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Abstract

The urokinase plasminogen activator receptor (uPAR) plays a multifaceted role in almost any process where
migration of cells and tissue-remodeling is involved such as inflammation, but also in diseases as arthritis and
cancer. Normally, uPAR is absent in healthy tissues. By its carefully orchestrated interaction with the protease
urokinase plasminogen activator and its inhibitor (plasminogen activator inhibitor-1), uPAR localizes a cascade of
proteolytic activities, enabling (patho)physiologic cell migration. Moreover, via the interaction with a broad range of
cell membrane proteins, like vitronectin and various integrins, uPAR plays a significant, but not yet completely
understood, role in differentiation and proliferation of cells, affecting also disease progression. The implications of
these processes, either for diagnostics or therapeutics, have received much attention in oncology, but only limited
beyond. Nonetheless, the role of uPAR in different diseases provides ample opportunity to exploit new applications
for targeting. Especially in the fields of oncology, cardiology, rheumatology, neurology, and infectious diseases,
uPAR-targeted molecular imaging could offer insights for new directions in diagnosis, surveillance, or treatment
options.
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Background
Tissue remodeling is pivotal in embryonic development,
tissue repair, and numerous pathologies. Temporary deg-
radation of the extracellular matrix (ECM) is a delicate
process requiring the careful coordination of proteases,
receptors, and cell-signaling molecules where over-
degradation can result in osteoarthritis, osteolysis, cardio-
myopathy, and invasion/metastasis of tumor cells, and
where over-production of the ECM often leads to fibrosis
[1]. It seems conceivable that monitoring of the process of
matrix remodeling offers possibilities for diagnosis, sur-
veillance, and possibly even treatment of the associated
diseases. For clinical applications, such as biomedical

imaging or therapy, a cell-associated target protein with a
central role within the ECM-remodeling process, but with
limited expression in healthy tissue, would be helpful in
identifying patient groups requiring more intensive moni-
toring or therapy. Furthermore, molecular imaging en-
ables real-time imaging of pathophysiology, providing
novel insights into disease processes that cannot be gath-
ered with current techniques such as post-mortem tissue
analysis or with animal models [2, 3].
Inherent to its nature, molecular imaging is fundamen-

tally dependent on identifying appropriate targets that are
informative about the underlying pathophysiology of the
process studied [4]. As targeting different epitopes on the
same protein may influence the ability to image specific
processes, formal description of the epitope is crucial. Im-
portant to realize is that differing epitopes on the same
protein can alter the results and consequently, describing
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the epitope of interest is just as crucial [5, 6]. Therefore, a
key competence of targeted imaging is designing the best
performing probe for the imaging modality of choice. The
choices to be made are extensive and have already been
covered in reviews elsewhere [7–9].
The urokinase plasminogen activator receptor (uPAR)

holds a central position in ECM proteolysis, but, next to
the proteolytic role, uPAR is also involved in cell-cell
and cell-ECM interactions, regulating cell signaling and
hereby controlling cell proliferation, differentiation, and
migration [10]. uPAR is normally hardly found in
healthy tissue, but it is present in virtually all human
malignancies, associated with disease aggressiveness,
allowing tumors to escape their original boundaries [11,
12]. As a result, the field of uPAR-based oncological im-
aging is progressing rapidly and, not surprisingly, various
positron-emission tomography (PET)-based molecular
imaging clinical trials are currently being conducted for
diagnosing aggressive cancers and determining cancer
aggressiveness (NCT02755675, NCT02945826, and
NCT03307460) [13, 14].
The last two decades have revealed that uPAR is not

only a central orchestrator in oncology but also in pro-
cesses ranging from neurology to auto-immune diseases
[15, 16]. Likewise, by unraveling the various (patho)-
physiological processes uPAR contributes to novel op-
portunities to diagnose, treat, or monitor diseases have
been revealed. The current review aims to identify non-
neoplastic diseases where uPAR is of pathophysiological
relevance and elaborate on the molecular imaging op-
portunities this provides.

The urokinase plasminogen activator receptor: a central
player in an extensive interactome
In 1985, uPAR was first identified on monocytes as the
cell membrane receptor of the urokinase plasminogen
activator (uPA) [17, 18]. In the following 35 years, uPAR
has been identified, although often only expressed transi-
ently, on, among others, fibroblasts, endothelial cells,
epithelial cells, and neurons [11, 19]. Rather than being
cell-specific, uPAR expression should be considered as
process-specific with all cells being able to express
uPAR, but only doing this at very specific events, such as
the cell extravasation and migration observed during
wound healing (Fig. 1a). Consequently, most cells at rest
have no uPAR on their cell membrane [11]. A closer
look at uPAR-expressing cells reveals that uPAR is im-
plicated in multiple processes where the balance of this
determines the end result (Fig. 1b).
To understand how uPAR can play such a diverse and

central role, a careful examination of its structure needs
to be made. uPAR is a 283 amino acid glycosylphospha-
tidylinositol (GPI)-anchored membrane protein consist-
ing of three domains (D1-D3) linked by two flexible

