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Abstract

Objectives: To decipher the correlations between PET and DCE kinetic parameters in non-small-cell lung cancer
(NSCLQ), by using voxel-wise analysis of dynamic simultaneous [18F]FDG PET-MRI.

Material and methods: Fourteen treatment-naive patients with biopsy-proven NSCLC prospectively underwent a
1-h dynamic [18F]FDG thoracic PET-MRI scan including DCE. The PET and DCE data were normalized to their
corresponding T;-weighted MR morphological space, and tumors were masked semi-automatically. Voxel-wise
parametric maps of PET and DCE kinetic parameters were computed by fitting the dynamic PET and DCE tumor
data to the Sokoloff and Extended Tofts models respectively, by using in-house developed procedures. Curve-fitting
errors were assessed by computing the relative root mean square error (rRMSE) of the estimated PET and DCE
signals at the voxel level. For each tumor, Spearman correlation coefficients (r;) between all the pairs of PET and
DCE kinetic parameters were estimated on a voxel-wise basis, along with their respective bootstrapped 95%
confidence intervals (n = 1000 iterations).

Results: Curve-fitting metrics provided fit errors under 20% for almost 90% of the PET voxels (median rRMSE = 10.3,
interquartile ranges IQR = 8.1; 14.3), whereas 73.3% of the DCE voxels showed fit errors under 45% (median rRMSE
= 31.8%, IQR = 22.4; 46.6). The PET-PET, DCE-DCE, and PET-DCE voxel-wise correlations varied according to
individual tumor behaviors. Beyond this wide variability, the PET-PET and DCE-DCE correlations were mainly high
(absolute ry values > 0.7), whereas the PET-DCE correlations were mainly low to moderate (absolute r; values < 0.7).
Half the tumors showed a hypometabolism with low perfused/vascularized profile, a hallmark of hypoxia, and
tumor aggressiveness.
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Conclusion: A dynamic “one-stop shop” procedure applied to NSCLC is technically feasible in clinical practice. PET
and DCE kinetic parameters assessed simultaneously are not highly correlated in NSCLC, and these correlations
showed a wide variability among tumors and patients. These results tend to suggest that PET and DCE kinetic
parameters might provide complementary information. In the future, this might make PET-MRI a unique tool to
characterize the individual tumor biological behavior in NSCLC.
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Introduction
Positron emission tomography (PET) combined with
magnetic resonance imaging (MRI) emerged a decade
ago [1, 2]. Since then, substantial efforts have been made
to promote its clinical use, but disappointing results
compared to more cost-effective and former imaging
modalities still make the positioning of PET-MRI chal-
lenging in clinical practice [3]. In the era of precision
medicine, advanced multiparametric imaging offers
many opportunities to better characterize the biological
processes of tumors [4—6]. In contrast to standard visual
or semi-quantitative imaging methods, the more ad-
vanced dynamic quantitative imaging approach allows
the absolute quantification of various sophisticated bio-
logical processes, based on the pharmacokinetic model-
ing of tracer exchanges. PET kinetic modeling of
[18F]FDG quantifies the glucose metabolic pathway in
tumor cells, characterized by the related Kj, k, and ks
PET microparameters [7]. Previous dynamic PET studies
showed [18F]FDG microparameters to be surrogates of
tumor aggressiveness or prognosis factors in a wide var-
iety of malignancies [8-11], including primary non-
small-cell lung cancer model (NSCLC) [12]. In magnetic
resonance imaging (MRI), dynamic contrast-enhanced
MRI (DCE-MRI) provides insight into the underlying
tumor vascularization at the microcirculatory level, de-
pending on the contrast agent leakage through the capil-
lary wall. In the case of gadolinium (Gd), the Kians Ve
Kep (the Kians to Ve ratio), and v, microparameters re-
flect the perfusion, permeability, and microvascular
density properties of the tumor [13]. Previous onco-
logical studies showed DCE microparameters to be sig-
nificant predictors of response to treatment in several
malignancies [14—17], including NSCLC [18].
Metabolism and vascularization are two fundamental
hallmarks of cancer [19], and their relationships are of
particular relevance to capture the tumor progression
and responses to treatment capabilities [20]. In inte-
grated PET-MRI, combining PET and DCE kinetic mod-
eling may be thus of particular interest to revisit the
complex relationship between these two fundamental
tumor hallmarks [19, 20] at the intra-tumor regional
level. In lung cancer, previous [18F]FDG PET/MRI im-
aging studies have been performed mainly for clinical

