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Abstract

Background: [''Cl-acetate positron emission tomography is used to assess oxidative metabolism in various tissues
including the heart, tumor, and brown adipose tissue. For brown adipose tissue, a monoexponential decay model is
commonly employed. However, no systematic assessment of kinetic models has been performed to validate this
model or others.

The monoexponential decay model and various compartmental models were applied to data obtained before and
during brown adipose tissue activation by cold exposure in healthy men. Quality of fit was assessed visually and by
analysis of residuals, including the Akaike information criterion. Stability and accuracy of compartmental models
were further assessed through simulations, along with sensitivity and identifiability of kinetic parameters.

Results: Differences were noted in the arterial input function between the warm and cold conditions. These

differences are not taken into account by the monoexponential decay model. They are accounted for by
compartmental models, but most models proved too complex to be stable. Two and three-tissue models with no
more than four distinct kinetic parameters, including blood volume fraction, provided the best compromise

between fit quality and stability/accuracy.

Conclusion: For healthy men, a three-tissue model with four kinetic parameters, similar to a heart [''Cl-palmitate
model seems the most appropriate based on model stability and its ability to describe the main [''Cl-acetate pathways
in BAT cells. Further studies are required to validate this model in women and people with metabolic disorders.
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Background
Excess weight is a well-known risk factor for many
disorders including diabetes and heart disease [1], but
long-term weight loss proves difficult for many people
[2]. Attempts are often frustrated by the decrease in
resting metabolic rate [3] induced by caloric restriction
and loss of lean mass. That is one reason why strategies
to increase metabolism, such as activation of brown
adipose tissue (BAT) thermogenesis, are appealing to
counter metabolic disorders [4]. However, estimates of
BAT energy expenditure vary greatly between studies
and it remains unclear that this tissue can significantly
tip the energy balance in adult humans [5-8].

Most estimates of BAT activity are based on substrate
consumption (e.g., glucose and fatty acid uptake or
intracellular triglyceride depletion) [7, 9, 10] and neglect
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confounding factors such as intracellular storage of
substrates or their release into the bloodstream [11]. A
workaround would be to measure oxidative metabolism
in addition to substrate utilization to assess which part
of the substrate is actually converted into heat. For this
purpose, our group and others study the pharmacokinet-
ics of [''C]-acetate, a positron emission tomography
(PET) radiotracer validated for cardiac [12] and tumor
[13, 14] imaging in humans. However, the pharmacoki-
netic models used to quantify oxidation are different for
the heart and tumors. Moreover, human BAT is quite
different from the heart and tumors due to its high
heterogeneity and vastly different metabolic profiles
under activated and inactivated conditions. It is not clear
what the ideal model is for this unique tissue.

The purpose of this study is to determine which phar-
macokinetic model offers the best compromise between
accuracy (i.e., describing key steps of ['C]-acetate me-
tabolism by BAT) and robustness to noise for human
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BAT signal with and without activation of this tissue
by cold exposure. The correspondence between the
resulting kinetic parameters and the expected increase
in oxidative metabolism in the cold condition [7] is
also assessed.

Methods

Human data

We used data from previously analyzed cohorts [15, 16]
as well as subjects from recent unpublished studies.
Studies were approved by the Université de Sherbrooke
human ethics committee and participants provided
informed consent. A total of 20 healthy young men
(aged 28+ 6 years), 7 older overweight healthy men
(aged 58 + 3 years), and 6 men with type 2 diabetes (aged
59 + 4 years) were considered. Two subjects with dia-
betes had to be excluded due to absence of cold expo-
sure data (m=1) and poor image quality not allowing
compartmental modeling (n = 1). It was decided that the
remaining diabetic subject cohort was too small and
heterogeneous to provide representative data and will
be discussed once future studies on diabetic subjects
are complete.

Protocols for these studies have already been published.
To summarize, participants underwent PET and com-
puted tomography (CT) scans (Philips Gemini) before and
after acute cold exposure. Each session consisted of a
baseline period at room temperature (22-25 °C),
followed by cold exposure using a liquid-conditioned
suit perfused with water at 18 °C. At room temperature
and at £=90 min of cold exposure, a CT scan of the
cervicothoracic region was performed for attenuation
correction, followed by a 30-min list-mode dynamic
PET of the same region with [*'C]-acetate (~175 MBq
bolus). Depending on the study, other radiotracers as well
as pharmacological interventions may have been imple-
mented. The scope of this work is to determine whether
kinetic models can assess metabolic differences between
baseline and cold conditions. Therefore, only [11C]-acetate
data acquired at room temperature (control; “warm” con-
dition) and at 18 °C without administration of pharmaco-
logic agents (maximum BAT activation; “cold” condition)
were considered.