hinges (Fig. 1c) [20]. These three domains form a con-
cave surface where uPA can bind [21]. Subsequently,
uPAR mediates its other, non-proteolytic-related effects
via protein interactions on the outer surface. D1 and the
hinge region between D1 and D2 are vital for uPAR-
vitronectin interactions, whereas various epitopes on
D2-D3 interact with integrins, G protein-coupled recep-
tors (GPCRs) and receptor tyrosine kinases like epider-
mal growth factor receptor, platelet-derived growth
factor receptor, and insulin-like growth factor 1 receptor
[22, 23]. With over 42 interacting proteins described,
uPAR forms a central orchestrator of cell proliferation,
differentiation, migration, and survival [10, 22].
Classically, the function of uPAR is fairly straightfor-

ward. Without intracellular or transmembrane domains,
uPAR primarily functions as a receptor for (pro)uPA
(Fig. 1d) [24]. uPA is a serine protease that catalyzes the
activation of the ubiquitously present plasminogen into
plasmin. Active plasmin degrades ECM proteins by itself
or via activation of latent matrix metalloproteases
(MMPs) [25]. Localization of both the inactive form,
pro-uPA and active uPA to the cell surface, allows cells
to focus extracellular matrix degradation toward the
leading edge of the cell [26, 27]. However, this classic
view of uPAR does not justify the many subtleties
present in the uPAR interactome. For instance, the dis-
tinct central binding cavity of uPAR and the flexible
hinges result in a conformational change after uPA bind-
ing that alters the vitronectin binding site, enhancing
uPAR-vitronectin interaction on the outer surface of
uPAR [23, 28–30]. Vice versa, vitronectin binding to
uPAR influences the affinity for uPA [31]. Another
subtlety of uPAR characteristics lies in the GPI anchor-
ing to the cell, which influences distribution of uPAR to-
ward lipid rafts and subsequently promotes specific
protein-protein interactions [32–34]. Furthermore, GPI
anchorage allows a rapid removal from the cell mem-
brane, allowing a quick turnover and response time.
The intracellular signaling pathway initiated by uPAR,

either enabled by uPA, with or without vitronectin, is
still not entirely understood (Fig. 1e) [35–39]. On neu-
trophils and macrophages, CD11b/CD18 (MAC1, com-
plement receptor 3 or αMβ2) colocalizes with uPAR and
is essential for adhesion, migration, and phagocytosis
[40–47]. In combination with the β1 integrin subunit,
uPAR promotes differentiation, proliferation, adhesion,
of epithelial and other cells and stimulates expression of
uPA, uPAR, and MMPs, promoting extracellular prote-
olysis [38, 48–54]. Furthermore, β3-uPAR-mediated
signaling enhances cell motility and invasion, while β6-
uPAR interaction stimulates proliferation and cell differ-
entiation [55–58].
Finally, recycling and cleavage of uPAR play an

important role in cell functioning (Fig. 1f).
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Plasminogen activator inhibitor-1 (PAI-1) and uPA are in-
ternalized for degradation via uPAR and lipoprotein
receptor-related protein 1 interaction (LRP1) [59–61]. uPAR
and LRP1 are recycled to the cell membrane ready for new
interactions [62]. Cleavage of uPAR can occur at two sites:
(I) within the GPI anchor by lipases, resulting in soluble
uPAR (suPAR) and (II) between D1 and D2 resulting in
cleaved uPAR (soluble D1 and soluble or membrane-bound
D2-D3) (Fig. 1g) [63]. The exact function of full-length
suPAR is unclear but suPAR might function as a scavenger
protein for uPA, consequently competitively inhibiting cell

surface proteolysis [64, 65]. Cleavage of D1 unveils an amino
acid sequence (amino acids, 88-92) on D2-D3 that is unable
to interact with integrins but interacts with GPCR formyl
peptide receptor-like 1 (FPRL1), prompting migration (Fig.
1h) [66]. When cleaved, the same D2-D3 epitope induces
chemotaxis in FPRL1-expressing cells [67, 68].

uPAR in cardiovascular disease: determining plaque
instability in atherosclerosis
Although significant improvements have been made in
the management of cardiovascular disease, it is still a

Fig. 1 The urokinase plasminogen activator receptor (uPAR). a While usually quiescent in normal tissue, uPAR expression is observed transiently and
locally during specific cellular processes such as extravasation and migration by wound healing. b At a cellular level, uPAR interacts in a multitude of
pathways where the balance of each dictates the end result. c uPAR itself is a three domain extracellular structure linked to the plasma membrane by a
glycosylphosphatidylinositol (GPI) anchor. d Classically uPAR functions as receptor for urokinase plasminogen activator (uPA) which subsequently breaks
down the extracellular matrix (ECM) via plasminogen activation. e Intracellular signaling occurs via other receptors including vitronectin and integrins
and can be uPA dependent and independent. f Internalization and recycling of uPAR occurs after a uPAR/uPA/PAI-1/LRP-1 complex has formed, which
results in the degradation of uPA and PAI-1 and the recycling of uPAR and LRP-1. g uPAR can be cleaved at the GPI-anchor and between D1 and D2
resulting in various isoforms of soluble uPAR which can be quantified in the blood. h After cleavage of D1, uPAR D2-D3 induces chemotaxis by
interacting with formyl peptide receptor-like 1 (FPRL1)
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leading cause of death worldwide [69]. The current
state-of-art diagnostic techniques, such as angiography
or perfusion imaging, can accurately identify stenosis lo-
cation and luminal occlusion in order to guide revascu-
larization, however, fail to determine risk of rupture [70,
71]. Identifying these patients is the next challenging
frontier in cardiovascular disease research: more than
50% of patients who die suddenly have no evident clin-
ical symptoms and autopsy studies indicate that the ma-
jority of myocardial infarctions are caused by non-flow
limiting lesions [72–74]. Based on its mechanistic role,
molecular imaging of uPAR expression status might be
an alternative and more targeted tool to improve the
recognition of atherosclerotic plaques and the risk of
rupture.
Atherosclerosis is the formation of intimal plaques

