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Evaluation of data-driven respiratory gating
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Abstract

Background: We aimed to evaluate the clinical robustness of a commercially developed data-driven respiratory
gating algorithm based on principal component analysis, for use in routine PET imaging.

Methods: One hundred fifty-seven adult FDG PET examinations comprising a total of 1149 acquired bed positions
were used for the assessment. These data are representative of FDG scans currently performed at our institution. Data
were acquired for 4 min/bed position (3 min/bed for legs). The data-driven gating (DDG) algorithm was applied to
each bed position, including those where minimal respiratory motion was expected. The algorithm provided a signal-
to-noise measure of respiratory-like frequencies within the data, denoted as R. Qualitative evaluation was performed by
visual examination of the waveforms, with each waveform scored on a 3-point scale by two readers and then averaged
(score S of 0 = no respiratory signal, 1 = some respiratory-like signal but indeterminate, 2 = acceptable signal
considered to be respiratory). Images were reconstructed using quiescent period gating and compared with non-
gated images reconstructed with a matched number of coincidences. If present, the SUVmax of a well-defined lesion in
the thorax or abdomen was measured and compared between the two reconstructions.

Results: There was a strong (r = 0.86) and significant correlation between R and scores S. Eighty-six percent of
waveforms with R≥ 15 were scored as acceptable for respiratory gating. On average, there were 1.2 bed positions per
patient examination with R≥ 15. Waveforms with high R and S were found to originate from bed positions
corresponding to the thorax and abdomen: 90% of waveforms with R≥ 15 had bed centres in the range 5.6 cm
superior to 27 cm inferior from the dome of the liver. For regions where respiratory motion was expected to be
minimal, R tended to be < 6 and S tended to be 0. The use of DDG significantly increased the SUVmax of focal lesions,
by an average of 11% when considering lesions in bed positions with R≥ 15.

Conclusions: The majority of waveforms with high R corresponded to the part of the patient where respiratory motion
was expected. The waveforms were deemed suitable for respiratory gating when assessed visually, and when used
were found to increase SUVmax in focal lesions.
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Background
Respiratory motion during PET data acquisition is un-
avoidable and often degrades clinical image quality. Fea-
tures within the abdomen and thorax are generally
blurred in the cranio-caudal direction when respiratory
motion is left unaccounted for in the PET image recon-
struction. A range of image artefacts can also occur.
These are mostly due to a mismatch between the CT at-
tenuation correction image, which is typically a snapshot

at a single phase of respiration, and the PET image
which typically represents an average over the whole re-
spiratory cycle [1–3].
Many approaches have been demonstrated to mitigate

the degrading effects of respiratory motion in PET-CT.
For both the PET and CT modalities, methods fall into
one of two categories. The first of these is instructed
breathing, such as breath hold or repeated breath hold
techniques. The second category is tracking of the re-
spiratory phase, sometimes with gated exposure (for
CT), and with compensated image processing (e.g. re-
spiratory gated image reconstruction). The short
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exposure time (seconds) required in CT makes breath
hold techniques compatible with this modality, and they
are frequently used clinically. Repeated breath-hold PET
has been performed [4, 5] but is not common, due to
the much longer duration (minutes) required for PET
data acquisition. Tracking the respiratory cycle by means
of an external system, such as a pressure belt or a cam-
era, is commonly performed for both CT and PET.
Commercial products that interface with the PET-CT
scanner include the respiratory gating system AZ-733VI
(Anzai Medical; Tokyo, Japan) and the Real-time Pos-
ition Management™ (RPM) Respiratory Gating system
(Varian Medical Systems; CA, USA). While these exter-
nal systems do provide respiratory gating solutions, they
also require time to set up on the patient and occasion-
ally do not yield a useful gating waveform [6]. Rather
than using an external system to track the respiratory
cycle, it is also possible to extract a respiratory signal
from the PET data itself in what is known as data-driven
gating (DDG). The periodic motion of the radioactivity
within the patient, attributable to respiration, can be ex-
tracted from either the PET raw data (e.g. from a time
series of short-duration sinograms [7]) or from PET im-
ages (e.g. from a time series of short-duration PET im-
ages [8]). In both cases, the duration must be a small
fraction of the respiratory period, e.g. 0.5 s. Data-driven
gating has several potential advantages as compared to
tracking the respiratory cycle using an external system.
DDG is based on the motion of the radioactivity within
the patient and hence directly linked to the respiratory
motion of organs and tumours. External devices generally
track the position of the chest wall and assume that or-
gans of interest move synchronous to this. In fact, organs
and lesions within the body can exhibit respiratory mo-
tions that are phase-shifted compared to the chest wall
motion [9]. There is no set-up time involved for DDG, as
no external system or tool is attached to the patient. The
DDG waveforms are inherently time-synchronised to the
scanner without the possibility of a time offset, which
could otherwise prevent robust gating. The clinical impact
and feasibility of using DDG have been investigated by
Kesner et al. [10]. Until now, however, commercial
data-driven respiratory gating solutions have not been
widely available.
In this study, we evaluated respiratory waveforms gen-

