Venema et al. EINMMI Research (2019) 9:82
https://doi.org/10.1186/513550-019-0549-y

EJINMMI Research

Enhanced pulmonary uptake on 'SF-FES-PET/ @

CT scans after irradiation of the thoracic area:
related to fibrosis?
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Abstract

Rationale: The use of 160—[18F]ﬂuorof17Bfestradiol (FES) positron emission tomography (PET) in clinical dilemmas
and for therapy decision-making in lesions expressing estrogen receptors is growing. However, on a considerable
number of FES PET scans, previously performed in a research and clinical setting in our institution, FES uptake was
noticed in the lungs without an oncologic substrate. We hypothesized that this uptake was related to pulmonary
fibrosis as a result of radiation therapy. This descriptive study therefore aimed to investigate whether radiation
therapy in the thoracic area is possibly related to enhanced pulmonary, non-tumor FES uptake.

Methods: All FES-PET/CT scans performed in our institution from 2008 to 2017 were retrospectively analyzed. Scans from
patients who had received irradiation in the thoracic area prior to the scan were compared to scans of patients who had
never received irradiation in the thoracic area. The primary outcome was the presence of enhanced

non-tumor FES uptake in the lungs, defined as visually increased FES uptake in the absence of an oncologic substrate on
the concordant (contrast-enhanced) CT scan. All CT scans were evaluated for the presence of fibrosis or oncologic
substrates.

Results: A total of 108 scans were analyzed: 70 scans of patients with previous irradiation in the thoracic area and 38 of

patients without. Enhanced non-tumor FES uptake in the lungs was observed in 39/70 irradiated patients (56%), versus in
9/38 (24%) of non-irradiated patients. Fibrosis was present in 37 of the 48 patients with enhanced non-tumor FES uptake
(77%), versus in 15 out of 60 (25%) patients without enhanced non-tumor uptake, irrespective of radiotherapy (p < 0.001).

Conclusion: After irradiation of the thorax, enhanced non-tumor uptake on FES-PET can be observed in the radiation
field in a significant proportion of patients. This seems to be related to fibrosis. When observing enhanced FES uptake in
the lungs, this should not be interpreted as metastases. Information on recent radiation therapy or history of pulmonary
fibrosis should therefore be taken into consideration.
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Introduction

The estrogen receptor (ER) is an important target for
endocrine treatment in breast cancer patients, and ER
expression of the tumor is the main indication to start
antihormonal treatment, as success rates heavily rely on
ER status [1, 2]. Although specificity and sensitivity of
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immunohistochemistry to assess ER expression are high,
it is not always feasible to obtain a suitable biopsy.
Moreover, ER expression can change over time in the
metastatic setting and vary between the primary tumor
and its metastases and between metastases within a sin-
gle patient [3].

Non-invasive molecular imaging of the ER using positron
emission tomography (PET) with 160(-[18F]ﬂu0r0—17|3—es—
tradiol (FES) has been found useful to detect the estrogen
receptor status of the primary tumor and its metastases.
FES-PET has been used in several imaging studies in breast
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cancer patients to visualize all metastases in a patient to as-
sess tumor heterogeneity [4—13]. FES-PET has a high pre-
dictive value with a sensitivity of 85% and a specificity of
98% [14]. The uptake of FES differs per tissue type and ana-
tomic site and can be influenced by intrinsic (i.e, meno-
pausal status) and extrinsic factors (i.e., hormone therapy)
[6, 9]. Recently, recommendations for the use of FES-PET,
including the indications, correct patient preparation, scan
acquisition, and analysis of the scans, were published [15].

The use of FES-PET in daily clinical practice, in patients
with clinical dilemmas and for the detection of lesions ex-
pressing ER as input for treatment decisions, is growing.
Therefore, it is important to gain more insight in the poten-
tial pitfalls that are associated with this imaging technique.
In the University Medical Center Groningen, extensive ex-
perience is available with FES-PET scans in both a research
and clinical setting [10, 11, 14, 15]. In a considerable num-
ber of FES-PET scans, heterogeneous uptake in the lungs
was noticed, without the presence of an oncologic substrate
on the accompanying (contrast-enhanced) CT scan. As this
enhanced uptake was seen in the lungs and most patients
were irradiated in the thoracic area, we hypothesized that
pulmonary fibrosis as a result of earlier radiation therapy
might be the cause of this FES uptake.