disease staging evaluation [21-25], SUV-ADC correl-
ation analyses [26-29], and prognostic value [30]. To
date, only a few multimodal imaging studies compared
tumor metabolism assessed with PET and angiogenesis
assessed with DCE in NSCLC [31-35], of which only
two combined dedicated [18F]FDG PET and DCE-MRI
imaging data [31, 35]. So far, a combined voxel-wise
analysis of simultaneous dynamic [18F]FDG PET and
DCE-MRI has never been performed at the individual
tumor level.

In this study, we deciphered the correlations between
[18F]FDG PET and DCE kinetic parameters at the intra-
tumor level in newly diagnosed, biopsy proven NSCLC,
by using a combined voxel-wise analysis of dynamic sim-
ultaneous [18F]FDG PET-MRIL

Material and methods

Patients

Between January 2018 and April 2019, a total of 14
treatment-naive patients with biopsy proven NSCLC
prospectively underwent a dynamic [18F]FDG PET-MRI
for thoracic oncology purposes. The exclusion criteria
were claustrophobia, metal implants, renal failure (clear-
ance < 30 mL/min), and uncontrolled diabetes mellitus.
Patient characteristics are summarized in Table 1. The
local institutional review board approved this study
(SHFJ Research Steering Committee, DRF/JOLIOT/
SHFJ/2020/10), and all patients signed written informed
consent.

PET/MRI

All the examinations were performed in the supine pos-
ition on the same integrated 3T PET-MRI scanner
(Signa PET/MR, GE Healthcare, Waukesha, WI, USA).
All patients fulfilled the international procedure guide-
line for [18F]FDG PET tumor imaging [36], having
fasted for 6 h and a blood glucose level under 1.8 g/L at
the time of the imaging procedure. A 1-h dynamic thor-
acic PET acquisition started immediately after the intra-
venous injection of 3-4MBq/kg of [18F]FDG. The
dynamic PET data were histogrammed into multiframe
sinograms (41 frames of 12 x 10s, 12 x 20s, 4 x 60s, 5
x 120's, 8 x 300 s, respectively) to be reconstructed using
an iterative algorithm (3D TOF-OSEM, 6 iterations, and
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Patient Age Gender NSCLC localization Histology Voxels (2 mm?)
1 82 M Right upper lobe Poorly differentiated NSCLC 540
2 47 M Right upper lobe NSCLC 1271
3 71 F Right lower lobe NSCLC (undifferentiated carcinoma) 799
4 67 F Left upper lobe NSCLC (ADK) 211
5 80 F Left upper lobe NSCLC (SCQ) 1207
6 53 M Right medium lobe NSCLC (ADK) 88

7 78 F Left upper lobe NSCLC (ADK) 629
8 55 M Right upper lobe NSCLC (ADK) 318
9 63 M Left upper lobe NSCLC (poorly differentiated SCC) 2409
10 57 M Left upper lobe NSCLC (ADK) 2338
11 62 M Right upper lobe NSCLC (ADK) 1151
12 61 M Right upper lobe NSCLC (SCQ) 5340
13 71 F Right upper lobe NSCLC (ADK) 3845
14 71 M Right upper lobe NSCLC (ADK) 1409

