textural 
features were calculated using the open-source software 
pyradiomics [24]. The feature space was then reduced by 
selecting the most important features for the segmenta-
tion task, which were identified by a random forest.

Next, a random forest classifier was trained to clas-
sify each voxel as tumor or non-tumor. The trained ran-
dom forest was then applied to the testing dataset. The 
probability images of the three orientations are summed 
in order to obtain the final classification. A probability 
image contains information on the certainty of the classi-
fier making the right decision. All voxels with a summed 
probability of more than 1.8 were included in the final 
tumor segmentation. A more detailed description of the 
algorithm can be found in Additional file 1 and in Pfae-
hler et al. [25].

To evaluate how well the AI-based segmentations 
were matching the reference segmentation, the over-
lap between the AI-based segmentations and those of 
the reference segmentation were analyzed using Jaccard 
Coefficients, as explained later.

Conventional segmentation algorithm
The repeatability of the AI-based segmentations was 
compared with two established segmentation algorithm:

•	 41%SUVMAX: all voxels with intensity values higher 
than 41% of the maximal SUV value (SUVMAX) are 
regarded as tumor

•	 SUV4: all voxels with a SUV higher than 4 are 
included in the segmentation

Moreover, two majority vote (MV) approaches com-
bining four frequently used thresholding approaches 
were included in the comparison. Both MV approaches 
were previously found to be more repeatable than con-
ventional approaches [7]. The underlying segmenta-
tion algorithms were the above described SUV4 and 
41%SUVMAX method as well as a segmentation includ-
ing all voxels with a SUV above 2.5 and a 50% of SUVmax 
threshold-based segmentation with background correc-
tion. The two MV segmentation methods include:

•	 MV2: the consensus of at least two of the 4 standard 
approaches

•	 MV3: the consensus of at least three of the 4 stand-
ard approaches

Fig. 3  Workflow of the textural feature-based segmentation for the axial view



Page 6 of 11Pfaehler et al. EJNMMI Res            (2021) 11:4 

Evaluation of segmentation algorithm
For the evaluation of the segmentation algorithms, sev-
eral metrics will be reported. Data analysis was per-
formed in Python 3.6.2 using the packages numpy and 
scipy.

Accordance of AI segmentation and reference segmentation
In order to determine the accordance of the AI and ref-
erence segmentations, the Jaccard Coefficient (JC) was 
calculated. The JC is defined as the ratio between the 
intersection and the union of two labels and gives an 
indication about the overlap of the two labels:

A JC of 1 indicates perfect overlap, while a JC of 0 indi-
cates that there is no overlap at all.

Furthermore, as the JC does not contain information 
about volume differences, the ratio between the vol-
ume of AI and reference segmentations were calculated: 
MATVSEGM
MATVREF

 . A volume ratio above 1 indicates an over- and 
a volume ratio below 1 an under-estimation of the vol-
ume. A ratio of 1 represents perfect alignment. Finally, 
the distance of mass (barycenter distance) of the seg-
mentations was calculated. Hereby, a barycenter distance 
close to 0 indicates perfect agreement.

Repeatability evaluation
The repeatability of the segmentation approaches was 
evaluated by comparing the differences of segmented vol-
umes across days. For this purpose, the percentage test–
retest difference (%TRT) was calculated:

The %TRT measures the proportional differences in 
segmented volume between the two consecutive scans. 
Moreover, the repeatability coefficient (RC) which is 
defined as 1.96 × standard deviation (TRT%) was cal-
culated. Additionally, intraclass correlation coefficients 
(ICC) were calculated using a two-way mixed model 
with single measures checking for agreement. An 
ICC between 0.9 and 1 indicates excellent and an ICC 
between 0.75 and 0.9 indicates good repeatability [26]. 
If a lesion was completely missed by one segmentation 
approach, it was discarded from the analysis to analyze 
the same dataset for all segmentation approaches.

The accuracy metrics of the AI-based segmentations as 
well as the TRT% of all approaches were compared using 
the Friedman test. The Friedman test is a non-parametric 
test, which does not assume a normal distribution of the 

JC =
A ∩ B

A ∪ B

TRT% =

∣

∣volDay1 − volDay2
∣

∣

(volDay1 + volDay2)/2
∗ 100

data or independency of observations. It compares the 
rank of each data point instead of only comparing mean 
or median values. This means that if a segmentation algo-
rithm provides consistently more accurate results, it will 
be ranked higher even if its mean or median are lower. 
As the Friedman test only contains information to show 
a significant difference in the data, a Nemenyi test was 
performed in order to assess which methods resulted in 
significant differences. P-values below 0.01 were consid-
ered as statistically significant. A Benjamini–Hochberg 
correction was applied in order to correct for multiple 
comparisons.