Since radiation therapy is one of the most frequently
administered treatments in patients with breast cancer,
and FES-PET is performed more and more in daily clin-
ical practice, it is important for the interpretation of the
scans to assess whether radiotherapy leads to enhanced
FES uptake in the lungs.

Therefore, the aim of this descriptive study was to
evaluate whether radiation therapy in the thoracic area
is possibly related to enhanced pulmonary, non-tumor
FES uptake.

Methods

In this descriptive, single-center study, we retrospectively
analyzed all FES-PET/CT scans that were performed for
clinical purposes in our institution from 2008 to 2017.
Information on irradiation was retrieved from the pa-
tient charts. Scans from patients who had received ir-
radiation in the thoracic area prior to the scan were
compared to scans of patients who had never received
irradiation in the thoracic area. The medical history and
radiation therapy schemes were retrieved from the elec-
tronic patient files. Given the retrospective descriptive
nature of this study, national legislation does not require
medical ethical approval; however, the local database
registering patient objection has been checked for pa-
tients objecting against using their material.

FES-PET
FES was produced in the University Medical Center
Groningen by a two-step method that was extensively
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described previously [13]. In short, '®F-fluoride is pre-
pared with a cyclotron by irradiation of '*O-water ac-
cording to the nuclear reaction '*O(p,n)'®F. The
cyclotron-produced '*F-fluoride is allowed to react with
3-O-methoxymethyl-16,17-O-sulfuryl-16-epiestriol
(ABX, Germany), followed by removal of the MOM pro-
tecting group and the sulfate group by hydrolysis with
hydrochloric acid. After HPLC purification, the product
is formulated in 10% ethanol in saline and sterilized by
filtration [13]. FES with >99% radiochemical purity was
obtained in a practical yield of 3.4 + 1.5 GBq. FES had a
specific activity of 325 + 274 GBq/pmol. Approximately
200 MBq of FES was injected intravenously. Whole body
emission scans were performed approximately 60 min
after tracer injection. PET images were obtained from
skull base to mid-thigh with a Siemens 40 or 64 slice
mCT (PET/CT) Biograph camera system (Siemens Med-
ical Systems, Knoxville, TN, USA). A low-dose CT scan
was performed in all patients for attenuation correction.
Attenuation-corrected images were visually analyzed for
enhanced non-tumor uptake. To calculate the uptake, a
volume of interest (VOI) was drawn over the area of en-
hanced non-tumor uptake and the maximum standard-
ized uptake value (SUV,,) and the average SUV
(SUVmean) using a 50% isocontour of the hottest pixel
were measured using syngo.via software. In patients
without visual enhanced non-tumor uptake, a VOI was
drawn centrally in the lung (including the basal parts)
for the same measurements. All scan acquisitions and
calculations were performed according to EANM/EARL
guidelines for 18p imaging [16].

CT scan

All patients had a low-dose CT scan for attenuation cor-
rection at the time of FES PET. Part of the patients also
had a contrast-enhanced CT scan within 6 weeks of the
FES PET of the thorax available when this was clinically
indicated. All CT scans were evaluated for fibrosis, or
oncological substrates, by an experienced radiologist
(MD). There are many features that may imply pulmon-
ary fibrosis, such as honeycombing, traction bronchiec-
tasis, lung architectural distortion, and reticulation. In
case of radiation-induced pulmonary fibrosis, also other
features may occur such as volume loss, linear scarring,
chronic consolidation, mediastinal shift, and pleural
thickening. All scans were checked for these features.