consisting of two interacting regions: a central core
covered by a fibrous cap. Cholesterol filled monocyte-
derived macrophage-foam cells form the core whereas
the cap consists of vascular smooth muscle cells
(VSMCs) that have been recruited from the media
[75–77]. In both regions of the plaques, the urokinase
plasminogen activation axis (uPA/uPAR/PAI-1 axis)
has been shown pivotal for development and progres-
sion of the disease. Monocyte adherence and recruit-
ment toward lesion sites are dependent on uPAR
expression, and upon arrival in the lesion, uPA

interaction with uPAR has been implicated in the dif-
ferentiation of monocytes to macrophages, and choles-
terol biosynthesis and subsequent lipid uptake (Fig. 2a,
b) [78–83]. In response to vascular injury, VSMCs
undergo a change from a physiological contractile
phenotype to the pathological synthetic phenotype,
allowing them to migrate, proliferate, and produce
extracellular matrix, as found in the caps of athero-
sclerotic plaques. This process is stimulated by intimal
macrophages-derived uPA binding to the uPAR
present on VSMCs (Fig. 2c) [84–93]. Furthermore,
uPAR expression upregulates the calcification of these
lesions, although the consequences for plaque stability
remain to be clarified [94, 95]. Overall, many in vitro
mechanistic studies demonstrate the enhanced pres-
ence and pivotal role of uPAR in atherogenesis and
negative (inward) remodeling [78, 92, 96]. These data
are supported by various immunohistochemical stud-
ies on patients, which have clearly localized uPAR
overexpression to atherosclerosis: while normal arter-
ial tissue is negative for uPAR, intensely positive
stained lymphocytes, macrophages, and intimal
smooth muscle cells are found in atherosclerotic le-
sions and atheroma’s [93, 97–101]. Likewise, the over-
expression of uPAR is confirmed in gene analysis with
a 1.5 fold higher uPAR expression in endarterectomies
[99]. The level of uPAR overexpression has been

Fig. 2 uPAR in atherosclerosis. a Monocyte extravasation across the endothelium lesions is dependent on uPAR. b Upon interaction with uPA these
monocytes differentiate into macrophages, eventually resulting in cholesterol filled monocyte-derived macrophages. c uPA released from macrophages
interacts with uPAR on synthetic smooth muscle cells stimulating their migration. d Localized uPAR overexpression in an atherosclerotic plaque
increases the risk of rupture. uPAR is represented by the red 3-domain structure as described in Fig. 1 on the cell membrane of uPAR expressing cells
and uPA by the green structure in the extracellular matrix and bound to uPAR
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associated with disease severity and localized uPAR
expression is indicative for areas at risk for rupture
(Fig. 2d) [98, 99, 102].
As uPAR has been implicated in the pathophysiology

of atherosclerosis, various studies have attempted to im-
prove disease outcomes by targeting of uPAR to block
its function. Viral and non-viral expression vectors,
encoding constructs consisting of ATF (the amino-
terminal fragment of urokinase with high affinity for
uPAR) in combination with inhibitors of the plasmino-
gen pathway like BPTI (bovine pancreas trypsin inhibi-
tor) or of matrix metalloproteinases like TIMP1 (tissue
inhibitor of matrix metalloproteinases 1), successfully
inhibited neointimal formation, VSMC migration, and
vein graft thickening in rodent models and human sa-
phenous vein cultures [103–106]. Eventually, a construct
consisting of all three of these proteins has been shown
to lead to the strongest reduction in vein graft thicken-
ing in hypercholesterolemic mice [107]. While these pre-
clinical studies show evident potential of uPAR as target
for atherosclerosis targeting, the concept has not yet
been progressed toward a clinical application neither for
therapy nor for diagnostic monitoring via molecular tar-
geted imaging.

uPAR in auto-immune disease: imaging disease activity in
rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic inflammatory dis-
ease with a lifetime risk of 3.6% for women and 1.7% for
men [108]. Anatomical imaging techniques, such as con-
ventional radiology, ultrasound, and magnetic resonance
imaging, along with clinical criteria, are the standard to
diagnose and monitor RA [109]. These modalities are
able to identify RA as soon as 6-8 weeks after arthritis
onset and sometimes even before the first clinical symp-
toms [110, 111]. Current research efforts lie in patient
stratification according to disease severity and identify-
ing responders to expensive novel biologicals [111]. Tar-
geted molecular imaging might offer a solution for the
current goals of identifying aggressive disease and treat-
ment potential, providing a more reliable prognosis,
evaluating/comparing new therapies, and providing new
insights in the pathophysiology of RA [110, 112].
As RA progresses, the initially sparsely populated ar-