Image reconstruction of the [11C]-acetate data was
performed using the vendor’s 3D row action maximum
likelihood algorithm with corrections for attenuation,
random events, scatter, and decay. Time frames were
24x10s,12x30 s, 4 x 5 min.

Blood and BAT time-activity curves (TAC) were
derived from regions of interest drawn on the axial CT
image and reported on the registered PET image. The
BAT regions of interest encompass the whole supraclavi-
cular fat region visible on CT (Fig. 1) and vary in size
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depending on subject adiposity. The arterial input func-
tion (AIF) was extracted from a circular region of inter-
est placed on the aortic arch with a diameter of ~2 cm.
The aortic arch was selected for AIF determination be-
cause the heart is not visible on the PET-CT images cen-
tered on supraclavicular BAT. A previous study has shown
that partial volume is minimal for vessels with diameters
>2 cm on the Gemini scanner with [*'C] or [*®F]-labeled
tracers [17].

Previous pharmacokinetic analyses of [''C]-acetate by
Blondin et al. derived an index of oxidative metabolism
based on a monoexponential decay model [15]. This
method will be reviewed here along with more complex
models.

Two-tailed paired ¢ tests with a 95% confidence inter-
val (p <0.05) were used to compare kinetic parameters.
No correction was applied for multiple comparisons.
All statistical analyses were performed with Prism
(GraphPad Software).

Monoexponential decay model

The monoexponential model is a simplification of a
one-tissue compartmental model that does not take into
account the vascular component of the signal and the
AIF. A monoexponential fit is applied to the first part of
the clearance phase as suggested by Armbrecht et al. for
the heart [18]. The resulting decay constant is the oxi-
dative index, Kono. Time points corresponding to this
phase are selected by looking at semi-log plots of the
BAT TAC (Fig. 2). Unlike in the heart, where a clearly
monoexponential decay occurs in the 5-10 min range,
older subject BAT TAC show a flat profile starting
around 5 min. Therefore, the time frame from 1.5 to
5 min was selected even though contribution of the
blood signal is more important during this period
than for later time points. Nonlinear fit was per-
formed in Prism.

Pharmacokinetic models
Possible models were selected to reflect the fate of
acetate in BAT cells, the surrounding blood vessels, and
the extracellular space (Fig. 3). Once [1C]-acetate is
converted to [nC]—acetyl—CoA in the cell, two main
pathways are possible: oxidation (main pathway for the
heart) and incorporation into lipids (main pathway for
tumors). In BAT, it is possible that the preferential
pathway changes depending on tissue activation.
Inactive BAT is likely to store energy in the form of
lipids, whereas active BAT produces heat through
oxidation [19].

Although physiology is used to guide the selection of a
pharmacokinetic model, severe limitations on model
complexity are placed by the imaging modality. Notably,
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supraclavicular fat depot

Fig. 1 Typical regions of interest placement for brown adipose tissue based on axial CT images. These regions of interest cover the whole

PET is only sensitive to the presence of [11C] atoms and
not to their parent molecule (e.g., acetate, carbonate or
lipid); therefore, species cannot be directly identified.
Moreover, the only steps in acetate metabolism that can
be resolved through PET are rate-limiting steps occur-
ring on a time scale consistent with the scan temporal
resolution. In other words, metabolic steps occurring
faster than the ~5-20 s required to produce an image
and those occurring slower than the 20-30 min scan
duration cannot be studied. Finally, two processes occur-
ring at the same time point with similar rates cannot be
distinguished.

Based on these assumptions, the possible steps that
could be modeled are (1) uptake of [11C]-acetate
(passage from the blood to the extravascular space and/
or the cell); (2) oxidative metabolism with elimination
of [1'C]-CO, or other [''C]-labeled metabolites to the
blood; (3) storage of [MC] as ['!C]-acetate, [**C]-ace-
tyl-CoA, TCA cycle intermediates, or lipids; (4)
uptake of radiometabolites from the blood (mainly
[11C]-carbonate); and (5) increase of the signal due to
[1C] in the capillaries.