Radiation schedules and dose

The patients who were irradiated received variable radi-
ation schedules, depending on the indication and available
techniques at the time of radiation therapy. To analyze the
effect of different radiation doses and schemes on en-
hanced non-tumor FES uptake, FES-PET scans were fused
with the original radiation therapy planning CT scans,
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including the radiation fields and doses, using Raystation
software. Radiation doses were determined by drawing a
VOI in the radiation field in the area with enhanced FES
uptake. In patients that were irradiated but did not show
enhanced uptake in the lungs, a VOI was drawn in the
lungs, in the same region as for the SUV calculation.

Statistics

The main outcome was the presence of enhanced non-
tumor FES uptake, defined as visually increased FES up-
take above background in the absence of an oncologic
substrate on the concordant (low-dose or contrast-en-
hanced) CT scan. Correlations between enhanced FES
uptake and radiation dose and between interval time be-
tween radiation therapy and FES PET scan were calcu-
lated using a Pearson correlation test. One-way ANOVA
was used to analyze the statistical significance between
group differences. A probability (p) value <0.05 was
considered statistically significant.

Results

Demographic data

In total, 133 scans were evaluated of which 108 scans
were included for the analysis. FES-PET/CT scans were
either performed for clinical dilemma patients with
metastatic disease of unknown primary or to gain more
insight in ER expression of metastases.

In total, 70 patients were previously irradiated (Fig. 1).
The majority of patients had breast cancer (98%); the
other patients had either prostate cancer (1%) or ovarian
cancer (1%). Mean age at the time of FES-PET scan was
59years (range 33-86years). The control group
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consisted of 38 patients. Detailed patient characteristics
are described in Tables 1 and 2.

More non-tumor FES uptake on FES-PET scans from
irradiated patients

On 48/108 scans (44%), enhanced FES uptake in the lungs
was observed without the presence of an oncological sub-
strate on CT (Fig. 2 for an example). Enhanced non-tumor
uptake was mostly located at the dorsomedial side of the
lungs, and on 23/48 (48%) scans bilateral enhanced non-
tumor uptake was seen. Quantitative PET analysis con-
firmed that tracer uptake was significantly higher in the pa-
tients with visually increased non-tumor FES uptake,
compared to patients without nonspecific enhanced uptake
(SUVnax 2.5 [SD 1.3] versus 1.0 [SD 0.2]; p <0.001 and
SUV ean 1.5 [SD 0.8] versus 0.7 [SD 0.2]; p <0.001). En-
hanced non-tumor FES uptake in the lungs was observed
in 39/70 scans in irradiated patients (56%), versus 9/38
scans of non-irradiated patients (23%) (Tables 3 and 4).

More fibrosis in patients with enhanced non-tumor FES
uptake

In 66/108 patients, also contrast-enhanced CT scans of
the thorax were available. For all other patients, low-
dose CT scan for attenuation correction was available.
Fibrosis was present in 52 patients (48%), of which 37
were diagnosed on a contrast-enhanced CT scan, and 15
on a low-dose CT.

Fibrosis was present in 77% of the patients with en-
hanced non-tumor FES uptake (37/48), versus 25% of
the patients without enhanced non-tumor uptake (15/
60, p<0.001), irrespective of radiotherapy. Those

Evaluated
133 scans

Included

108 scans

Excluded
6 not scanned with a 64-mCT scanner
19 no information available on irradiation

ﬁo previously irradiated \
16 right breast
15 left chest wall
13 left breast
7 right chest wall
8 thoracic vertebrae
1rib
1 sternum

K 9 vertebra and breast/

Fig. 1 Consort diagram of included FES PET scans

[ 38 non irradiated ]
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Table 1 Patient characteristics
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No radiation therapy (n = 38) Radiation therapy (n=70) Overall (n=108)

Age (mean, range) 57 (41-77) 60 (33-86) 59 (33-86)
Type of cancer

Breast 36 70 106

Prostate 1 0 1

Endometroid 1 0 1
Treatment at time of PET scan

None 15 31 46

Aromatase inhibitor 14 29 43

Chemotherapy 5 5 10

Estrogen degrader 1 3 4

Other 3 2 5

patients with fibrosis without irradiation (12/38) were
known with interstitial lung disease (n = 2), chronic ob-
structive pulmonary disease (n = 3), prior pneumothorax
(n =1), fibrotic string (n = 1), or unknown cause of fibro-
sis (n =5).