erated by a DDG algorithm which has been commer-
cially developed by GE Healthcare (Waukesha, WI,
USA), marketed with the name MotionFree, and which
has the 510(k) approval for use in the USA. The algo-
rithm applies principal component analysis to a time
series of down-sampled sinograms, with one of these
components then selected and assumed to capture the
period of the respiratory motion. The variation of the
weighting factor for this component over time provides

a respiratory waveform similar to that provided by the
external respiratory gating equipment. The method has
been recently validated in phantom studies, and several
patient examples have been presented [11, 12]. The
commercial implementation is built on the work of
Thielmans et al. [7, 13, 14]. A preliminary version of this
work has been presented previously [15].

Methods
Study design
This evaluation of the prototype DDG algorithm focused
on several technical aspects of the respiratory gating to
allow practical implementation in routine clinical use.
The first part of the evaluation concerned the quality of
the respiratory waveforms generated by the algorithm, as
assessed on 157 FDG PET-CT scans and in an experi-
ment using a moving phantom. The algorithm generates
its own metric of waveform quality (based on a
signal-to-noise ratio and denoted as R). We first con-
firmed, using the phantom data, how R increases when
the amplitude of the respiratory motion applied to the
phantom increases. Following this, the DDG waveform
from each bed position of the 157 patient examinations
was visually examined and scored. These scores were
compared to the algorithm’s own metric. The variation
of these scores with the location of the PET bed pos-
ition, i.e. the patient’s body part, was investigated.
The next step in the evaluation was an assessment of

the magnitude of changes in SUVmax values for
well-defined lesions in the thorax or abdomen. Recon-
struction was performed using quiescent period gating
(retaining 50% of coincidences) [16] and compared to re-
construction without respiratory gating.
Finally, we examined the dependence of acquisition dur-