ADK adenocarcinoma, SCC squamous cell carcinoma

28 subsets with time of flight and point spread function
modeling, and with random, dead time, scatter, decay,
and attenuation corrections, matrix size = 256 x 256;
voxel size = 2 x 2 x 2.78 mm). Simultaneously, the fol-
lowing MR thoracic acquisitions were performed using a
thoracic phased array radiofrequency (RF) coil (GEM
Coil Suite, GE Healthcare, Waukesha, WI, USA):

e A two-point (fat, water) axial 3D-Dixon pulse se-
quence (TR/TE/TE, = 4/1.1/2.2 ms, Field-Of-View
(FOV): 500/500/332.8 mm, number of excitations
(NEX) = 0.7, voxel size 1.95 x 1.95 x 2.6 mm) for
MR-based attenuation correction.

e A PROPELLER fast recovery Fast Spin Echo
sequence with respiratory triggering for T2-weighted
morphology (TR/TE = 8000/117 ms, FOV: 400/400/
90 mm, NEX = 2; voxel size 1.0 x 1.0 x 6.0 mm, ac-
celeration factor = 3).

e A 2D saturation recovery pulse sequence for
pre-contrast T;-mapping (cardiac triggered, in-
version times = [136/136/136/136/818/1583/
2109/2808/20000] ms, TR/TE = 2.9/1.1 ms;
FOV: 420/420/30 mm, NEX = 1; voxel size 1.64
x 1.64 x 5.0 mm) [37].

e DCE acquisitions performed before, during, and
after the automated injection of gadolinium contrast
agent (Gd, 0.2 mmol/kg body weight, Dotarem,
Guerbet GmbH, Germany; injecting rate of 2.0 mL/s
by power injector) using 3D T;-Fast Spoiled
Gradient Recalled (Fast SPGR) pulse sequences
under free breathing (120 frames of 3.03 s each for a
total acquisition time of 6 min, TR/TE = 3.46/1.10
ms; FOV: 400/320/120 mm, NEX = 0.69, voxel size
1.56 x 1.25 x 2.5 mm).

e A post-contrast 3D T;-Fast SPGR sequence in
breath-hold position (TR/TE = 4.48/2.41 ms, FOV:
440/352/179.2 mm, NEX = 0.7, voxel size 1.72 x
1.72 x 0.8 mm).

Image processing

Because no software or dedicated professional worksta-
tion currently allows the multimodal voxel-wise compu-
tation of PET and DCE parametric maps in PET-MRI,
all data processing was performed on a stand-alone per-
sonal computer using in-house developed software writ-
ten in Python (version 3.6; Python Software Foundation,
www.python.org; libraries numpy, pandas, nibabel,
nilearn, nipype, scipy, math). The general study work-
flow is provided in the Fig. 1. For each patient, the same
image processing was performed as follows:

a) Data normalization: [18F]FDG-PET and DCE-MRI
data were first normalized to the 3D-T; reference
isotropic space (i.e., the post-contrast 3D T;-
weighted MRI resampled to 2 mm? isotropic). For
this purpose, the dynamic PET data and the MR
pre-contrast T1-mapping data were resampled to
the 3D-T; space (libraries nilearn and nibabel),
whereas the DCE data were motion-compensated
(warping to the 3D-T; space) using the SyNQuicK
procedure (library nipype, defaut parameters) im-
plemented in Advanced Normalization Tools
(ANTs) [38, 39].

b) Tumor mask: the last frame of [18F]FDG-PET and
DCE data, the pre-contrast T;-mapping data, and
the post-contrast 3D-T; data were masked semi-
automatically with ITK-SNAP (http://www.itksnap.
org), which implements an active contour-based


http://www.python.org
http://www.itksnap.org
http://www.itksnap.org

Besson et al. EINMMI Research (2020) 10:88

Page 4 of 13

Dynamic [**F]FDG PET

Reference space

$a

3D-T; Gado (2mm°)

Compartmental models

Normalized DCE (2mm?)