Enhanced non-tumor FES uptake is not related to the
interval between irradiation and FES-PET, or radiation
dose

Of those patients that were previously irradiated (n = 70),
the mean radiation dose was not different between pa-
tients without enhanced non-tumor FES uptake (n =31,
959Gy [SD 23.3]) versus patients with enhanced non-
tumor FES uptake (n =39, 89.1 Gy [SD 26.5]). No correl-
ation could be found between SUV,,,, and radiation dose
(R*=0.02, p=0.21). The mean interval between the FES-
PET scan and the last day of radiation therapy was 381
weeks (range 0—1450). There was no correlation between
the time interval between FES-PET and radiation therapy,
and SUV. (R*=0.01, p=043) or SUViean (R*=0.02
p =0.14). However, in one patient, serial FES-PET scans
were available on which enhanced non-tumor uptake was
not present shortly after radiation therapy, but enhanced
uptake was visual after several months (Fig. 3).

Discussion

In the present study, we found enhanced non-tumor
pulmonary FES uptake in a subset of patients, most fre-
quently after radiation therapy in the thoracic area.

Uptake of FES is considered to be ER specific, and the
cause of this non-tumor uptake is not fully elucidated
yet. However, this study supports a possible fibrosis-re-
lated origin. This aspect of non-tumor FES uptake on
FES-PET has not been described before, and this is the
largest series so far to allow hypothesis generation with
regard to this aspect.

One possible cause of the enhanced tracer uptake is
that the tracer binds to inflammation-related ERP ex-
pression. Two isoforms of ER exist, a and [, and despite
the fact that '®F-FES has a 6.3 times higher affinity for
ERa compared to ERP [12], uptake can be seen in ERp-
driven pathology [17]. Under normal conditions, low
levels of ERP are present in ovaries, the kidney, the
brain, bone, the heart, the lungs, intestinal mucosa, the
prostate, the immune system, and endothelial cells [18].
Also, in patients with interstitial pneumonia and cystic
fibrosis, ERP expression is higher than in healthy lung
tissue [19, 20]. Both cystic fibrosis and interstitial pneu-
monia are marked by lung fibrosis and inflammation.

Both ERpP and ERa play a role in inflammation and fi-
brosis. Estrogen-dependent ERa activation is required
for normal development of the dendritic cells [21] and
high levels of dendritic cells are present in patients with
lung fibrosis [22]. During inflammation, dendritic cells
are activated to initiate and coordinate immune re-
sponses. We observed fibrosis or post-radiation inflam-
mation in most patients with enhanced non-tumor FES
uptake, but not in all. This could be explained by the
timing of the CT scans. Fibrosis may not yet be

Table 2 Cross table for patient distribution based on radiation therapy and FES PET and the presence of visually enhanced uptake

on FES PET

Normal uptake Enhanced uptake Total
No radiation therapy 29 9 38
Radiation therapy prior to FES PET 31 39 70
Total 60 48 108
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Fig. 2 An example of a FES-PET/CT scan with high non-tumor uptake in the lungs

detectable on a CT scan in an early stage of the forma-
tion of fibrosis. Exposure to radiation therapy could lead
to side effects, largely depending on the anatomic site
and dose received [23].

The pathogenesis of radiation-induced side effects is
not fully understood but seems mostly related to ex-
tended inflammatory effects. As part of the inflamma-
tory process, fibrosis may occur several weeks after
radiation therapy [24]. The late phase typically occurs
between 6 and 12 months and can continue to pro-
gress up to several years [25]. In 23 out of the 48 pa-
tients, enhanced uptake was seen bilaterally, which
was beyond the boundaries of the radiation field. It
has been reported, both preclinically and clinically,
that bilateral radiation therapy toxicity may occur
[26-29]. This suggests that enhanced FES uptake may
be associated with a (late) inflammatory event caused
by irradiation, also outside the irradiation field. Not in
all patients, a contrast-enhanced CT scan was avail-
able, and due to the lower image quality of the low-
dose CT, small areas of fibrosis could be missed.