Results
Accordance reference: AI‑based segmentation
Figure  4 displays the JC values between AI-based and 
reference segmentations for the cross-validation and 
test–retest dataset. The results of the separate folds are 
displayed in Additional file 1: Figure S8 and S9. In both 
cases, both approaches resulted in similar accuracies, 
which were not significantly different (p > 0.01). In the 
testing dataset, both approaches yielded good JC values 
(TF: median: 0.68, 25th percentile: 0.46, 75th percen-
tile: 0.83, CNN: median: 0.7, 25th percentile: 0.52, 75th 
percentile: 0.84) indicating a good accordance with the 
reference segmentations. Volume ratios and barycenter 
distances are listed in Table 1. The CNN yields less under-
estimations and more overestimations of tumor volume 
[higher volume ratios (25th/75th percentile: 0.75/1.21)]. 
While the TF approach resulted in more underestima-
tions of tumor volume (25th/75th percentile: 0.68/1.08). 
The barycentric distances of the TF approach were lower 
than the barycentric distances of the CNN. The corre-
sponding values for the test–retest dataset can be found 
in Additional file 1: Table S3.

In general, the accuracy of the segmentations depended 
on the lesion size as illustrated in Fig. 5. Segmentations 
of bigger tumors resulted in better accuracy than seg-
mentations of smaller lesions. For larger lesions, the 
CNN resulted in a median JC value of 0.74, while the TF 
approach yielded a median JC of 0.82. For smaller lesions, 
the CNN yielded a median JC value of 0.7 which was 
higher than the median of the TF approach (0.56). For 
larger lesions, the CNN had a median volume ratio of 
0.92 (25th/75th percentile: 0.81/1.13). While for smaller 
lesions, the CNN resulted in a median volume ratio 
of 0.92 (25th/75th percentile: 0.73/1.18). These results 
indicate that the CNN resulted in a similar number of 
overestimations for small and large lesions. While the 
TF approach yielded in the majority of the cases vol-
ume ratios below 0.8 and therefore for smaller and larger 
lesions more underestimations. All JC values, volume 
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ratios and barycentric distances for smaller and larger 
lesions are listed in Table 2.

As displayed in Fig. 5, TF and CNN resulted in three 
cases with JC values around or below 0.4 for bigger 
lesions. In these cases, the tumors were located close 
to the heart, which was incorrectly included in the seg-
mentation. Therefore, the tumor volume was highly 
overestimated. A similar effect was observed for smaller 
lesions: The CNN did not segment some of the smaller 
lesions while this was not the case for the TF-based 
approach. All lesions that were completely missed were 
located close to the kidneys, which was wrongly iden-
tified as tumor. The TF approach segmented the kid-
ney regions but still included the tumors in the final 
segmentation.

Repeatability
Figure  6 displays the TRT% for all segmentation algo-
rithms. Two lesions were completely missed by the 
CNN and therefore discarded from the analysis.

CNN-based segmentations outperformed the other 
approaches regarding TRT% with an absolute mean 
value of 13.9% and a standard deviation of 16%. TF 
and MV2 segmentation yielded absolute mean values 
of 13.0% and 14.1% and standard deviations of 17% 
and 21%, MV3, 41%SUVMAX and SUV4 segmenta-
tions yielded mean values of 28.1%, 28.1% and 18.1%, 
and standard deviations of 50%, 51% and 26%. The 
corresponding repeatability coefficients can be found 
in Additional file  1: Table  S4. After applying the Ben-
jamini–Hochberg correction, the differences in TRT% 
were not significantly different.

The CNN resulted in a TRT% of more than 10% in 
3 out of 28 cases, while the conventional methods 
resulted in a TRT% higher than 10% in 12 (MV2, SUV4, 
41%SUVMAX) or 13 cases(MV3). The TF segmentation 
resulted in a TRT% of more than 10% in only 8 cases.

TF, CNN and MV2 yielded similar ICCs (TF: 0.98, 
MV2: 0.97, CNN: 0.99) indicating a very good repeat-
ability. MV3, SUV4 and 41% SUVMAX resulted in ICC 
of 0.73, 0.81 and 0.68, respectively. The lesion size did 
not influence the repeatability of the segmentations.