ticular region becomes infiltrated with immune cells,
neutrophils and monocytes/macrophages, fibroblast-like
synoviocytes (FLS), and osteoclasts [113, 114]. The inter-
action of these cells directly with each other and via cy-
tokines has many similarities with locally invasive
malignancies, leading to chronic inflammation, and tis-
sue invasion, remodeling, and destruction [113, 115]. In
the RA microenvironment, FLS acquire the tumor-like
characteristic of being able to escape growth limits, en-
hance migration and invasion, and to prompt

angiogenesis [16]. The similarities between RA and can-
cer have led to the identification of commonly activated
pathways with one being centered around uPAR.
RA manifestation in joints is defined by persistent

synovial inflammation, where leukocytes from the in-
nate and adaptive immune system infiltrate the syn-
ovial compartment and interact with present
synoviocytes [116]. To support the influx, adhesion,
and migration of cells into the synovial compartment,
endothelial cells overexpress uPAR (Fig. 3a) [45, 117,
118]. However, uPAR expression is limited to endo-
thelial cells. Neutrophils stimulate the inflammatory
process through secretion of uPA and domain 2-3 of
uPAR, whereby the latter probably functions as a
chemoattractant for other formyl peptide receptor ex-
pressing leukocytes (Fig. 3b) [114, 118, 119]. The se-
creted uPA interacts in autocrine and paracrine
fashion with uPAR on neutrophils, FLS, macrophages,
and chondrocytes, enhancing the invasive and prolif-
erative properties of these cells (Fig. 3c, d) [16, 115,
120–131]. The importance of uPAR has been
confirmed by studies where knockdown of uPAR in
FLS-inhibited proliferation, migration, and invasion
in vitro [16]. Furthermore, compared to their wildtype
littermates, PLAUR−/− mice show significant reduc-
tion of arthritis incidence and severity in a collagen-
induced arthritis model [132]. However, an earlier
study suggested that uPAR is not essential for RA
development [133]. Induction of arthritis by intra-
articular uPA injection is not dependent on the
uPAR-binding fragment of uPA. Furthermore, the
arthritis incidence is similar in PLAUR−/− mice and
their genetic counterparts after uPA injection [133].
While this model results in joints with morphological
features of arthritis, the question can be beckoned if
intra-articular injection of uPA accurately reflects the
etiology and progression of RA in humans.
Besides influencing the inflammatory stage of RA,

uPAR also attenuates the bone destruction occurring in
late stage RA disease. Osteoclast differentiation, the sub-
sequent bone destruction and bone mineral density
(BMD), is significantly decreased in uPAR knockout
mice and stimulated by uPAR overexpression [134].
With this knowledge in mind, loss of BMD has been
successfully inhibited in a lipopolysaccharide-induced
bone destruction mouse model using the uPAR targeting
peptide (Ȧ6) [135].
The therapeutic possibilities by targeting uPAR in vivo

have been investigated using uPAR antisense treatment
and adenovirus-mediated gene transfer of the amino ter-
minal fragment of uPA fused to human serum albumin.
Both inhibit cartilage invasion while the latter also de-
creases both the incidence and severity of the disease
[115, 136, 137]. However, blocking uPAR using the anti-
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uPAR monoclonal antibody mR1 in collagen-induced
and delayed-type hypersensitivity arthritis models has no
effect on RA progression [118]. This discrepancy can
partly be explained by difference in methods (antisense
vs. adenovirus vs. monoclonal antibody administration),
targeting uPA vs. uPAR, and by the differences in
models used.
While preclinical in vivo research is still inconclusive,

several studies with clinically used agents have demon-
strated that various treatment options for RA reach their
effect by targeting the urokinase plasminogen activation
pathway. Tenoxicam, a non-steroidal anti-inflammatory
drug, has been shown to downregulate monocyte uPAR
expression and hyaluronic acid treatment decreases the
immunostaining for uPAR expression on FLS [122, 123].
Furthermore, the widely used corticosteroid deflazacort
also modulates the urokinase pathway by inducing PAI-
1 and inhibiting uPA and uPAR expression in RA FLS
but not in healthy cells [138]. Physiologically, prolifera-
tion and invasion of RA FLS are inhibited by deflazacort.
In addition, soluble uPAR levels correlate with response
to biologicals such as the tumor necrosis factor (TNF)-
inhibitor adalimumab [139].
All-in-all there is substantial evidence for the role of

uPA/uPAR/PAI-1 axis in RA development and progres-
sion. Although future studies will need to confirm this,

targeting uPAR for imaging purposes has the potential
of providing relevant information on disease activity,
prognosis, and treatment effect [140].

Central nervous system pathology: unraveling
pathophysiology of degenerative disease
The nervous system, with the brain as its helm, is the
most complex and pivotal system of the human body.
Therefore, neurodegenerative disorders, such as Alzhei-
mer’s disease (AD) and Creutzfeld-Jakob disease (CJD),
auto-immune diseases, such as multiple sclerosis (MS),
and infectious diseases, such as cerebral malaria (CM)
and acquired immunodeficiency syndrome dementia
complex (ADC), have disastrous consequences for pa-
tients. The emergence of molecular imaging has enabled
more in-depth research into these pathologies as well as
possibilities for diagnosis and monitoring of disease be-
fore clinical features occur [141–144].
While uPAR expression is very low, if not absent, in

the adult brain, it plays a pivotal role in the developing
brain (Fig. 4a) [15, 145]. In the early brain binding of
uPA to uPAR stimulated neuritogenesis, neuronal mi-
gration, and differentiation via both proteolytic and non-
proteolytic pathways resulting in axonal growth and
branching of both the central and peripheral nerves
[146–150]. The uPA/uPAR axis is of such importance

