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Abstract

Background: Emphysema severity is frequently measured on CT via densitometry. Correlation with scintigraphic
and spirometric functional measures of ventilation or perfusion varies widely, and no prior study has evaluated
correlation between densitometry and lobar ventilation/perfusion in patients with severe emphysema. The aim of
this study was to evaluate the utility and findings of gallium-68 (68Ga) ventilation/perfusion positron emission
tomography-CT (68Ga-VQ/PET-CT) in severe emphysema assessment.

Methods: Fourteen consecutive patients undergoing evaluation for bronchoscopic lung volume reduction between
March 2015 and March 2018 underwent 68Ga-VQ/PET-CT assessment for lobar functional lung mapping, in addition to
CT densitometry. Correlations between CT densitometry and 68Ga-VQ/PET-CT parameters for individual lobar lung
function were sought.

Results: CT densitometry assessment of emphysema correlated only weakly (R2 = 0.13) with lobar perfusion and
was not correlated with ventilation (R2 = 0.04). Densitometry was moderately (R2 = 0.67) correlated with V/Q units
in upper lobes, though poorly reflected physiological function in lower lobes (R2 = 0.19). Emphysema severity, as
measured by CT densitometry, was moderately correlated with proportion of normal V/Q units and matched V/Q
defects in individual lobes.

Conclusions: Assessment of lobar pulmonary function by 68Ga-VQ/PET-CT provides physiologic information not
evident on CT densitometry such as ventilation and perfusion specifics and matched defects. Further research is
needed to see if the discordant findings on 68Ga-VQ/PET-CT provide prognostic information or can be used to
modify patient management and improve outcomes.
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Background
The airflow limitation that characterizes chronic obstruct-
ive pulmonary disease (COPD) is caused by a mixture of
small airways disease (e.g. obstructive bronchiolitis) and
parenchymal destruction (emphysema), the relative contri-
butions of which vary from person to person [1]. Changes
of emphysema may be observed on chest computed tom-
ography (CT) and may predate development of spiromet-
ric abnormalities [2]. Distribution and severity of
emphysema may be visually assessed but is more accur-
ately quantified using CT densitometry which measures
the percentage of voxels within the lung that have density
below a predefined threshold, usually either − 910 or −
950 Hounsfield Units (HU) [2].
Densitometry has been shown to exhibit moderate

correlation with physiologic measures of COPD severity
[2], though heterogeneity within and between studies is
high, and further research is required. Emphysema quan-
tification by MRI demonstrates lower agreement be-
tween anatomic imaging and perfusion abnormalities in
severe COPD, compared to mild COPD [3]. Studies
using 2-dimensional scintigraphy in patients with severe
emphysema indicate that regional ventilation correlates
poorly with CT densitometry [4]. Perfusion appears
more closely matched with radiologic destruction [5].
Measures of air trapping within individual lobes have
also been shown to correlate poorly with CT densitom-
etry [6].
The use of gallium-68 (68Ga) ventilation/perfusion

(VQ) positron emission tomography (PET)-CT imaging
for assessment of regional/lobar lung function, including
visualization of changes following endobronchial valve
insertion, has previously been reported [7, 8]. This tech-
nique allows regional assessment of VQ at a sublobar
anatomical level with superior resolution to planar VQ
and single photon emission tomography (SPECT) VQ
imaging [9, 10]. The study can also be performed with
respiratory gating enabling more accurate quantification
[11]. Global 68Ga-VQ/PET-CT assessments of VQ func-
tion are known to correlate with standard pulmonary
function tests (PFTs) [12].
In this study, we evaluate the utility and findings of

68Ga-VQ/PET-CT in severe emphysema assessment and
its correlations with CT densitometry.

Methods
Consecutive patients undergoing evaluation for broncho-
scopic lung volume reduction between March 2015 and
March 2018 were considered for inclusion in this study.
Patients with COPD with exercise limitation were evalu-
ated according to consensus guidelines [12, 13], with as-
sessment including total lung volume (TLV) and
residual volume (RV), quantitative CT chest for deter-
mination of fissure integrity [14], and ventilation-

perfusion scanning. Correlations between unmatched
defects and voxel density, matched defects and voxel
density, normal V/Q and voxel density, ventilation and
perfusion, perfusion and voxel density, ventilation and
voxel density, perfusion and normal V/Q, and ventilation
and normal V/Q were assessed for all lobes combined
and individually. This was a prospective study approved
by the Melbourne Health Human Research & Ethics
Committee (QA2017103). Informed consent was ob-
tained from all individual participants included in the
study.