ation on the algorithm’s metric of waveform quality. Part
way through a patient acquisition, the algorithm makes an
assessment of the magnitude of respiratory motion based
on this metric, from which it may trigger (above some
threshold) an extension to the acquisition duration for the
current bed position. This automatic extension of the
scanning duration for bed positions where respiratory mo-
tion is detected is expected to be useful, as it allows the
application of quiescent period gating for these bed posi-
tions while maintaining an adequate number of counts in
the retained dataset. When the magnitude of the respira-
tory motion, as inferred from the quality metric, is below
the threshold, it is assumed that there is little benefit and
hence no need for respiratory gating. The scan duration is
then not extended, and a non-gated image will be gener-
ated making use of all the acquired coincidences; patient
throughput is hence improved while image quality is
retained. In combination, our evaluation aimed to enable
a threshold value of R to be selected based on the ex-
pected veracity of the waveform.
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Phantom data
Data were acquired from a moving phantom and proc-
essed using the DDG algorithm. The phantom setup
consisted of a foam phantom containing five small 68Ge
spheres (the VQC-068 phantom; Eckert & Ziegler; Val-
encia, CA, USA), each with an activity of 13 kBq. This
phantom was placed on the QUASAR™ respiratory mo-
tion platform (Modus QA; London, ON, Canada) that
performed periodic motions in the Z direction, using a
driving waveform that was typical for normal respiration
(named Typical1, supplied by the manufacturer). A cy-
lindrical, uniform 68Ge phantom (20 cm diameter, 19 cm
height, activity concentration of 0.2 kBq/mL) was placed
on the scanner couch, adjacent to the platform to pro-
vide a source of activity outside the scanner’s coinci-
dence field-of-view. This setup was chosen to represent
the case of imaging lesions within the lung. Data were
acquired with the platform driving the phantom with a
range of amplitudes (0–15 mm, corresponding to max-
imum displacements of 0–30 mm). There were three re-
peated acquisitions at each amplitude. Each acquisition
was at the same bed position and was 180 s in duration.
Each acquisition was processed with the full 180-s dur-
ation, and also after being split into two frames of 90 s
and four frames of 45 s. This provided between 3 and 12
R values at each amplitude for the given frame duration,
from which the mean and standard deviations were
found. The standard error on the mean was calculated
as the standard deviation divided by √n, where n
equalled 3 for 180 s, 6 for 90 s and 12 for 45 s.

Patient data
One hundred fifty-seven sets of adult [18F]FDG PET ex-
aminations comprising a total of 1149 acquired bed po-
sitions were used to evaluate the performance of the
data-driven gating algorithm. These scans were acquired
on 20 different days in December 2017 and January
2018, randomly chosen and are representative of
[18F]FDG scans currently performed at our institution.
Patients fasted for more than 6 h prior to i.v. administra-
tion of 4MBq/kg [18F]FDG. The uptake period was 90
min. The PET-CT examination commenced with a
free-breathing helical CT, followed by free-breathing
PET with 4 min/bed position (3 min/bed for legs). The
PET-CT scanner used was a Discovery 710 (GE Health-
care; Waukesha, WI, USA). This is a fully 3D PET-CT
scanner incorporating a time-of-flight technology with
LYSO-based scintillation detectors [17].

DDG waveform generation and assessment
The data-driven gating algorithm [13] was applied to
each bed position, including those where minimal re-
spiratory motion was expected. The algorithm performs
principal component analysis on a time series of

sinograms to identify the particular sinogram elements
that change during the scan. The weighting factor for
each principal component describes how that compo-
nent changes with time and may capture the phase and
period of respiratory motion. The algorithm first bins
listmode data into a set of down-sampled sinograms.
Each sinogram in this set is 0.5 s in duration and down-
sampled in its radial and angular components. No down-
sampling is applied in the axial components to retain
maximum spatial resolution in the direction most com-
monly associated with changes caused by respiratory
motion. Time-of-flight information is discarded in this
implementation. There is then a correction for
low-frequency shifts in the total counts, to account for
changes that are not due to respiration (e.g. those from
radiotracer redistribution). The sinograms are then
masked using a threshold to remove those parts of the
sinogram that are considered to be outside the patient.
PCA is then applied, and the first three principal com-
ponents assessed for the strength of the respiratory sig-
nal that they contain. This assessment is performed
using a signal-to-noise measure of respiratory-like fre-
quencies within the data, denoted as R, derived from the
power spectrum of the transformed dataset. The max-
imum value of the Fourier transform of the eigenvector’s
weight function within the frequency range for respir-
ation (0.1–0.4 Hz) is divided by its mean value for fre-
quencies above this range (0.4–1.0 Hz). From these three
ratios (respiratory maximum/mean noise), the largest
one is chosen and defined as R. The corresponding prin-
cipal component becomes the respiratory principal com-
ponent, with the respiratory waveform extracted using
its eigenvector. The respiratory waveform is thus created
from this weighting factor, up-sampled to 0.25-s inter-
vals using linear interpolation.
For each waveform, a qualitative evaluation was also