Table 3 Visually enhanced non-tumor uptake in the lungs on
the FES PET scan and the presence of fibrosis on the concurrent
CT scan in patients previously treated with radiation therapy of
the thorax

Not all fibrosis in patients is related to radiation ther-
apy. Extensive literature exists on lung toxicity due to
several systemic treatments. With the wide time interval
between irradiation and FES-PET treatment types, as
well as treatment regimens and doses have changed over
the years. With the retrospective design of the current
study, we were unable to establish other correlations be-
tween fibrosis and FES uptake.

Another explanation for enhanced uptake in irradiated
lungs is that radiation results into leakage of the blood
vessels, possibly leading to extravasation of FES. In a pre-
clinical rat model, radiation of the lungs showed vascular
damage early after irradiation and remodeling leading to
increased permeability, perivascular edema, and vascular
remodeling [29, 30]. As a compensatory effect, the blood
pressure, blood flow, and thereby shear stress may in-
crease in the vasculature in the non-irradiated part of the
lungs. This increase of shear stress may then lead to dam-
age to the non-irradiated vasculature [30] and potentially
explain leakage of the tracer in surrounding tissue.
Though unbound FES can readily permeate the

Table 4 Visually enhanced non-tumor FES uptake in the lung
on the FES PET scan and the presence of fibrosis on concurrent
CT scan in patients without any prior radiation therapy of the
thorax

Normal uptake Enhanced uptake Total Normal uptake Enhanced uptake Total
No fibrosis 21 9 30 No fibrosis 24 2 26
Fibrosis 10 30 40 Fibrosis 5 7 12
Total 31 39 70 Total 29 9 38
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Fig. 3 FES PET scan demonstrating normal uptake 3 weeks after radiation therapy of the mediastinal lymph nodes (upper panel). Two months
after radiation therapy, the FES PET scan demonstrated enhanced non-tumor uptake (lower panel)

endothelium, most FES is bound to the sex hormone-
binding globulin (SHBG) which, in case of leaky vessels,
may also leak out.

FES-PET scans are increasingly used, both in a re-
search and a clinical setting. The scans are often
qualitatively assessed and lesions are identified as ER-
positive if the tracer uptake is above the background
signal. Therefore, it is important for the analysis of
the scans to know that non-tumor uptake in the
lungs may occur and that this finding should not be
interpreted as pathological uptake. Also, existing le-
sions in the radiation field may potentially be non-
evaluable in cases where the background signal is in-
creased due to the uptake after radiation treatment.
Furthermore, to facilitate the interpretation of FES-
PET scans, semi-quantitative analysis can be per-
formed and correction for physiologic background up-
take is often applied when calculating SUV using the
unaffected contralateral site or surrounding tissue of
the same origin. In such cases, one should keep in
mind that background activity in the reference region
can be influenced by radiation therapy and conse-
quently background correction may cause an under-
estimation of the tracer uptake in the lesion.

Despite the limitations of being a retrospective study
over a long period of time, this is the most comprehensive

series of patients receiving FES PET scans after radiation
therapy described so far. The clinical significance of these
findings has to be further investigated, e.g., the relation be-
tween the lung function of the patients and enhanced up-
take. These data were not available in our patient charts.
As such, the findings described here should be regarded as
hypothesis generating and should preferably be confirmed
in larger, prospective studies.

Conclusion

In a substantial number of FES-PET scans, heteroge-
neous uptake in the lungs was noticed, without the
presence of an oncologic substrate. This non-tumor
pulmonary uptake is most probably related to fibrosis
or inflammation caused by earlier radiation therapy.
For a correct interpretation of FES-PET scans, informa-
tion on recent radiation therapy, or history of pulmon-
ary fibrosis of any cause should therefore be taken into
consideration and pulmonary uptake should not imme-
diately be interpreted as being caused by metastases.
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