The many different possible compartmental models
are presented in Fig. 4 and are numbered from 1 to 10.
They range from the simplest model (#1) representing

only uptake (K7) and oxidative metabolism (k;) to the
most complex model (#5) representing reversible uptake
to an intracellular acetate/ acetyl-CoA pool (Ki/k,), oxi-
dative metabolism (k3), and reversible intracellular stor-
age of metabolites (ky/ks). These models are similar to
those considered by De Jong et al. for [*'C]-palmitate
[20]. Unlike [''C]-palmitate, [''C]-acetate produces a
high level of circulating metabolites, mainly in the form
of carbonate [12]; these species may enter BAT cells and
contribute significantly to the signal. Therefore, models
with a metabolite input function, similar to those
proposed for [**F]-fluoro-DOPA in the brain [21], were
also considered (models #8—10). All models include the
contribution of vascular ['!C]-acetate and metabolite
signals (vp). Preliminary analyses have shown that
four-compartment models are very unstable, unless the
rate of entry in the oxidative compartment is the same
as the rate of exit from this compartment. This con-
straint was included for models #5-7. More complex
models proved too unstable for the current dataset and
were not considered.

Model analysis was performed in MATLAB (The Math-
Works). Differential equations associated with each model
(e.g, Eq. 1 for model #2) were implemented using a nume-
rical first-order differential equation solver (Runge-Kutta):

Younger healthy subjects BAT

Fig. 2 Semi-log plots of mean BAT TAC in the washout phase
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Fig. 3 Principal pathways of [''CJ-acetate metabolism in BAT cells. In reality, the imaging voxel (4 mm?) comprises many cells and blood vessels.
[""Cl-acetate exchanges rapidly through the capillary wall [18] and is transported into the cell by monocarboxylate transporters [35]. It is then
converted to [''Cl-acetyl-CoA by acetyl-CoA synthase. [''Cl-acetyl-CoA is a substrate for both the TCA cycle (oxidation) in the mitochondrion and
for fatty acid synthesis

dcy(¢)
dt

are rate constants (min '), and v, is the fractional
blood volume.

Fitting the models to experimental and simulated

TAC, interpolated to 1-s intervals, was achieved with a

@ trust region reflective algorithm and uniform weighting.

Initial guesses provided to the algorithm were low for

= K1"Cp(t)- (ko 4 k3) x C1(t) + ka"Ca(2)
dCy (1)
dt

= kgCl(t)—k4C2(t)

Crot = (1-3)( C1(#) + Ca(2)) + v Ca(2)

where C, is the plasma [*'C]-acetate concentration, C,
is the whole blood [*C] concentration (including meta-
bolites), C;-C, are the [''C] concentration in each
compartment, Cy, is the total concentration for blood
and tissue, K; is the flow constant (mL/g/min), ky-kg4

K-k, (0.01 mL/g/min or min™") and comparatively high
(0.1) for vp. In previous simulations, we observed that
this approach increases our likelihood of finding the
global minimum in the optimisation problem for repre-
sentative ['C]-acetate TAC shapes.

All models were first applied to human data to assess
fit quality. This was performed by visual inspection of
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Fig. 4 Pharmacokinetic models examined in this study. Cy: plasma concentration of [""Cl-acetate, also known as the arterial input function or AIF.
C,-C5: concentration of [''Cl-acetate or its metabolites in different physical or biochemical compartments. Tissue compartments are in blue,
vascular compartments are in red. K;: flow constant (mL/g/min); k>-ks: rate constants (min~"). All models also include a blood volume parameter
(v,) to account for the vascular [''CJ-acetate and metabolite signals. For the four-compartmental models (#5, #6, and #7), the entry and exit rates
for the oxidative compartment are set to the same value
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the resulting model curves and residual plots. Then the
Akaike information criterion (AIC) [22] was calculated
to provide an objective metric that penalizes overfitting.
Models were also tested for stability, accuracy, sensiti-
vity, and identifiability through simulations.

Input functions
As mentioned previously, metabolites constitute an im-
portant part of the [''C]-acetate PET signal, especially at
later time points. The AIF (representing the [11C]-acet-
ate available to cells) was corrected to exclude these me-
tabolites based on literature data [14, 23] (Eq. 2a). For
models requiring a metabolite input function, the me-
tabolite curve was derived by taking the difference be-
tween the blood signal and the AIF (Eq. 2b). Both the
AIF and the blood signal were corrected for delay and
dispersion occurring between the aortic arch and the
BAT region.

Metabolite correction of the AIF:

C, = Cpx ~0-104(£-0.48)

(2a)

Cn=Cp-C, (2b)
where C, is the AIF, C, is the blood signal, C,, is the
metabolite input function, and ¢ is the time in minutes.
Values were corrected for t > 0.48. Uptake of [''C]-acet-
ate by blood cells is considered negligible [24].