AIF mask
Tumor segmentation
Multimodal Tumor mask

Sokoloff

\_ Normalized [*F|FDG PET (2mm?) /

Normalization
to 2mm? isotropic space

Fig. 1 Study workflow. ETM, extended Tofts model

Voxel-wise statistics

T

=
W
a

Parametric maps computation

N

DCE

DCE

PET
F JOR :
k2 ks MRGlu v,
\ Spearman with 95% CI /

4

algorithm [40, 41], as follows: an intensity-
grading feature image was first computed to de-
fine the lesion boundaries by thresholding the in-
tensities of the input image into the background
and foreground (region competition approach, in
which the intensity values ranged from - 1 to 1
for background and foreground respectively); one
or more spherical seeds were then placed on the
feature image to initialize the segmentation task;
and the iterative algorithm was launched to
propagate the seeds, driven by regularity con-
straints and the image intensity properties. The
resulting PET, DCE, T;-mapping, and 3D-T;
tumor masks were combined into a single multi-
modal tumor mask (library nilearn) using a basic
intersection operation.
c) Arterial mask for image-based derived input func-
tion (IDIF): IDIF is non-invasive and has been vali-
dated against arterial sampling (the gold standard)
in oncological patients [42]. IDIF was performed
with the graphical user interface ITK-SNAP as fol-
lows: a small volume of interest (VOI) was carefully
positioned on the center of the thoracic aorta to
avoid spill-in and spill-over effects. The position
was carefully chosen to fit within the FOVs of all
the PET, T;-mapping, and DCE fused data.
Signal processing: the 4D-PET data were smoothed
with an 8-mm Gaussian filter (library nilearn), and

d)

the DCE imaging data were converted to gadolin-
ium plasma concentration C(¢) (libraries nilearn,
numpy, pandas) using the following equation [43]:

1 -1
)= Ty * rar < TR
@ % 1-E -1
o IR ‘In S0 " 1- cos(a)E
To @) x cos(a) x _E 1
S0 1- cos(a)E
where Sy and S(t) are the signals measured before

contrast-enhancement and at time ¢ after contrast injec-
tion, Hct is the hematocrit level fixed at 0.45 [44], rg, =
345 '.mM! is the relaxivity of Dotarem at 3T [45], E =
e~ TRITo  where T), is the estimated pre-contrast T}
value in the voxel of interest, and «a is the flip angle of
the 3D Fast SPGR pulse sequence, set to 15° in our im-

aging protocol.

e) Voxel-wise parametric maps computation: tumor
and IDIF data were extracted from the masked 4D
PET and DCE data, and the [18F]FDG PET (K, ky,
ks, v, MRGIlu) and DCE-MRI (Kirans, Ver Keps Vi)
kinetic parameters were finally computed by fitting
the extracted data to the reference Sokoloff’s
([18F]JFDG PET) [7] and extended Tofts (DCE) [46]
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compartmental models on a voxel-wise basis, using
“in-house” second order Runge-Kutta procedures
combined with Levenberg-Marquardt non-linear
least-square fitting optimization (libraries numpy,
pandas, scipy, math).

Statistical analysis

All the statistical analyses were performed with Python
(version 3.6; Python Software Foundation, www.python.
org) and R studio (version 3.4.0; R Project for Statistical
Computing, https://rstudio.com).

Curve fitting errors of our in-house PET and DCE kinetic
modeling implementation were assessed voxel-wise by com-
puting the relative root mean square errors (Python, libraries
numpy, and pandas), defined by rRMSE = %
where signal is the measured signal and signal is the esti-
mated signal after the fitting procedure. The PET and DCE
kinetic microparameter values are expressed as mediant
IQR. After data transformation into z-score (zero mean and
unit variance) and cleaning-up from outliers (z-score > 3),
the PET-PET, DCE-DCE, and PET-DCE voxel-wise correla-
tions were assessed for each tumor by estimating the related
Spearman coefficients (ry), along with their respective boot-
strapped 95% confidence intervals (R studio, RVAideMe-
moire package, n = 1000 iterations). The absolute r;
estimated values (|r|) were considered low under 0.4, mod-
erate between 0.4 and 0.7, and high above 0.7 [47].
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Results