Fig. 3 uPAR in rheumatoid arthritis. a uPAR on neo-angiogenic endothelium support the influx of inflammatory cells. b Neutrophils secrete uPA
and uPAR-D2/3 further escalating the inflammation. c The uPA interacts via autocrine and paracrine methods with neutrophils, fibroblast-like
synoviocytes, macrophages and chondrocytes, activating invasive, and proliferative pathways in these cells. d uPAR on osteoclasts promotes bone
destruction. uPAR is represented by the red 3-domain structure as described in Fig. 1 on the cell membrane of uPAR expressing cells and uPA by
the green structure in the extracellular matrix and bound to uPAR
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that dysregulation has been implicated with epilepsy,
schizophrenia, and autism. PLAUR, the gene encoding
uPAR, and its promotor have been found to be upregu-
lated in autistic patients [151, 152]. Furthermore, in rats,
uPAR expression was increased in interneurons after
spontaneous seizures [153]. On the other hand, uPAR
−/− mice were more susceptible to seizures, increased
anxiety, and altered social behavior; all characteristics of
epilepsy, schizophrenia and autism [154, 155]. The dis-
covery that uPAR functions as a receptor for SRPX2, an
important regulator of synapse formation, and that both
are co-located both spatially and temporally in the devel-
oping brain, further implicates uPAR’s role in the
(patho)physiology of the nervous system. Although the
actual function of SRPX2 remains to be elucidated, the
Y72S mutation in SRPX2 leads to an almost sixfold in-
creased affinity for uPAR, and clinically manifests in sei-
zures, speech deficit, and mental retardation [156, 157].
Various neurodegenerative diseases present with en-

hanced uPAR expression. AD is the leading cause of de-
mentia and can be characterized pathologically as
intracellular tangles and extracellular deposition of amyl-
oid β creating senile plaques [158, 159]. uPAR expres-
sion has been found in both the cortical neurons and
the vascular wall of AD patients (Fig. 4b) [19, 160–162].
Interestingly, the cerebellum, a region of the brain that
is usually not affected by AD, is negative for uPAR in
these patients [162]. Corresponding in vitro studies dem-
onstrates that microglia upregulate uPAR mRNA and
protein after exposure to aggregated amyloid β (Fig. 4c)
[161, 162]. Furthermore, uPA and plasminogen activity
is increased, which could lead to the vulnerability of the
cerebral vessel wall due to extracellular matrix break-
down and corresponding spontaneous hemorrhages ob-
served in AD (Fig. 4d) [161]. In CJD, another fatal

degenerative disease with a mean survival of 7.3+/−0.2
months after clinical onset, significantly more neurons,
primarily focused in cortical layer 3-5, express uPAR,
where the expression has been associated with damaged
neurons as seen by chromatin condensation, hyper-
trophic swelling, and degeneration [160, 163]. Microglial
cells, but not astrocytes, also express uPAR [160].
MS is an autoimmune disease where an immune re-

sponse is mounted against the central nervous system by
autoreactive lymphocytes resulting in lesions that are
characterized by inflammation, demyelination, and de-
generation of neurons [164]. While autopsy material
from healthy brains exhibits almost no uPAR expression,
uPAR gene and protein expression are significantly ele-
vated on MS microvessels, mononuclear cells, macro-
phages, pericytes, and smooth muscle cells [165–169].
Microglial cells cultured from an MS patient show an
activated morphology in combination with high levels of
uPAR, whereas control microglial cells from normal
brain tissue express little to no uPAR mRNA and pro-
tein. After in vitro activation, these normal microglia
present a spindle-shape morphology and express uPAR
[170]. In an animal model of experimental autoimmune
encephalomyelitis (EAE), elevated uPAR expression is
detected in the inflammatory lesions by both immune
and microglial cells (Fig. 4e) and increased uPA activity
at the dorsal horn and central spinal cord [171, 172].
EAE in uPAR−/− mice is characterized by a delayed on-
set, chronicity, persisting inflammatory cuffs with in-
creased levels of uPA and more extensive demyelination.
The dysregulated adhesion and migration of inflamma-
tory cells in uPAR−/− mice explains the delayed onset
while the inability to recycle uPA via uPAR reflects the
increased neuronal damage [173]. In a later study, uPAR
−/− mice with EAE are shown to exhibit more severe