Delay between the aortic arch and the BAT was esti-
mated by comparing the maximum initial slope of the
signal from the aortic arch and the signal from a large
blood vessel (subclavian or carotid artery depending on
BAT location) near the BAT. Dispersion values for the
[*'C]-acetate bolus were obtained by fitting Eq. 3 to the
same BAT blood vessel signal [25]:

)= Cult) o |1/ )

where g(¢) is the dispersed (BAT) blood curve, C,(¢) is
the undispersed (aortic arch) curve, ® is the convolution
operator, ¢ is the time, and 7 is the dispersion time
constant. For this fit, only early time frames (<2 min)
were considered to limit contamination of the blood
signal by surrounding tissues, but no partial volume
correction was performed.

The delay was applied as a simple translation of C,
and C,, then the dispersion was applied using Eq. 3. Fi-
nally, C, and C, were fitted using an analytical model
[26] to simplify computation.

Simulations

The purpose of simulations was to eliminate models that
were unstable or inaccurate when applied in ideal condi-
tions. We define these ideal conditions as a curve
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without noise or with a limited amount of noise fitted
with the appropriate model.

For each model and cohort, ground truth curves
representing the warm and cold conditions were gener-
ated using the mean kinetic parameters and input func-
tions of human subjects. A set of 100 random noise
distributions was produced based on the average count
rate of a typical ROIL Because of the high count rate,
the Poisson distribution could be approximated by a
Gaussian distribution. Therefore, 100 Gaussian white
noise distributions (mean = 0, standard deviation = 0.4
SUV for a 10-s frame) were generated using MATLAB.
These noise distributions were added to noiseless
curves to produce 100 noisy curves. Noise distributions
were generated only once, and all simulated curves
have the same noise.

Noisy and noiseless curves were then fitted using the
same algorithm as for human data. The model used to
fit a curve is always the same as the model used to gen-
erate the curve. For noiseless curves, the resulting kin-
etic parameters were directly compared to the ground
truth. For noisy curves, the average kinetic parameters
were compared to the ground truth and the coefficient
of variation (COV; standard deviation to mean ratio)
was calculated.

A model was deemed stable if the kinetic parameters
obtained by fitting the noiseless curves were close to the
ground truth. A model was deemed accurate if the mean
kinetic parameters obtained by fitting noisy curves were
close to the ground truth and COV values were low.
There is no absolute threshold for stability and accuracy
in terms of deviation from the ground truth or COV.
Results depend on TAC shape (kinetic parameters) and
noise levels. Therefore, models were sorted from best to
worse for every metric and the best four models were
analyzed for sensitivity and identifiability.

Impact of the AIF shape on the TAC

Although the AIF used in this study were always derived
in the same manner, there are large variations between
cohorts and between subjects. To investigate the impact
of the AIF on TAC shape, we generated noiseless TAC
using a fixed set of kinetic parameters for selected
models (#4 and #7). TAC were generated for each indi-
vidual AIF as well as for mean cohort AIF.

Sensitivity and identifiability
Sensitivity and identifiability analyses [20] were per-
formed to determine how models react to changes in
parameters and which parameters can be indepen-
dently identified.

Sensitivity to a 1% parameter variation was assessed
using Eq. 4 and the mean kinetic parameters obtained
for human cohorts:
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STAC(t)/TAC(¢)
(t) = 4
Sensy, () STk ®)

where Sensy,(¢) is the sensitivity function at time ¢, &; is
the kinetic parameter of interest, and STAC(¢)/TAC(¢) is
the variation of the TAC induced by the small parameter
variation 8k;/k;.

A sensitivity matrix was generated in the process (Eq.
5):

T
SMkik/:/ Sensy, (7)Sensy, (7)dr (5)
0

where SMy; is the sensitivity matrix element for param-
eters k; and k; (i and j = 1:n) and T is the duration of the
scan in minutes.

The sensitivity matrix was inverted and normalized to
generate a matrix of the correlation coefficients (be-
tween —1 and 1) for each combination of parameters.
Correlations were considered strong for coefficients >
0.7 or < = 0.7 [27].

If a model is not sensitive to a parameter (Sensy, close
to 0 for all ¢), this parameter cannot be determined ac-
curately. Therefore, optimal models must at least be sen-
sitive to our main parameter of interest: oxidation (k, or
k3) depending on the model. Also, if two or more pa-
rameters are correlated (|SMyx,|>0.7 for i#j), they can-
not be analyzed separately.

Results

Human data

Figure 5 shows blood and BAT curves for all cohorts in
the warm and cold conditions. Even though standardized
uptake value (SUV) units account for injected dose and
subject weight, there are significant differences in curve
shape and peak values between subjects both for blood
and BAT. The blood signal generally peaks earlier in the
cold condition with a somewhat slower washout. The
mean area under blood curves is also different between
the warm and cold conditions (Table 1). In both cohorts,
this is reflected in the BAT curves. In addition, BAT sig-
nal has a higher peak in the cold. Finally, despite a lower
blood signal in younger subjects, peak BAT [''C]-acetate
activity is higher in this group for both warm and cold
condition compared to older subjects.