The general characteristics of the 14 patients are sum-
marized in Table 1. Briefly, 9 were male, and 5 were fe-
male (sex ratio M/F = 1.8), aged 65.5 + 10.6 years. The
tumor localization was the right upper lobe for the ma-
jority of the patients (7 patients) or the left upper lobe (5
patients); the two remaining patients had the tumor in
the right lower lobe and the right medium lobe, respect-
ively. The estimated [18F]FDG PET and DCE kinetic pa-
rameters are summarized in Table 2. The voxel-wise
curve-fitting metrics (fit errors) of the PET and DCE
kinetic measurements are provided in Tables 3 and 4
and Fig. 2. For the 14 tumors (21,555 estimated voxels),
the overall PET rRMSE was 10.3% (8.1; 14.3), corre-
sponding to 89.3% of voxels with error under 20%. The
overall DCE rRMSE was 31.8% (22.4; 46.6), correspond-
ing to 73.3% of voxels with error under 45%. An illustra-
tion of the PET and DCE kinetic estimated parameter
maps of the patient n°9, together with their related
curve-fitting statistics, is provided in Fig. 3. The correl-
ation analyses showed wide variability in the PET-PET,
DCE-DCE, and PET-DCE correlations (Figs. 4 and 5 and
supplementary material). The PET-PET and DCE-DCE
correlations were mainly moderate to strong for all the
tumors but with high individual variabilities (Fig. 4 and
supplementary material). When considering the PET-
DCE correlations exclusively, the 14 tumors showed
weak (|rs] < 0.4) to moderate (0.4< |rg| <0.7) correla-
tions exclusively (Fig. 5 and supplementary material).

Table 2 Estimated PET and DCE kinetic parameters. Kinetic parameters are expressed as median (IQR)