CT acquisition
CT chest imaging, in both inspiratory and expiratory
phases, was performed with Siemens Somatom Defin-
ition Flash camera (Siemens Healthcare Pty Ltd.
Bayswater, Australia) using the following parameters:
CARE Dose4D, ref vKp 120, Qref mAs 100, x-ray beam
collimation 128 × 0.6, rotation time 0.5 s, and pitch 0.8.

CT densitometry
Quantitative CT analysis was performed on all scans
using the StratX® software (PulmonX, Australia). In each
scan, the lungs, pulmonary fissures, and pulmonary lobes
were automatically segmented, visually checked, and edi-
ted by trained medical analysts [15–18]. The volumes of
the lungs and lobes were extracted from the segmented
volumes. Emphysema was quantified by attenuation
thresholding as the percentage of voxels below – 910
HU. Results were recorded on a lobar basis, with
destruction measured according to the percentage of
parenchyma within the lobe less than a tissue density
threshold of – 910 HU [19].

68Ga-VQ/PET-CT
Ventilation-perfusion scanning was performed using
68Ga-VQ/PET-CT as previously described [11]. The pa-
tient was placed in a supine position, and Galligas, pre-
pared by placing 68Ga in a Technegas generator
(Cyclopharm, Australia), was inhaled. The patient was
then positioned supine, with their arms raised on a GE
Discovery 690 camera, and a low-dose CT scan was ac-
quired covering the lungs using the following parame-
ters: CARE Dose4D, ref vKp 120, Qref mAs 55, x-ray
beam collimation 24 × 3.0, rotation time 0.5 s, and pitch
1.0. A 2–3 bed ventilation PET scan was acquired at 5
min per bed position. While the patient was in the same
position, the patient was then administered with ap-
proximately 50MBq of 68Ga-macroaggregated albumin
(MAA) intravenously, and a perfusion PET scan was ac-
quired at 5 min per bed position.
An experienced nuclear medicine physician completed

manual delineation of functional lung volumes using the
MIM Encore software (MIM version 6.7) and using
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methodology we have previously defined [12, 20]. Areas
of normal ventilation and perfusion were defined by the
nuclear medicine physician by including any lung paren-
chyma with Galligas for the ventilation contour or Ga-
MAA for the perfusion contour. Percentage lobar venti-
lation, perfusion, and CT volume, as a percentage of
total lung values, were recorded, along with normal ven-
tilation/perfusion, matched, and unmatched defects for
each lobe. The sum of matched/unmatched defects and
normal ventilation was equal to 100%, as previously de-
scribed [8].

Pulmonary function testing
Measurement of spirometry, gas diffusion capacity, and
total lung volumes were conducted in accordance with
the American Thoracic Society–European Respiratory
Society guidelines [21].

Data analysis
Statistical analysis was performed using Microsoft Excel
in version 2010 (Washington, USA). Clinical and demo-
graphic data are presented using summary statistics.
Correlations were sought by Pearson’s correlation coeffi-
cient test for non-normally distributed data (Rs) by con-
vention, and R between 0.0and 0.2 was regarded as
negligible, 0.2–0.4 as weak, 0.4–0.7 as moderate, 0.7–0.9
as strong, and 0.9–1.0 as very strong correlation [22].

Results
Fourteen patients were included in this study. Mean age
was 72 years, with spirometry demonstrating severe air-
flow obstruction in all patients (Table 1), with mean
FEV1 34% predicted (range 19–47%). All demonstrated
significant exercise limitation, with median modified
Medical Research Council dyspnea score 3 (range 2–3)
and 6-min walk distance (6MWD) 280 m (130–440m).
Densitometry measures indicated high destruction

scores with a median voxel density ≤ − 910 HU of 58%
(mean 54%) across all lobes. Densitometry demonstrated
an overall linear relationship with CT volume in all lobes
with a slope coefficient of 0.15, although percentage
variance (R2) was poor at 0.09. This connection was the
strongest in the upper lobes with a slope coefficient 0.18
(R2 = 0.31, p value < 0.05).