performed. Each auto-scaled waveform was reviewed by
two clinical scientists (medical physicists) blinded to the
R value and scored on a 3-point scale assessing its suit-
ability for clinical use (score S of 0 = no respiratory sig-
nal, 1 = some respiratory-like signal but indeterminate, 2
= acceptable signal considered to be respiratory). The
scores from the two readers were averaged. The axial lo-
cation of the centre of each bed position, and hence each
corresponding R and S values, was determined relative
to the reference location at the most superior point of
the liver as determined from the CT image.
We expected R to have some dependence on the ac-

quisition duration, and any threshold applied based on R
may hence need to be scan duration-dependent. As
such, all the patient data from bed positions with a
4-min acquisition time were re-processed and the R
values re-calculated for a range of acquisition durations
(10–240 s), keeping an initial portion of the data only.

Walker et al. EJNMMI Research             (2019) 9:1 Page 3 of 10



The data were analysed by linear regression of the re-
duced duration R values with those from the reference
time of 4 min (240 s). The slope of the linear fit (inter-
cept fixed at 0) was used as a measure of the systematic
change in R with duration. The mean values of R were
also calculated, considering only bed positions with R ≥
15 as found with the full 240-s bed duration.

Assessment of DDG-reconstructed images
PET images were reconstructed using DDG-triggered
quiescent period gating (QPG), retaining 50% of coinci-
dences [16]. Images were also reconstructed without gat-
ing, using data from the first 2 min of each bed position,
such that the number of coincidences used for image re-
construction was matched to that used for the gated
image. A non-gated image was also reconstructed using
the full 4 min of data at each bed position. The recon-
struction algorithm was the manufacturer’s Bayesian
penalised likelihood reconstruction (Q.Clear) with a beta
value of 400 [18].
The three [18F]FDG PET-CT images for each patient

were reviewed by a clinical scientist (medical physicist)
and screened for the presence of a focal, avid lesion in
the upper abdomen or thorax (including the rib cage).
When multiple lesions were present, the most focal was
chosen for analysis. The SUVmax from the lesion was
measured on each PET image. The axial location of the
lesion was also recorded to allow the R value for this

lesion to be identified from its bed position. In the case
of a lesion being identified in the overlap region of two
bed positions, the assigned values of R were calculated
as the sensitivity-weighted average of the two values.
This allowed exploration of the relationships between
the lesion locations, R values and changes in SUVmax

due to the application of DDG.

Results
The phantom experiment confirmed that increasing the
amplitude of respiratory-like motion led to an increase
in R. The data also demonstrated a reduction in R for
shorter acquisition durations. These results are pre-
sented in Fig. 1.
From the patient data with 1149 bed positions, there

was a strong (r = 0.86) and statistically significant (Wald
test, p < 0.001) positive correlation between the natural
logarithm of the algorithm’s figure of merit for the wave-
form, log(R) and the score S assigned from visual inspec-
tion. The distribution of R values for different scores S is
shown in Fig. 2, where the good agreement between the
two measures can be observed. There were 2 cases (out
of 1149; 0.2%) where S equalled 0 while R was greater
than 15. There were 35 bed positions (3%) where wave-
forms were scored as 2 while R was less than 15. Exam-
ples of waveforms for a range of scores S and R values
are provided in Fig. 3.

Fig. 1 Relationship between R and motion amplitude found for a phantom performing respiratory-like motions. The maximum displacement was
30mm, corresponding to a 15-mm amplitude. Lines of best fit are shown (using third-order polynomials). Results are presented for scan durations
equal to 180 s, 90 s and 45 s. Error bars represent standard errors on the mean
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For a practical clinical implementation, one could set a
threshold on the R value, above which respiratory gating
is applied. As the chosen threshold is increased, the
number of bed positions with R exceeding the threshold
reduces. This is demonstrated in Fig. 4a, which also
shows that there was an average of 1.2 bed positions per
patient examination that had an R value exceeding the
default threshold of 15. Figure 4b shows that as the R
value threshold increases, a higher proportion of wave-
forms is scored as visually acceptable. Of the 191 bed
positions with R greater than the threshold of 15, 164 of
them (86%) were scored as acceptable for respiratory
gating (S ≥ 1.5).