Tumors PET parameters DCE parameters
K, (ml g'min?) | k, (min") | k, (min') | MRGlu (gmol g-'min"!) Vi Ky (min) v, K.. (min"') v
1 0.22 0.71 0.13 0.15 0.05 0.30 0.68 0.60 0.008
(0.18-0.26) | (0.54-0.81) | (0.1-0.14) (0.12-0.17) (0.03-0.07) | (0.14-0.60) | (0.42-1.0) |(0.28-1.19) (0.0-0.05)
2 0.26 0.68 0.15 0.24 0.05 0.84 1.0 0.85 0.40
(0.22-0.32) | (0.45-1.03) | (0.10-0.20) (0.19-0.26) (0.03-0.06) | (0.67-1.17) | (1.0-1.0) |[(0.68-1.18) (0.19-0.68)
3 0.08 0.31 0.09 0.09 0.13 0.17 0.33 0.56 0.03
(0.06-0.11)  |(0.22-0.44) | (0.05-0.14) (0.07-0.10) (0.09-0.18) | (0.07-0.60) | (0.09-1.0) |(0.27-27.7) (0.0-0.12)
4 0.15 1.09 0.033 0.026 0.084 0.74 0.63 1.21 0.15
(0.12-0.18) | (0.85-1.40) | (0.029-0.036) (0.022-0.032) (0.076-0.093) | (0.25-1.36) | (0.33-1.0) |(0.57-2.66) (0.04-0.36)
5 0.19 0.57 0.19 0.35 0.09 0.07 0.17 0.47 0.02
(0.15-0.24) | (0.46-0.77) | (0.15-0.24) (0.30-0.38) (0.08-0.10) | (0.05-0.13) |(0.13-0.21) | (0.30-0.74) | (0.009-0.024)
6 0.38 1.30 0.089 0.11 0.066 0.84 1.0 1.30 0.05
(0.34-0.42) | (1.14-1.47) | (0.068-0.109) (0.09-0.14) (0.057-0.077) | (0.36-1.75) | (0.47-1.0) |(0.66-2.25) (0.0-1.0)
7 0.14 0.41 0.028 0.053 0.109 0.06 0.95 0.12 0.12
(0.12-0.16)  |(0.35-0.5) |(0.022-0.034) (0.048-0.06) (0.084-0.13) | (0.04-0.14) | (0.32-1.0) | (0.06-0.23) (0.06-0.23)
3 0.11 0.66 0.08 0.063 0.18 0.52 0.19 1.90 0.0
(0.07-0.13) | (0.44-0.72) | (0.05-0.1) (0.045-0.084) (0.16-0.19) | (0.15-1.06) |(0.03-0.62) | (1.20-3.78) (0.0-0.08)
9 0.22 0.55 0.071 0.14 0.05 0.32 0.52 0.63 0.034
(0.17-0.26) | (0.47-0.61) | (0.059-0.088) (0.11-0.19) (0.03-0.07) | (0.17-0.53) |(0.29-0.77) | (0.45-0.92) (0.0-0.09)
10 0.26 0.63 0.08 0.22 0.11 1.06 1.0 1.25 0.25
(0.20-0.32) |(0.45-0.83) | (0.05-0.14) (0.14-0.34) (0.09-0.14) | (0.64-1.47) | (0.38-1.0) [(0.91-2.67) [ (0.0003-0.81)
1 0.15 0.48 0.11 0.16 0.09 0.81 0.74 1.23 0.08
(0.13-0.18) | (0.34-0.65) | (0.09-0.14) (0.13-0.19) (0.06-0.13) | (0.34-1.28) | (0.33-1.0) [(0.90-1.65) | (0.0001-0.27)
12 0.29 1.29 0.32 0.33 0.05 0.32 0.29 1.00 0.04
(0.22-0.36) | (0.80-1.96) | (0.19-0.57) (0.22-0.43) (0.03-0.08) | (0.12-0.77) | (0.15-0.65) | (0.54-1.69) | (0.001-0.11)
13 0.33 0.77 0.1 0.21 0.097 1.02 1.0 1.17 0.05
(0.23-0.44) | (0.55-1.04) | (0.06-0.14) (0.15-0.25) (0.077-0.14) | (0.62-1.43) | (0.85-1.0) | (0.78-1.57) (0.0-0.22)
14 0.31 0.68 0.07 0.14 0.052 0.27 0.53 0.60 0.008
(0.27-0.35) |(0.57-0.77) | (0.05-0.08) (0.11-0.17) (0.032-0.072) | (0.14-0.57) | (0.36-1.0) |(0.35-0.80) (0.0-0.03)
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Table 3 Curve fitting metrics for PET kinetic modeling
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PET Relative RMSE Fraction of voxels in percent

Relative RMSE < 20% 20% < relative RMSE < 45% 45% < Relative RMSE
1 134 (10; 20.3) 74% 23% 3%
2 9.0 (69;12.2) 99.6% 0.4% 0%
3 18.1(129; 26.8) 57% 36% 7%
4 343 (29; 39) 0% 94.8% 5.2%
5 16.1 (14; 18.1) 87.2% 12.8% 0%
6 23.7 (196; 27.3) 27% 72% 1%
7 492 (44.1; 54) 0% 29% 71%
8 43.5(39.7,51.2) 0% 57.6% 42.4%
9 85 (74;9.8) 98.2% 1.8% 0%
10 12.3 (9.8, 15.3) 95.3% 4.7% 0%
" 155 (11.5;19.5) 77.8% 22.2% 0%
12 95 (76, 11.8) 99.7% 0.3% 0%
13 92 (7.7,113) 99.4% 0.6% 0%
14 82 (74;9.2) 100% 0% 0%
All 103 (8.1; 14.3) 89.3% 7.6% 3.1%
Relative RMSE data are expressed as median (IQR)
MRGlu was positively correlated to ks in all tumors Discussion

and inversely correlated with Kiyans, Vp, Or vi, in the
majority of tumors. The 3D parametric maps clearly
showed regional decoupling patterns of hypoper-
fused (Kians or K;) and poor vascularized areas (vy
or v,) with high metabolic enzymatic activity (k3) in
five tumors, as illustrated in Fig. 6 (tumors 1, 5, 12,
13, and 14).