Figure 6 shows the oxidation index, Kion0- In general,
fit quality is poor (Table 2), especially for healthy older
subjects (Fig. 7) because TAC are relatively flat even in
the early phase following the initial bolus. The mean oxi-
dation index increases in the cold for both cohorts, but
it is only significant for the younger subjects.

Figure 8 shows typical fits for selected compartmental
models in one healthy young subject in the cold condi-
tion, along with the corresponding residual plots. All
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models are adequate to fit the initial peak of the curve
and the washout slope. Residuals are generally small and
randomly distributed around zero. Due to shorter initial
time frames, the initial peak appears noisier than the
washout slope. This noise is responsible for the higher
residuals in this part of the curve. Fits of similar quality
are obtained for other models, other subjects, and in the
warm condition. It is impossible to determine an optimal
model based on visual inspection.

Table 3 shows the mean AIC values for each model
and cohort. Models give very similar results when the
standard deviation is taken into account, but model #1
appears to fit data less closely than others on average.

Figures 9, 10, 11, and 12 show parameters of interest
for models #1, 4, 5, and 10. Note that all other models
were tested (Additional file 1), but displayed models
were deemed most promising based on Patlak analyses
indicating that ['C]-acetate uptake has an irreversible
component. Metabolite parameters are not shown be-
cause we deem they are not relevant to BAT activation.

As shown by the error bars in Figs. 9, 10, 11, and 12,
there is important inter-subject variability with COV of
100% or more for nearly all parameters, and no model is
clearly superior in terms of reduced variability. All
models give similar mean perfusion (Kj) and blood vol-
ume (vp,) parameters for a given cohort and condition.
However, the oxidation (k) and storage (ks;) rates are
much higher for model #7 than for the other models,
probably due to the extra compartment and the
constraint on k3. Finally, due to the high inter-subject
variability, the only significant difference is decreased
storage (k3) in the cold for younger subjects (p < 0.05)
with model #7. In terms of trends, the average uptake
(Ky) is relatively stable in the warm and cold conditions
for all models, while the average blood volume (v,) is
increased. Models #1, #4, and #7 show an increase in
average oxidation in the cold for younger subjects
accompanied by a decrease in storage (k3). Generally,
uptake (K7) and blood volume (,) tend to be smaller in
older subjects, while oxidation (k,) and storage (k3) do
not show a clear trend.

Although most models show a trend toward increased
oxidation and blood volume in the cold consistent with
the literature [7, 28], no optimal model could be identi-
fied based on human data alone. Every model was tested
in simulation.

Simulations

Ground truth parameters provided to the simulation
algorithm were the mean parameters derived from
human data. Complete results for each model are avai-
lable as Additional file 2. Table 4 summarizes the results
for the main parameter of interest, oxidation, and Fig. 13
shows typical noisy curves and a fit residual plot. The



Richard et al. EINMMI Research (2019) 9:31

Page 7 of 16

— 40r - ]
5 20 Warm |
@ -= Cold
2 5ol -
)
2 % 1 2 3
0 0 10 20 30
Time (min)
__40f 1
>
S
Q
2 o0l -
3%
whd
o
<
0 0 10 20 30
Time (min)

3 T T
- Warm

- Cold

N
T

—

i H
e
H[E[TrTE

Activity (SUV)

20
Time (min)

30

\

Younger healthy subjects BAT

Younger healthy subjects blood Older healthy subjects blood

= 401 -

S Warm

(3 20t - Cold

£ 20l ]

S 20

e

o o .

< 0 1 2 3
0 0 10 20 30

Time (min)

_ 40 ]

>

=)

22

2 ol .

whd

Q

<
0 0 10 20 30

Time (min)

Older healthy subjects BAT

2

- T I o Warm
= -
3 Cold
n2r i
2
.2 1_ n
"6 —
<

c 1 1

0 10 20 30

Time (min)
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TAC noise pattern is reflected in the residuals, which
are similar in magnitude to those obtained for human
data (Fig. 8).

Models #1 and #7 proved the most stable and model
#4 was also deemed stable. Models #1 and #4 were the
most accurate with models #7, 9, and 10 providing ad-
equate results in most cases. Note that Table 2 provides
only values for the oxidation parameter, but these values
reflect how models perform for other parameters.

Model #9 was rejected because it does not provide
additional information compared to model #1 and is
less accurate.