68Ga-VQ/PET-CT analysis
Results from comparison of densitometric evaluation of
emphysema and lobar function as measured by 68Ga-
VQ/PET-CT are presented in Table 2. Functional lung
mapping with 68Ga-VQ/PET-CT demonstrated high in-
ternal correlation between perfusion and ventilation (R2

= 0.82, p < 0.0001) (Fig. 1a). High destruction scores on
densitometry demonstrated a negligible negative associ-
ation with perfusion (R2 = .13, p = 0.002) (Fig. 1b), and

no correlation with ventilation (R2 = 0.04, p = 0.10) (Fig.
1c). Correlations were stronger for upper lobes than
lower lobes (Table 2).
Interestingly, densitometry was more strongly corre-

lated with lobar function, as evaluated by 68Ga-VQ/PET-
CT. Densitometry and percentage normal V/Q units
within lobes demonstrated weak correlation (R2 = 0.33,
p < 0.0001), with greater correlation seen in upper lobes
(R2 = 0.67, p < 0.0001) (Fig. 1d, e). Emphysema severity
as measured by CT densitometry also demonstrates
weak correlation with the proportion of matched V/Q
defects within individual lobes (R2 = 0.36, p < 0.0001)
(Fig. 1f). The relationship is again stronger in upper than
lower lobes (Table 2).
No correlation was seen between CT densitometry

and unmatched defects within the lung (Table 2).

Discussion
Our study demonstrates that lobar functional lung map-
ping in patients with severe COPD provides physiologic
information not evident on CT densitometric analysis
(Figs. 2 and 3). Significant inter-individual variability was
observed in the relationship between lobar destruction
scores and physiologic function, as measured by 68Ga-
VQ/PET-CT. Relationships between densitometry-

Table 1 Patient demographics

Patient characteristics (n = 14) Mean Median Range

Age (years) 72 70 56 – 83

Male: female 11:3

FEV1
Litres
% predicted

0.94
34

0.9
35.5

0.5–1.42
19–47

FEV1/FVC (%) 31 31 19–44

DLCO (% predicted) 40 37 28–64

Residual volume
Litres
% predicted

5.0
197

4.8
184

3.8–7.6
164–271

6MWD (m) 284 280 130–440

mMRC dyspnea score 3 3 2–3

Destruction scores*
Upper lobes (%)
Lower lobes (%)
Most severely affected lobe (%)
LUL 36% (5)
RUL 21% (3)
RML 7% (1)
LLL 14% (2)
RLL 14% (2)
RUL and RML 7% (1)

56
52
69

60
52
73

4–82
19–76
50–82

*Percentage of lung with density below – 910 HU
FEV1 forced expiratory volume (first second), FVC forced vital capacity, DLCO
diffusing capacity of lung for carbon monoxide, 6MWD 6-min walk distance,
mMRC dyspnea score modified Medical Research Council dyspnea score
(stratifies severity of dyspnea and associated disability), LUL left upper lobe,
RUL right upper lobe, RML right middle lobe, LLL left lower lobe, RLL right
lower lobe
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assessed severity of emphysema and functional lung
measurements were much stronger in upper lobes (com-
pared to lower lobes) for all parameters examined.
CT densitometry is the commonest measure for as-

sessment of emphysema severity. CT density shows a
variable relationship to clinically relevant parameters,
with studies demonstrating weak-to-moderate correl-
ation with FEV1, DLCO, and symptom score [2]. How-
ever, in addition to high heterogeneity within and
between studies regarding densitometry and PFTs’ rela-
tionship, evidence of publication bias further clouds the
exact nature between these findings [2].
Changes in pulmonary blood flow can be observed

even in the absence of parenchymal abnormality in
COPD [23]. MRI studies have suggested greater correl-
ation with parenchymal destruction (as measured by
densitometry) and lobar perfusion [24], though subjects
in this study had less severe COPD which perhaps ex-
plains the improved correlation between densitometry
and lobar perfusion observed in our study. MRI studies
also have previously reported only moderate correlation
between ventilation and destruction scores [25].

V-Q matching has previously been undertaken with
SPECT/CT to allow calculation of lobar function [26]. In
this study, we have used a novel technique using PET
tracers. PET has significant technical advantages to
SPECT including higher sensitivity for detecting radio-
active decay, higher spatial and temporal resolution, and
superior quantitative capability [27]. For lung imaging,
V/Q PET/CT is now possible by substituting 99mTc with
68Ga, using the same carrier molecules as conventional
V/Q imaging. In a prospective 30 patients study, we
demonstrated that the percentage of lung volume with
normal ventilation and perfusion > 90% correctly identi-
fied patients with COPD in 93% of patients [12]. The
high correlation between global measures of lung V/Q
and RFTs supports the concept of using 68Ga V/Q PET/
CT to predict consequences of therapies that affect re-
gional function.
Our findings indicate that 68Ga-VQ/PET-CT provides po-

tentially significant information regarding lobar lung func-
tion, beyond that identified in routine densitometry
assessment of emphysema severity. Functional information
in emphysema is likely to be clinically valuable in a number