Table 4 Curve fitting metrics for DCE kinetic modeling

This simultaneous dynamic PET-DCE MRI study shows
that dynamic PET and DCE monotonic correlations,
measured in exactly the same conditions, are highly vari-
able at the tumor level in treatment-naive NSCLC.
[18F]FDG dynamic PET-DCE MRI has the unique cap-
ability to capture the individual tumor biological behav-
ior of NSCLC. Vascularity and perfusion properties are

DCE Relative RMSE Number of voxels in percent
Relative RMSE < 20% 20% < relative RMSE < 45% 45% < relative RMSE

1 35 (26; 51.5) 6.6% 60% 33.4%
2 30.2 (25; 36) 8.3% 87.1% 4.6%
3 466 (324; 65.3) 3.7% 44% 52.3%
4 293 (22.1; 46.9) 21.3% 50% 28.7%
5 23.8 (20.5; 28.5) 21.6% 76% 2.4%
6 49.1 (39.5; 68.5) 1.2% 43% 55.8%
7 68.3 (634; 73.2) 0% 0% 100%
8 65.8 (54.9; 84.9) 0% 8.8% 91.2%
9 19.5 (14.2; 29.6) 51.5% 37% 11.5%
10 42.5 (35; 56) 0.1% 56% 43.9%
" 29.8 (23.1;41.7) 14.5% 64.9% 20.6%
12 36.7 (28;51.4) 5% 61.4% 33.6%
13 27 (19.7; 40.8) 26.7% 54.2% 19.1%
14 21.1 (15; 29.6) 46.3% 42.5% 11.2%
All 31.8 (22.4; 46.6) 18.6% 54.7% 26.7%

Relative RMSE data are expressed as median (IQR)
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spatially variable in NSCLC [48, 49]. This wide variabil-
ity has been recently highlighted in [18F]FDG PET com-
partmental analyses [50] and was qualitatively illustrated
in our combined dynamic PET-DCE MRI study.

As expected, MRGlu and k; PET microparameters
were positively correlated in all the tumors, emphasizing
the expected close relationship between the regional
metabolic and phosphorylated rates of glucose. In more
than half the tumors, both MRGlu and k; were inversely
correlated to Kians, Vp, and vy, suggesting high metabolic
but low perfused/vascularized cells, a well-known hall-
mark of tumor hypoxia or aggressiveness [20]. Recent
head and neck '|F-FMISO [51] and preclinical VX-2
I5N-NH; [52] PET/DCE MRI studies showed weak cor-
relation between K; and K., perfusion parameters. In
our NSCLC [18F]FDG PET/DCE-MRI clinical study, the
K;—Kians correlations were also mainly weak. This gen-
eral trend is not surprising considering the three follow-
ing key concepts: First, perfusion reflects a weighted
mixture of blood flow and permeability-surface area
product [13, 53, 54] that depends, in the case of fixed
flow and microvascular characteristics, on the tracer’s
exchange properties—[18F]FDG is actively transported
across the cellular membrane, whereas Gd is a purely
extra cellular diffusive contrast agent. Second, the DCE