Waveforms with high R and S were found to originate
from bed positions corresponding to the thorax and abdo-
men: 90% of waveforms with R ≥ 15 had bed centres in the
range 5.6 cm superior to 27 cm inferior from the dome of
the liver. Using the eyes as an alternative reference point,
this corresponded to 26–57 cm inferior of eye level. This
is presented in Fig. 5. For regions where respiratory mo-
tion was expected to be minimal such as the head and
legs, R tended to be < 6 and S tended to be 0.
Analysis of the waveforms generated using reduced

acquisition durations demonstrated that R is systemat-
ically lower for shorter acquisitions. This dependence
of R on the acquisition duration is shown in Fig. 6a,

Fig. 2 Relationship between the algorithm’s figure of merit for the waveform (the R value) and the waveform score S as determined by two
readers from visual inspection of the waveform. The horizontal dashed line shows a threshold, R = 15

Fig. 3 Example waveforms showing the first 120 s (out of 240 s) of data for five different bed positions. The R values and mean scores S are
shown for each waveform
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where the slope from a linear regression (Rt = 240 vs
Rt) is plotted for the various acquisition durations t.
Pearson’s correlation coefficient is also displayed. A
comparison of Rt = 180 and Rt = 240 is presented in
Fig. 6b. Mean R values for waveforms with high R (Rt

= 240 ≥ 15) are provided in Table 1 and confirm a sys-
tematic dependence, which led to substantial reduc-
tions in R for short durations and which was
statistically significant for all the durations tested.

Of the 157 examinations in this study, a focal lesion in
the thorax or abdomen was found in 86 cases (with any
R value). Application of data-driven QPG was found, on
average, to increase the lesion’s SUVmax in comparison
to non-gated images with a matched number of coinci-
dences (p < 0.001; paired t test). In many cases, the
change (either increase or decrease) was small and ex-
pected to be clinically insignificant. In other cases, there
was a substantial increase that could be clinically

Fig. 4 a Number of bed positions per patient with R greater than a set threshold, shown for R value thresholds between 1 and 20. b Total
number of bed positions with R greater than the R value threshold, split by the score S assigned to the waveform from visual inspection of all
bed positions in 157 examinations. Shown for R value thresholds between 1 and 20. For data in both figures, the acquisition duration per bed
position was 240 s (4 min)

Fig. 5 The R values and scores S for waveforms generated at the different bed positions for 157 patients. A moving average is shown as a solid
black line. The most superior point of the liver determined from CT (i.e. the dome of the liver) is used as the reference level
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significant. When only lesions with a corresponding R
value greater than or equal to 15 were considered, the
mean increase was 11%. Considering only those lesions
with Rt = 240 < 15, the mean increase was 6%. For all lesions
regardless of the R value, the mean increase was 8%. The
distribution of this change is presented as a histogram in
Fig. 7. There was a small difference in SUVmax between
the two sets of ungated images; those reconstructed from
2min of data were, on average, 3% higher than those re-
constructed from the full 4 min (p = 0.003; paired t test).

Discussion
Several technical and practical aspects relating to a com-
mercial implementation of data-driven gating have been
evaluated. The algorithm’s figure of merit for the respira-
tory waveform signal, R, was found to be highly corre-
lated with our assessments based on visual inspection.
The phantom study confirmed that R increased with lar-
ger motion amplitudes. We also verified that R tended
to be substantially higher when scanning a part of the
patient where large respiratory motion was expected.
These results support the use of an R value threshold to
determine whether or not QPG should be applied.
The practicalities of such an approach led to several

other questions that we addressed, including how R de-
pends on the acquisition duration. This is of particular
importance when considering live DDG, where an R