Table 1 Mean area under the blood curves for different cohorts
YS cold OS cold

YS warm OS warm

Area under curve (SUV) 39+13 49 + 10** 51+15 63+28

YS younger subjects, OS older subjects. **p <0.01 compared to YS warm

0-8 T L] 1 L
YS (01
* %%
0.6f -
o T
5
0.4 L
3
0.2} -
0.0 1 1
Warm Cold Warm Cold
Fig. 6 Oxidation index (Kimono) from the monoexponential fit. YS
younger subjects, OS older subjects. ***p < 0.001
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Table 2 K., average values and fit quality (R?)

Condition Kovono (Min™") R?

YS warm 0.07 £0.07 0.15+0.23
YS cold 0.5+ 0.1%%* 0.79+0.13
OS warm 0.06 £ 0.05 021+0.18
OS cold 0.09 £0.06 032+0.25

YS younger subjects, OS older subjects. ***p <0.001 compared with younger
subjects warm condition

Impact of the AIF shape on the TAC

The results shown here are for model #7. Similar figures
can be found in Additional file 3 for model #4. Results
are similar for both models.

Figure 14 shows that, for a given set of parameters,
there is important inter-subject variability in TAC shape
(~20-40% on average) caused by variations in AIF. This
variability is highest for older subjects in the cold condi-
tion. Differences in average AIF (i.e., the AIF used for
simulations) also induce differences in TAC height
(Fig. 15).

Sensitivity and identifiability
Models #1, 4, 7, and 10 were tested for sensitivity and
identifiability. Sensitivity analysis was used to visualize
the impact of each parameter on the model TAC,
whereas identifiability analysis was used to search for
correlations between parameters. Initial kinetic parame-
ters used for the sensitivity and identifiability analyses
were the same as for previous simulations.

Figure 16 shows the sensitivity profiles for young con-
trols; other sensitivity profiles are similar and available
as Additional file 4. The parameters K; and k, have

Older healthy controls: cold

1.5 ——T T

e~ Subject 001

-=- Subject 003

1.0F

Activity (SUV)

Time (min)

Fig. 7 Example of monoexponential fits for representative older
healthy subjects in the cold condition. The fit is performed on the
portion of the curve ranging from 1.5 to 5 min but all data points in
the washout phase are shown
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opposite effects: an increase in K increases the SUV
values, while an increase in k, decreases the SUV values.
For K, the maximum effect is reached after ~ 4 min; for
k,, it is model-dependent. Sensitivity to k3 (storage) af-
fects mostly the last points of the curve. Model #10 has
minimal sensitivity to metabolite kinetic parameters (kg
and ks) and their effect is confined to the later part of
the curve. Also, model #10 is not very sensitive to stor-
age (kz). Finally, the v, parameter mostly affects the first
~4 min of the SUV curve; therefore, it is responsible for
the shape of the initial peak.

Correlation matrices have been produced for all
models (Additional file 4). In most cases, K; and k, (up-
take and oxidation) are correlated. In some cases, corre-
lations were found between k3 (storage) and either K; or
k». Finally, model #10 has the most correlations, notably
because the metabolite parameters (k; and ks) interact
with many other parameters. The only parameter with-
out strong correlation for all models is w,.

Discussion

Human data

The observed trend toward increased oxidation (Kone
or k, depending on the model) in healthy subjects dur-
ing cold exposure is in accordance with previously pub-
lished data [7, 15] as is increased blood volume (v).
However, the magnitude of the v, increase is less than
suggested by [**0]-H,O PET studies [28]. Further stud-
ies comparing both radiotracers under the same condi-
tions would be required to find the cause of this
difference.

Overall, compartmental modeling seems more appro-
priate to assess oxidation in BAT than the monoexpo-
nential fit. Compartmental modeling uses the whole
TAC instead of relying on the user to select a part of the
curve to analyze, therefore reducing possible inter-user
variability. Also, compartmental models account for
differences in AIF and we have shown through simu-
lations (Figs. 14 and 15) that AIF variability has a
large impact on TAC shape. On the other hand, this
requires validation of the AIF selection method to
ensure that the differences are caused by biological
factors, such as individual responses to cold and not
by methodological errors.

The large inter-subject variation in BAT TAC and
resulting kinetic parameters must also be pointed out.
This variability is typical of BAT metabolic responses in
humans and parallels measures of [**F]-FDG uptake [16]
and radiodensity for similar cohorts [29]. It may be
attributed in part to the unique biology of BAT: unlike
more conventional tissues, such as the myocardium, or
solid tumors, human BAT has a heterogeneous distri-
bution (i.e., clusters of brown adipocytes are embedded
among predominantly white adipocytes). The size of
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these clusters and the recruitment of brown adipocytes
during cold exposure change with age, health status,
cold acclimation, and, possibly, genetics [16, 30-32].
These specificities also pose technical challenges for
PET-CT segmentation of active BAT, a further source of
TAC variability.