Tofts models [46, 55] do not consider the intra-cellular
space (ICS), whereas standard compartmental PET
models [7] do not distinguish the extravascular extracel-
lular space (EES) from the ICS, assuming steady state
between EES and ICS at time of injection. Consequently,
K; depends on a mixed perfusion-extraction weighting
of [18F]FDG that may, in the case of high metabolic rate
conditions, overestimate the perfusion component [53].
Our study has several limitations. Our data sample
was limited to 14 biopsy-proven NSCLC. Also, because
pre-contrast T;-mapping was limited to 6 slices per
tumor for practical considerations, we could not capture
the multimodal correlations of the entire tumor volume.
Compared to PET, DCE kinetic modeling showed higher
voxel-wise fit errors. It is well-known that many factors
hamper the accuracy of DCE pharmacokinetic modeling,
making this approach highly challenging in clinical prac-
tice [56—58]. For illustration, analyzing the same patient
and imaging data with multiple different commercially
available software packages was reported to lead to
within-patient variabilities of up to 74% in DCE-MRI
measurements [59]. In our study, motion corruption was
probably the major explanation of the measurement er-
rors. The high temporal resolution of the DCE frames
emphasized the motion corruption effects, which were
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only partially compensated by our standard motion cor-
rection method. For our study, the mean fraction of out-
liers used for the correlation analyses was under 10%
among all the 14 tumors (7.8% + 2.8%). A better avail-
ability of advanced motion compensation techniques
[60] would be of particular interest. We did not include
the K; PET parameter but instead used the MRGlu par-
ameter, which is the Kj-glycaemia product normalized
by the lumped constant (LC). We justified this choice
because LC is arbitrarily set to 1 in oncology studies (the
unknown true LC precludes any other value) [61, 62]

making MRGlu a basic multiple of K;. A dual arterial in-
put implementation has been recently proposed in few
CT or MR-based perfusion studies [63—67], based on
the fact that lung tumors may have a dual blood supply
[68]. The selection of the correct model for the right
tumor is limited by what is named the “mixed tissue
conundrum” [69] and remains mainly driven by both its
bias-variance tradeoff and clinical relevance. In this way,
DCE Tofts models have become standards in oncology
[70, 71] and have shown preclinical and clinical rele-
vance in lung cancer specifically [15, 16, 72]. The dual
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Fig. 6 Regional decoupling between perfusion/vascularization and metabolism. In all these tumors, whereas MRGlu appears relatively
homogeneous, deep central hypoperfused/vascularized areas of variable sizes are visible (Ilow Kirans, Ve, OF Vi), mirrored by high metabolic
enzymatic activity (ks). This pattern is highly suggestive of hypoxic tumor areas, a well-known hallmark of cancer aggressiveness

some extent, neighboring voxels are expected to share simi-
lar behavior in a lesion of interest, and the smoothing
process emphasizes this structural consistency at the re-
gional intra-tumor level by reducing the granularity of noise
in the data. Moreover, Gaussian kernels make the distribu-
tion of the data more reliable for further statistical analyses:
for example, state-of-the-art multimodal neuroimaging ana-
lyses using statistical parametrical maps (SPM) typically use
smoothing of the PET data before voxel-wise analyses, and
wider smoothing kernels are frequently used. These pre-
processing steps are not a problem for multimodal analyses
of thin cortical structures at the voxel level (for example,
see [73]). Despite the use of Gaussian smoothing on PET
data, the 3D maps of both the PET and DCE kinetic param-
eters showed structured and consistent intra-tumor re-
gional subparts, as illustrated in Fig. 6.

Despite these limitations, this study shows that simul-
taneous dynamic PET-MRI is feasible in NSCLC patients.
This tends to demonstrate the potential application of
simultaneous PET/MRI imaging to further characterize
the individual biological tumor behavior in NSCLC in
clinical practice. However, further studies are necessary to
demonstrate the clinical utility of this approach.

Conclusion

A dynamic “one-stop shop” procedure applied to NSCL
C is technically feasible in clinical practice. Simultan-
eously acquired PET and DCE kinetic parameters
assessed in a combined manner are not highly correlated
in NSCLC, and these correlations showed a wide variability
between tumors and patients. These results tend to suggest
that PET and DCE kinetic parameters might provide com-
plementary information for tumor characterization, and
this might make PET-MRI a unique tool to characterize
the individual tumor biological behavior in NSCLC.
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