Table 2 Voxel density and functional lung mapping

Measure Site Slope coefficient R2 P value

Voxel density vs normal functional lung All lobes − 0.86 0.33 < 0.05

Upper lobes − 0.94 0.67 < 0.05

Lower lobes − 0.78 0.19 < 0.05

Voxel density vs Matched defects All lobes 0.96 0.36 < 0.05

Upper lobes 0.98 0.58 < 0.05

Lower lobes 1.05 0.34 < 0.05

Voxel density vs unmatched defects All lobes − 0.10 0.01 0.33

Upper lobes − 0.04 0.01 0.68

Lower lobes − 0.27 0.07 0.18

Voxel density vs perfusion All lobes − 0.25 0.13 < 0.05

Upper lobes − 0.28 0.26 < 0.05

Lower lobes − 0.28 0.17 < 0.05

Voxel density vs ventilation All lobes − 0.13 0.04 0.10

Upper lobes -0.09 0.03 0.35

Lower lobes -0.26 0.16 < 0.05

Perfusion vs ventilation All lobes 0.86 0.82 < 0.05

Upper lobes 0.70 0.67 < 0.05

Lower lobes 0.86 0.79 < 0.05

Perfusion vs normal VQ All lobes 1.31 0.35 < 0.05

Upper lobes 1.52 0.52 < 0.05

Lower lobes 2.15 0.66 < 0.05

Ventilation vs normal VQ All lobes 1.94 0.51 < 0.05

Upper lobes 1.13 0.20 < 0.05

Lower lobes 1.94 0.51 < 0.05
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of scenarios, such as for assessment of endobronchial valves,
surgical resection, and radiotherapy. While weak correlation
was observed between destruction scores and perfusion, as
well as normal functional lung units, no correlation could be
identified for ventilation, or for proportion of unmatched V-
Q defects. Unmatched defects identified by VQ-PET were
demonstrated in prior studies to be equally comprised of
mis-matched defects (V > Q) and reverse mis-matched
defects (V < Q) [12]. Thus, assessment of lobar function
through CT and perfusion studies alone is unlikely to
adequately determine lobar function.

Limitations
This study is limited in size and examines only patients
with severe emphysema. Relationship of functional indi-
ces with densitometry findings is likely to differ in mild
COPD and in those with normal pulmonary function.
Whilst association between densitometry and functional
lung assessment is stronger in the upper lobes, the exact
reason is unclear. We postulate that this may in part be
due to 68Ga-VQ/PET-CT being a slower acquisition
scan, resulting in respiratory motion artefact in the
bases. Previous studies have demonstrated upper lobe

Fig. 1 Shown are the relationships between perfusion & ventilation, as demonstrated on 68Ga-VQ/PET-CT and emphysema severity, as
demonstrated on CT densitometry. a) perfusion versus ventilation in all lobes. b) voxel density versus perfusion in all lobes. c) voxel density versus
ventilation in all lobes. d) voxel density versus proportion of lung with normal V/Q units. e) voxel density versus proportion of upper lobes with
normal V/Q units. f) voxel density versus, proportion of lung with matched V/Q defects

Fig. 2 Highlighted are sagittal fused 68Ga-VQ/PET-CT (panel a), CT densitometry (b), and StratX® report (c) images from a participant (case 1)
demonstrating an example of concordance of modalities in the upper lobe. Panel A demonstrates perfusion scanning with significantly reduced
perfusion to RUL and RML (RUL 11%, RML 6%, RLL 43%). Panel B demonstrates CT appearance, with C illustrating destruction severity, with 79% of
RUL, 63% of RML, and 48% of RLL voxels with measured density < − 910 HU)
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predominant emphysema which has a stronger negative
correlation with pulmonary function testing and a
steeper rate of decline over time compared with lower
lobe predominant emphysema [28–30]. Although upper
lobes are generally the more clinically targeted regions
for lung volume reduction, this finding may signify the
importance of V/Q assessment in prior to intervention
particularly in the lower lobes.

Conclusion
68Ga-VQ/PET-CT provides additional functional infor-
mation in patients with severe emphysema which may
augment CT-densitometric assessment of emphysema
severity. Correlation between CT-based destruction
scores and functional measures of individual lobar func-
tion vary from negligible to moderate. Relationships be-
tween destruction scores and physiologic function are
uniformly stronger in upper lobes compared to lower
lobes. Decisions regarding therapeutic interventions in
targeted lobes in severe emphysema patients could be
strengthened with the use of both CT and VQ studies
available, particularly in unclear cases such as significant
functional limitation despite only mild radiological em-
physema and decision between multiple potential target
lobes for endobronchial valve insertion.
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