Simulations, sensitivity, and identifiability

No model could be excluded based on visual analysis of
the fits or residual plots. Moreover, high variability in
the AIC, due to high variability in TAC shapes, prevents
model selection based on this criterion or other
residual-based criteria. Therefore, further analyses were
required to identify the most performant models. Simu-
lations were carried out to see if a model could provide

Table 3 Akaike information criterion for each model

Model #  AICwarmYS  AlCcold YS  AICwarm OS  AIC cold OS
1 15+12 25+£19 14+13 25+£16
2 11+10 23+£17 1M1 £15 21+£19
3 12+9 22+17 9+13 21+£19
4 11£10 23+17 10+£12 21+18
5 1110 25+20 9+12 22+£19
6 13+£9 23+£17 1M+13 21+£18
7 10+9 23+17 13116 22+20
8 15+ 14 30£20 17+£18 26+ 21
9 11£9 23+18 13+£13 22+18
10 11+£9 23+17 13+£11 21+18

Results are shown as mean + standard deviation. AIC values were scaled to
make them positive. Lower AIC values indicate better models
YS younger subjects, OS older subjects

results that were both stable and accurate despite the
addition of noise.

Both the complexity of the TAC and the noise level
influence the maximum number of kinetic parameters
that can be fitted reliably. For example, a smooth curve
can be described with few parameters and adding more
parameters than necessary can lead to overfitting and
erroneous results even in the absence of noise. In the
presence of noise, this effect is amplified as extra
parameters are used by the model to fit noise-induced
fluctuations.

In the present case, because curve shapes are fairly
simple, only the simplest models proved stable and
accurate. These models have four parameters or less,
including the blood volume parameter (v,). Additional
parameters in more complex models would need to be
set based on a priori knowledge, for example by finding
a relationship between vy, of [*°O]-H,O and of [*'C]-
acetate or similar relationships for other parameters and
imaging probes. We did use a priori constraints for
models #5-7 because it seemed reasonable based on
similar work on palmitate metabolism [20, 33]. However,
we were not able to find similar constraints for uptake,
oxidation, and storage.

Neglecting the v, term would also be a way to
decrease the number of parameters, but it would be
ill-advised because it removes important information,
such as BAT perfusion changes with activation, that can
be determined precisely (v, is identifiable and models
have a high sensitivity to it). On the other hand, parame-
ters such as k, (oxidation) are much more variable due
to correlations with other parameters such as uptake
(K1). To the best of our knowledge, previous studies on
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Table 4 Summary of simulation results for the oxidation

parameter

Model # Stability (%) Average accuracy (%) COV (%)
Cohort YS 0S YS 0S YS 0S

1 <1 <1 —12* — 2% 1 17*
2 -41 -76 429 -27 89 86

3 16 -43 280 -16 152 85
4 <P <1F 1M 8 3 377
5 212 258 150 90 96 85

6 -72 - 31 -75 -29 108 105
7 <1* <1* — 207 —11% 32 39
8 53 2435 163 2546 132 156
9 -2 -65 =30 - 68 157 64
10 -32 -10 =31 - 81 53 27%%

Stability: maximum percent difference between the oxidation parameter
derived by fitting the noiseless curve and the ground truth. Average accuracy:
maximum percent difference between the average oxidation parameter
derived by fitting 100 noisy curves and the ground truth. COV coefficient of
variation (standard deviation/mean) for 100 noisy curve fits. For each metric
and each cohort, the 3 best (lowest) values are indicated (*best result,
**second best, ***third best). YS younger subjects, OS older subjects

Model #7: simulations
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30

1k + Cold exposure
L
©
)

T 0 -Wy -----
0
5]
(14

A1k -

0 10 20 30

Time (min)

Fig. 13 Typical curves used in simulations and typical fit
residual plot
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[11C]-acetate in other tissues (e.g., the heart) did not
report sensitivity profiles or correlation matrices for
kinetic parameters; it certainly appears to be an important
aspect to consider when interpreting changes in pharma-
cokinetic parameters between experimental conditions.

Choice of an optimal model

Based on simulation results, the two-compartment heart
model is the most stable and accurate for use with
[*'C]-acetate in BAT. This model is related to the mono-
exponential decay model used by Blondin et al. and al-
lows assessment of oxidative metabolism while taking
into account the AIF shape. However, model #1 has
some of the highest AIC values for fits of human data,
indicating that it fits the data less closely than other
models.