Fig. 4 uPAR in degenerative nervous system disorders. a uPAR expression is practically absent in the healthy human brain. In Alzheimer’s disease
uPAR expression is found on (b) cortical neurons, (c) activated microglial cells after exposure to the amyloid plaques, and (d) in the vascular wall
promoting uPA activation, subsequent extracellular matrix breakdown and corresponding spontaneous hemorrhages. In multiple sclerosis, uPAR
(e) is expressed on inflammatory cells and activated microglial cells promoting local damage. f Furthermore, uPAR expression on dendritic cells
influences subsequent T cell differentiation. uPAR is represented by the red 3-domain structure as described in Fig. 1 on the cell membrane of
uPAR expressing cells and uPA by the green structure in the extracellular matrix and bound to uPAR
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disease with a twofold increase in microglial activation
and increased infiltration of mononuclear cells but re-
duced immune response, rendering the mouse incapable
of recovery [174]. The recently revealed crosstalk be-
tween the coagulation pathway (coagulation factor XII,
FXII) and immunity in MS underlines the role of uPAR
in this disease. uPAR on dendritic cells (Fig. 4f) is re-
sponsible for the immune modulatory function of FXII,
tipping the balance of T cell differentiation toward the
TH17 phenotype, as a signal receiver and relaying the
message, via CD11b integrin, intracellularly (Fig. 4f)
[175]. All-in-all, there is initial evidence that uPAR plays
a fundamental role in MS, but whether uPAR expression
is protective or destructive remains to be elucidated and,
considering uPAR’s multifaceted aspects, could actually
be both.
Various infectious diseases can have drastic neurological

manifestations. ADC is one of the most severe conse-
quences of human immunodeficiency virus 1 (HIV-1) in-
fection [176]. The lesions showed membranous uPAR
expression in immunohistochemical stainings that coloca-
lized with HIV-1 p24 antigen in both macrophages,
microglial, and multinucleated giant cells [177, 178]. Not
coincidentally, soluble uPAR levels are a strong independ-
ent predictor for HIV-1 infection survival [179]. While
combination antiretroviral therapy has successfully
dropped the incidence of ADC from 20 to 5%, milder
forms of HIV-associated neurocognitive disorder still
occur with an incidence of 20-50% [176]. No study has
evaluated uPAR in these cases. Plasmodium falciparum is
another infectious agent that can lead to severe neurologic
impairment with persistent neurocognitive deficits charac-
terized as CM [180]. In post-mortem specimens of
patients with CM uPAR expression, detected by immuno-
histochemical staining, of microglia, reactive astrocytes
and endothelial cells is limited to areas with microvascula-
ture containing parasitized erythrocytes, petechial bleed-
ings and Dürck’s granulomas [181]. In the mouse model
of CM, known as severe malaria (SM) as the syndrome in
mice is not limited to the brain, uPAR deficiency has pro-
found effect on thrombocytopenia. Platelet trapping,
which is a reliable predictor of forthcoming death, does
not occur in uPAR−/− mice [182]. The current theory
holds that platelets form an adhesive surface in micro-
vascular beds for parasitized erythrocytes in the cerebrum
and consequently play a pivotal role in the development of
CM [183].
While in most neurological disease processes, there is

no clear indication whether uPAR expression is protect-
ive or destructive, the evidence currently accumulated
suggests a critical role for uPAR in the pathophysiology
of AD, MS, ADC, and MC. Grossly, aberrant uPAR ex-
pression is linked to an altered immune-phenotype, con-
sequently altering the progressing of the disease. In

addition to the post-mortem pathology and animal
models, we are dependent on for research, an uPAR tar-
geting tracer may enable in vivo imaging of the various
pathophysiological processes going on in real-time and
consequently enrich our understanding of these disease.
This knowledge can potentially be used to dictate treat-
ment and monitor disease based on uPAR signaling.

Inflammatory bowel disease: imaging macrophage
polarization
Inflammatory bowel disease (IBD) is an umbrella term
consisting of chronic relapsing inflammatory disorders
of the intestinal tract. Ulcerative colitis (UC) character-
izes itself as inflammation of the mucosal layer of the
colon while Crohn’s disease (CD) displays transmural in-
flammation of any part of the gastrointestinal tract ran-
ging from the mouth to the anus [184]. The current gold
standard for diagnosis and surveillance of IBD is endos-
copy and X-ray exams, but these techniques are limited
by their invasiveness and patient tolerance. Molecular
imaging might provide an opportunity for accurate non-
invasive or endoscopic specification of IBD presence,
transmural and extra-intestinal tissue involvement, and
specific inflammatory profile [185–188]. While the
etiology of IBD has not been fully elucidated yet, genetic,
environmental, and immune factors have all been
implicated.
The impaired immune response leads to extensive tis-

sue remodeling and degradation in which the plasmino-
gen activation cascade, including various MMPs and
localized by uPAR, plays a major role [189–192]. Pa-
tients with active IBD have increased uPAR specific for
macrophages at active lesions. Interestingly, uPAR D1-
D3 is downregulated while uPAR D2-D3 is increased. In
two different IBD mice models, uPAR expression has
shown specific for CX3CR1

+ macrophages and mirrored
disease onset [193]. This subset of macrophages has an
anti-inflammatory phenotype [194]. Therefore, knocking
out uPAR exaggerates disease by amplifying the release
of pro-inflammatory cytokines and altering polarization
of macrophages. Low expression of uPAR D1-D3 and
high expression of uPAR D2-3 by IBD patients can con-
sequently lead to increased inflammation and disrupted
bacterial removal (Fig. 5a, b) [193]. The therapeutic po-
tential that targeting macrophages, and in extension
uPAR, brings has not been unnoticed [195]. A cyclic
peptide based of amino acids 88-92 of uPAR, [SRSRY],
competed with uPAR for binding to FPRL1 but exerted
an opposite effect: inhibiting migration as opposed to
promoting it [196]. In vivo, [SRSRY], altered macrophage
polarization and migration in colitis mice models and as
such attenuated disease severity [197]. By competing
with the migration sensitive epitope that becomes avail-
able after uPAR cleavage, [SRSRY], diminishes the
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destructive potential of uPAR D2-D3. While the research
is still in its infancy, there is potential to determine
macrophage polarization and disease progression by mo-
lecular imaging of uPAR. Determining the right epitope
to direct the uPAR targeting moiety to, will be crucial
for correct implementation and interpretation of uPAR-
targeted molecular imaging in IBD as well as for other
applications (Table 1). If addressed well, uPAR imaging
has the potential to non-invasively diagnose IBD by
identifying aberrant macrophage polarization and subse-
quently be used to monitor disease activity.