Summary of the results
In summary, CNN and TF segmentation resulted in a 
better repeatability when compared with conventional 
approaches. Furthermore, both approaches resulted in a 
good accuracy when compared with the reference seg-
mentations. The observed differences between the two 
AI-based methods were not significant for accuracy nor 
for repeatability. Therefore, our results suggest that both 
AI methods are good candidates for the segmentation of 

Fig. 4  Jaccard coefficient (JC) values for both datasets: JC values for the cross-validated dataset (left figure) and the test–retest dataset (right figure) 
for the AI-based segmentation algorithm included in the study

Table 1  Volume ratios and  barycentric distances for  TF 
and CNN

Volume ratio
Median (25th/75th 
quartile)

Barycentric distance
Median (25th/75th 
quartile)

TF 0.70 (0.59/0.79) 0.68 (0.42, 1.66)

CNN 0.99 (0.83/1.34) 0.81 (0.36, 2.1)
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NSCLC tumors in PET images and are more powerful 
than conventional approaches in terms of repeatability. 
However, use of these AI methods for other tumor types 
requires further validation and most likely additional 
(transfer or re-) training.

Discussion
In this paper, we evaluated two AI-based segmenta-
tion approaches in terms of repeatability and analyzed 
their accordance with a reference segmentation. Both 
approaches resulted in a good accuracy when compared 
with the reference segmentation used. The differences 
in performance between both AI approaches were small 
and statistically non-significant.

The segmentation of smaller lesions remains also for 
these two AI approaches a challenging task. One rea-
son might be that with decreasing tumor size, small 
misclassifications have a higher impact on accuracy 
metrics as illustrated in Additional file  1: Table  S5. 
Smaller lesions also typically show a lower tumor-to-
background ratio and are therefore more difficult to 
segment. This might be the reason that the CNN was 

not able to delineate some smaller lesions completely. 
Moreover, some metastasis are located close to other 
high-uptake regions (such as the kidney) and distin-
guishing tumor from normal uptake is in this case 
challenging for any segmentation algorithm and often 
requires manual correction. Especially for the CNN, 
the different locations of the metastasis and therefore 
the differences in surrounding tissue yield a more chal-
lenging learning task than the segmentation of primary 
lung tumors alone.

In terms of accuracy and precision, the CNN trained 
and tested in this study was comparable with previ-
ous CNNs designed for the segmentation of primary 
tumors in PET images. An important difference between 
our methods and other published algorithm is that our 
approaches rely on the PET image information only and 
can therefore also be used when only a low-dose CT is 
acquired aside of the PET image [14, 16]. Previous studies 
reported low segmentation performance when using the 
PET image for segmentation only [16, 18].

The CNN used in this paper is implemented with 
a relatively low number of features and layers when 

Fig. 5  Jaccard coefficient (JC) values dependent on lesion size: JC values for bigger (left figure) and smaller (right figure) lesions for both AI-based 
segmentation approaches

Table 2  Accuracy metrics for smaller and bigger lesions

JC bigger
Median (25th/75th 
quar)

Volume ratio diff 
bigger
Median (25th/75th 
quar)

Barycentric 
distance
Median (25th/75th 
quartile)

JC
Median (25th/75th 
quar) smaller

Volume ratio 
smaller
Med (25th/75th 
quar)

Barycentric 
distance
Median (25th/75th 
quartile)

TF 0.82 (0.64/0.89) 0.91 (0.81/1.13) 0.61 (0.4/1.3) 0.56 (0.39/0.68) 0.91 (0.55/0.95) 0.76 (0.46/1.8)

CNN 0.74 (0.59/0.83) 0.92 (0.79/1.1) 1.1 (0.4/2.6) 0.7 (0.54/0.82) 0.92 (0.73/1.18) 0.77 (0.31/1.9)
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compared with the original U-Net or other CNNs 
designed for the segmentation of tumors in medical 
images [15, 23]. Due to the relatively small dataset in 
the present study, we found that these combination of 
numbers of features and layers prevents the network 
from over-fitting while still yielding good results. A 
possible reason why the network performs well with a 
small number of features might be that in this study, the 
CNN is trained on tumor segmentation in a predefined 
bounding box and does not need to detect the tumor.

When the tumor was located close to other high 
uptake regions such as the heart or the kidneys, both 
segmentation approaches delineated this normal tissue 
high-uptake region as tumor. The standard automatic 
segmentation methods included in this study are mainly 
intensity driven. and they are therefore also not able to 
distinguish tumor from high-uptake regions when both 
are in close proximity. For these cases, it is likely that 
human interaction will always remain necessary, as men-
tioned previously [27]. However, in future studies, we will 
investigate if these segmentation approaches might also 
be used for lesion detection.