On the other hand, models #4 and #7 have some of
the lowest AIC values and are almost as stable as model
#1. In addition, they provide information about storage
of [''C]-acetate in the tissue, which may vary between
the warm and cold conditions.

It is not clear, based on the present analyses, which
model between #4 and #7 is preferable. Model #7 has
higher inter-subject variability and is less accurate in
simulations than model #4, but it is more stable. From a
physiological standpoint (Fig. 3), it seems likely that the
branching between storage and oxidation occurs when
acetate is converted to acetyl-CoA which is then re-
directed either to an oxidative (fast) compartment or to
a lipid synthesis (slow) compartment. This physiology is
best described by model #7 (Fig. 4) where C; is the
acetyl-CoA synthesis compartment, C, is the lipid
synthesis compartment, and Cj is the oxidative compart-
ment. In model #4, both conversion to acetyl-CoA and
oxidation occur in the C; compartment and storage (C,)
cannot occur in parallel with oxidation.

Finally, we advise against using a model with a dual
input function such as model #10 because it is not as
stable as models #1, 4, and 7. Also, according to sensiti-
vity and identifiability analyses, metabolite parameters
are poorly estimated and can affect other parameters
through correlations.

Special considerations

Obtaining a precise local AIF with proper delay and
dispersion is essential to fit the BAT [*'C]-acetate TAC
adequately. It was noticed early in the analysis process
that the initial peak of the TAC could not be fitted pro-
perly without this correction. A simple correction based
on a blood vessel signal near the BAT region provided
good fit results in this work. More refined corrections
methods could be attempted in order to further improve
the quality of fits [34].
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As mentioned previously, differences in AIF shapes
between the warm and cold conditions will have to be
investigated to understand how the cooling protocol
impacts both the local and distal AIF. For example, acti-
vation of the sympathetic nervous system by cold expo-
sure has effects on cardiac rhythm and blood flow,
which can modify the AIF.

Finally, because the oxidation and storage parame-
ters affects mostly the later part of the TAC (ie., after
t=5-10 min), one should not limit the analysis to

the early part of the TAC unless only information
about blood volume is desired.

Limitations

The older healthy subject cohort was small and com-
posed of overweight individuals and may not be fully
representative of this age group. Also, we did not have
sufficient data to assess subjects with type 2 diabetes.
Moreover, the study was performed on male subjects;
therefore, the observations may not be valid for females.

Model #7
Mean younger subject AlF Mean older subject AlF
2.5 T T 2.5 T T
— Warm AIF — Warm AIF
S 2.0 --- Cold AIF 1 S 2.0fn --- Cold AIF
=2 2
D 1.5 £ 15
2 2
> 1.0 > 1.0
et hd
Q (%)
< 05 < 05
0.0 . L 0.0 1 )
0 10 20 0 10 20
Time (min) Time (min)

Fig. 15 TAC generated using average AIF for model #7 and set parameters: K; = 0.07 mL/g/min, k, =030 min™', ks=0.14 min™', v, = 0.10
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Finally, we did not address the causes of the high inter-
subject variability observed in all groups.

Methodological aspects such as BAT delineation and
AIF determination will have to be taken into account to
ensure that differences observed are due mostly to biol-
ogy. For the time being, we had to rely on image-derived
AJF and metabolite estimations based on the literature.
Since cold exposure may affect the metabolite fraction,
direct measurement of metabolites by blood draw is
required to fully validate the results presented here.

Conclusions
Based on the present analyses and current knowledge of
acetate metabolism in BAT, model #7, a four-compartment
irreversible model with four free parameters seems the
most appropriate because it allows full decoupling of oxi-
dation and lipid synthesis. In addition, oxidation by BAT
cannot be accurately estimated from the first 5 min of scan
because the vascular effects dominate during this time
period. In other words, any oxidation occurring during this
time is overshadowed by [''C] signal from the blood pool.
Moreover, because cold exposure seems to affect the AIF
shape, kinetic modeling must take into account the AIF
either through compartment or graphic models. Simple ex-
ponential decay models applied to the early part of the
curve are likely to be contaminated by blood signal and
cannot fit data as reliably as compartmental models.
Finally, by decoupling perfusion, storage, and metabo-
lism, compartmental modeling of [''C]-acetate could
provide a more accurate estimation of BAT energy
expenditure. This may shed new light on previously
acquired data as well as improve future assessment of

the role of BAT in metabolic disorders and its potential
as a therapeutic target.
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