uPAR imaging
uPAR has been targeted for molecular imaging accord-
ing by various approaches, each with its own advantages
and disadvantages (Table 1, Fig. 6a). The first peptides
targeting uPAR were ligand-based, utilizing the growth-
factor domain of urokinase [215]. Targeting this natural
interaction between uPA and uPAR with ATF or ATF-
like constructs has been employed for magnetic-
resonance imaging, near-infrared imaging, photo-
acoustic imaging, and nuclear-imaging [198–204]. With
a molecular weight of 18.5 kilodalton, ATF is cleared
rapidly by the kidneys resulting in quick imaging times
(30 min to 2 h) but also minimizing the time available to
get sufficient contrast [216]. Conjugating ATF to nano-
particles (NPs) enhances blood circulation times result-
ing in optimal imaging times around 24-48 h after
injection in vivo [198, 199, 202, 204]. Another advantage

of ATF-NPs is their internalization, potentially increas-
ing contrast [199, 200, 204]. Nonetheless, whether con-
jugated to a NP or not, uPAR targeting efficiency with
ATF is dependent on the absence of endogenous urokin-
ase on the majority of uPAR copies present and mark-
edly reduced in models with high uPA expression [5,
201].
An alternative uses a 9-mer peptide which has led to

the first uPAR PET clinical trials. This peptide, AE105,
is the refined version of a 15-mer peptide identified by a
phage display with uPAR-transfected cell lines and binds
uPAR at the uPA-binding site in a species specific man-
ner, like ATF [217, 218]. While AE105 has also been
conjugated with (radio)-labels for single-photon emis-
sion computed tomography (SPECT) and near-infrared
fluorescence (NIRF) in preclinical oncology studies, this
section will focus on positron-emission tomography as
AE105 PET is further along the clinical pipeline [205–
210, 219, 220]. Initially, AE105 has been conjugated with
the metal chelator DOTA and subsequently labeled with
64Cu. 64Cu-DOTA-AE105 specifically targets uPAR posi-
tive lesions in preclinical studies with signal correspond-
ing to uPAR expression levels and epitope availability,
but also resulted in high non-specific liver-uptake [221,
222]. Alternative 64Cu, 68Ga, and 18F tracer-chelator
combinations decrease non-specific uptake but at the
cost of lower tumor specific signal [223]. Phase I clinical
trials with 64Cu-DOTA-AE105 have shown no adverse
events or detectable pharmacological effects related to

Fig. 5 uPAR in inflammatory bowel disease. a Macrophage uPAR D1-D3 expression plays a significant role in the bacterial removal while (b) in
inflammatory bowel disease macrophage differentiation is altered with as consequence an increase in uPAR D2-D3 expression and inadequate
microbial maintenance. uPAR is represented by the red 3-domain structure as described in Fig. 1 on the cell membrane of uPAR expressing cells
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the tracer. Furthermore, all primary tumors (bladder,
breast, and prostate) and the majority of metastasis are
identifiable between 1 and 24 h after administration (Fig.
6b). In this study, two liver metastasis have not been vi-
sualized due to high background signal [13]. In addition,
the feasibility of measuring mean 64Cu-DOTA-AE105
uptake in the arterial beds of these patients in order to
non-invasively identify atherogenic lesions has been
retrospectively evaluated [224]. While activated macro-
phages have higher uPAR expression, clear imaging cap-
ability of atherosclerosis has yet to be demonstrated with
this tracer. The possibility to scan at early time points
and the independence of 68Ga on an on-site cyclotron
prompted to phase I trials of 68Ga-NOTA-AE105 [13,
14, 223]. 68Ga-Nota-AE105 resulted in decreased liver
signal and specifically identified both primary tumors
and one metastasis missed in the standard work up [14].
While initial clinical trial results are promising, allowing
for rapid identification of cancerous lesions, endogenous

uPA expression could present the biggest limiting factor
of AE105 molecular imaging, especially in diseases
where the expression of uPA is likely to be increased
and paramount for outcomes [5, 225].
Another approach utilizes monoclonal antibodies to

target uPAR. Both antibodies 2G10 and 3C6 are identi-
fied from a human fragment of the antigen binding
(Fab) phage display library to have high affinities for
uPAR. Consequently, these are expressed as recombin-
ant IgG’s using the trastuzumab Fc domain [226]. 2G10
competes with uPA for uPAR binding while 3C6 pre-
vents β1 integrin association with uPAR [211]. In human
xenograft breast cancer models, 2G10 shows higher
tumor uptake with NIRF and SPECT/CT than 3C6,
probably due to higher epitope availability for 2G10
[212, 226]. Another thoroughly and extensively studied
anti-uPAR antibody is ATN658. ATN658 was raised
against a soluble D2-D3 uPAR fragment and recognizes
domain 3 of uPAR, close to the C-terminus at amino