Also when compared with previous studies, the CNN 
and TF approaches outperformed other (semi-) auto-
matic segmentation methods. Frings et  al. reported a 
TRT% repeatability coefficient of 44.4–71.1 for all lesions 
included in their analysis when using different threshold-
based segmentation approaches with background correc-
tion [28]. The AI-based segmentation methods yielded 
repeatability coefficients of 31.36 (CNN) and 33.36 (TF), 
which are better than those reported by Frings et al. For 

images acquired under the same conditions as in our 
study (i.e., 60 min time between tracer injection and scan 
start and EARL-compliant reconstructions), Kolinger 
et al. found repeatability coefficients of 43 to 56 *, which 
are also higher than the ones of our AI-based segmen-
tations [7]. However, Kolinger et  al. reported lower 
repeatability coefficients for MV3 and 41% SUVMAX 
segmentation approaches. The reason for this might be 
that Kolinger et  al. compared the repeatability for the 
summed MATV of all lesions (TMATV), while we com-
pared the repeatability of MATV for each lesion sepa-
rately. A discrepancy in the segmentation of one lesion, 
especially if the lesion is small, has less impact on the 
repeatability of TMATV.

A disadvantage of AI-based segmentation approaches 
is the need for reliable training data. The lack of reason-
able training data is one drawback making the clinical 
implementation of AI-based segmentation algorithms 
challenging. However, the MV2 approach used in this 
study was found to result in accurate and robust segmen-
tations in a previous study [7]. Moreover, in our study, 
it also outperformed the conventional segmentation 
approaches in terms of repeatability without depending 
on training data. Especially for tasks where segmentation 
accuracy is important, such as radiotherapy planning, the 
MV2 is a good candidate for clinical use. Yet, regardless 
the method used, the final segmentation should always be 
supervised. In terms of repeatability, the CNN segmenta-
tion outperformed the MV2 approach and is the method 
of choice when segmentation repeatability is important, 
such as for longitudinal studies and/or for the evaluation 
of treatment response.

Another drawback of AI-based segmentation 
approaches is that they are trained for one specific task 
such as the segmentation of lung tumors or head and 
neck tumors. To apply the already trained algorithms to 
other (even similar tasks) requires a re-training of the 
algorithms. Therefore, both segmentation algorithms 
trained and validated in this study are likely not directly 
applicable to other cancer types such as head and neck 
cancer. Before using them for another cancer types, the 
algorithms need to be re-trained or at least undergo 
rigorous validation.

One limitation of this study is that the reference seg-
mentations were delineated by one, yet experienced, 
observer while the consensus of three expert segmenta-
tions is considered as gold standard. To account for this, 
the segmentation was initiated with a semi-automated 
delineation method, an approach known to reduce 
observer variability. Of note, for the test–retest study, 
the same lesions were delineated by 5 observers in a 
previous study (7), and it was shown that even the con-
sensus contour of these observers was less repeatable 

Fig. 6  Test–retest coefficient (TRT%) for all segmentation 
approaches: If the TRT% is close to 0, the repeatability of the 
segmentations is excellent. Abbreviations of the segmentation 
algorithm: SUV4 standardized uptake value 4, 41%SUVMAX, MV2 
majority vote 2, MV3 majority vote 3, TF textural feature-based 
approach, CNN convolutional neural network
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than those seen with any of the automated approaches. 
Finally, in our repeatability study, we included the AI-
based approaches as well as several conventional meth-
ods and this repeatability study showed that our trained 
AI approaches provided very good results, even if the 
ground truth segmentations used during training of the 
AI methods would have been suboptimal.

Another limitation is the small dataset used for 
repeatability analysis. However, the collection of test–
retest scans is unfortunately limited due to the patient 
burden coming with consecutive scans of the same 
patients. Future studies, especially studies using data 
from different centers should confirm our findings.

Conclusion
In this paper, we compared the repeatability of AI-
based segmentation algorithm with conventional 
segmentation approaches. Our results illustrate the 
advantage of AI-based segmentation approaches: Both 
approaches resulted in a good accuracy when com-
pared with the reference segmentation and showed 
a high repeatability. Together with a majority vote 
approach (combining the results of four conventional 
segmentation approaches) the proposed AI-based seg-
mentation methods were superior to the other seg-
mentation algorithms included in this study in terms 
of repeatability. This study demonstrates that AI-based 
segmentations have not only the potential to accurately 
segment lesions but also result in more repeatable 
segmentations.
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