Table 1 uPAR targeting imaging agents
Agent Classification Targeting epitope Imaging

modality
Imaging
window

Notes Translation
stage

Ref

Cy5.5-mATF-IO ATF-based
NP

uPA-binding region MRI, optical 24-48 h Mouse ATF In vivo
preclinical

[198, 199]

hATF-Cy5.5-IO-Nos ATF-based
NP

uPA-binding region MRI, optical n.v.t. Human ATF In vitro
preclinical

[200]

ATF-I125 ATF-based uPA-binding region n.a. n.v.t. In vitro
preclinical

[201]

NIR-830-mATF-IONP ATF-based
NP

uPA-binding region PA, optical 24 h Mouse ATF In vivo
preclinical

[202]

ATF-IONP-Gem ATF-based
NP

uPA-binding region MRI 48 h Mouse and human ATF In vivo
preclinical

[203]

NIR-830-hATF-IONP ATF-based
NP

uPA-binding region Optical 24 h Human ATF In vivo
preclinical

[204]

NAc-dD-CHA-F-dS-dR-Y-L-W-S-βAla)2-K-
K(DOTA)-NH2-

111In
Peptide uPA-binding region n.a. n.v.t. In vitro

preclinical
[201]

99mTc-Hynic-PEG-AE105 Peptide uPA-binding region SPECT 4-6 h In vivo
preclinical

[205]

64Cu-DOTA-AE105 Peptide uPA-binding region PET 24 h Phase I
clinical

[13, 219–
222, 224]

68Ga-NOTA-AE105 Peptide uPA-binding region PET 10 min-1 h Phase I
clinical

[14, 206]

ICG-Glu-Glu-AE105 Peptide uPA-binding region Optical 6-24 h In vivo
preclinical

[207–209]

CH1055-4Glu-AE105 Peptide uPA-binding region Optical 72-96 h In vivo
preclinical

[210]

AF680-2G10 Antibody uPA-binding region Optical 48-96 h Recombinant antibody with
trastuzumab Fc region

In vivo
preclinical

[211, 212]

111ln-2G10 Antibody uPA-binding region SPECT 48-120 h Recombinant antibody with
trastuzumab Fc region

In vivo
preclinical

[211, 212]

AF680-3C6 Antibody β1-binding region Optical 48-96 h Recombinant antibody with
trastuzumab Fc region

In vivo
preclinical

[211]

111ln-3C6 Antibody β1-binding region SPECT 48-96 h Recombinant antibody with
trastuzumab Fc region

In vivo
preclinical

[211]

111In-ZW800-1-ATN-658 (Hybrid ATN-
658)

Antibody Domain 3, amino
acids 268-275

Optical,
SPECT

24-72 h Mouse antibody In vivo
preclinical

[213, 214]

NP nanoparticle, MRI magnetic resonance imaging, PET positron emission tomography, SPECT single photon-emission computed tomography, h hours, min minute,
n.a. not applicable, ATF amino-terminal fragment
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acids 268-275 [47, 227]. ATN658 enables and anti-
tumor effect by impairing α5β1 integrin adhesion to the
ECM and is not effected by uPA or vitronectin inter-
action with uPAR [47, 228, 229]. In colorectal and oral
xenograft cancer models NIRF and SPECT hybrid-
labeled ATN658, accurately localized lesions as small as
1-2 mm in size in a range from 24 to 72 h post-injection
(Fig. 6c) [213, 214]. ATN658 has been humanized and is
awaiting clinical translation for NIRF-imaging [229].
A thorough assessment of the uPAR targeting agents re-

veals crucial differences in modalities, biodistributions, im-
aging windows, epitopes targeted, and production methods.
Therefore, a one-size-fits-all solution to target all types of dis-
eases where uPAR is involved is probably not feasible, like
for most, if not all, molecular targets [5]. For instance, pep-
tides may find their utility in more acute situations such as
atherosclerosis imaging. Antibodies seem more ideal for ab-
dominal imaging where the high non-specific background of
kidneys can be a hindrance or in more elective settings
where a large imaging window is desired. Not only will
selecting an optimal agent be challenging, also designing and
selecting preclinical animal models that take the species spe-
cificity of the imaging agents into account, since most tracers
designed for clinical applications have high affinities for hu-
man uPAR but no or reduced affinities for mouse uPAR
[201, 218, 226, 227].

Conclusions
uPAR is a central unit in regulating ECM proteolysis,
migration, differentiation, and proliferation and hereby
implicated in a range of inflammatory-related diseases,
often holding pivotal roles and tipping the balance

toward disease aggravation. Even though uPAR is almost
completely absent in normal tissue, it will likely not be
an appropriate target for the diagnosis of diseases, due
to the common pathophysiological role. However, when
it comes to visualization of diagnosed disease lesions,
whether it be plaques that are about to rupture or aggra-
vation of RA or IBD, uPAR plays a central pathophysio-
logical role prompting its usefulness as a molecular
imaging target. Furthermore, molecular imaging of
uPAR can unravel the complex pathophysiological pro-
cesses occurring, increasing our understanding of the
disease, and consequently allowing the development of
novel therapies, ultimately improving patient outcomes.
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