value is determined part way through a bed position (typ-
ically around the completion time of the standard bed
duration), with a decision then made based on the R value
as to whether the acquisition should be automatically ex-
tended. QPG may then be applied while ensuring that the
gated images have a sufficient number of counts. While
this may be a seamless approach to the management of re-
spiratory motion, the R value threshold needs to be chosen
with care. It may be possible to devise improved measures
of the suitability of DDG waveforms for respiratory gating,
as well as the benefit that may be expected from applying
such gating. Different metrics which have some similarity
to R have been used in the evaluation of other DDG algo-
rithms [19, 20]. The phantom study confirmed that larger
motion amplitudes do lead to higher R values but also
showed that the increase was not linear. When automating
the decision of whether or not to apply DDG, it may be
beneficial to assess both the motion amplitude alongside
the validity of the DDG waveform. The R metric as cur-
rently implemented is sensitive to both, but is primarily
designed as an indicator of the waveform validity, and is
not a direct measure of the respiratory motion amplitude.
Another practical issue is that of patient throughput,

which will be directly influenced by the choice of thresh-
old in the case of live DDG. When all bed positions are
screened for motion, we found an average of 1.2 bed po-
sitions per patient with Rt = 240 ≥ 15. It is hence possible

A B

Fig. 6 a Results from linear regression, comparing R calculated from a 240-s duration acquisition to R found for the first t seconds of the
acquisition. b Example regression, showing Rt = 180 compared to Rt = 240

Table 1 Mean R values from all bed positions that satisfied the condition Rt = 240 ≥ 15

Scan duration (s) 10 20 30 40 50 60 80 100 120 180 210 240

Mean R
[for Rt = 240 ≥ 15]

7.8 10.6 12.8 14.3 15.2 16.3 17.3 18.2 18.7 20.1 21.0 21.7

A systematic reduction in the R value is seen for when the acquisition duration is reduced. All of the mean values are significantly lower than the mean value
from 240 s of data (paired t test; p < 0.01)
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to calculate the expected additional scanning time
needed when moving from a workflow without respira-
tory gating to one where live DDG is applied. On the
other hand, if the current workflow made use of an ex-
ternal gating system and extended acquisition durations
for 2 fixed bed positions, changing to live DDG may re-
sult in increased throughput.
The commercial release of a data-driven gating solu-

tion for respiratory motion represents an important step
forward for the field. The development builds on many
important contributions from various groups. The core
component of all DDG algorithms is the method used to
identify and thus extract a respiratory signal from the
data. The intuitive image-based method tested by
Bundschuh et al. [8] was to position a volume of interest
(VOI) over the lesion and to then calculate the z-coord-
inate of the VOI’s centre of mass for each short time
frame. The method was found to yield usable data for
DDG, but it relies on a manual VOI definition and also
requires the often time-consuming reconstruction of
many image frames. An automated image-based method
was developed by Kesner et al. [20], whose algorithm se-
lectively incorporates image voxels to build a
high-quality respiratory signal from their combined
time-activity curves. Approaches based on the raw coin-
cidence (sinogram) data, with no requirement for a dy-
namic image reconstruction, include the geometric
sensitivity method [21] that utilises the fact that 3D PET
scanners exhibit large variations in sensitivity with axial
position. Periodic fluctuations in the coincidence count-
ing rates may then be attributed to respiratory motion.

This method was later developed further and compared to
the waveform provided by the change in the axial centre
of mass of the true coincidences [22]. The inclusion of
time-of-flight information, as well as consideration of mo-
tion in other directions (e.g. anterior-posterior), was used
in the centroid of the distribution algorithm recently eval-
uated by Ren et al. [23]. Kesner and Kuntner [24] devel-
oped a more complex, automated DDG algorithm that
extracts data from selected pixels within the filtered pro-
jection data. Their algorithm combines several aspects of
the aforementioned image-based works, incorporating
only those sinogram pixels (projection bins) whose inclu-
sion increases the standard deviation of the waveform as it
is generated. On the other hand, the algorithm of Schleyer
et al. uses spectral analysis to ascertain which sinogram
pixels should be considered useful in the generation of the
respiratory waveform [25]. Like the algorithm of Kesner
and Kuntner [24], the automatic PCA-based DDG algo-
rithm tested in this work involves extraction of a wave-
form from raw sinogram data with high temporal
resolution but reduced spatial resolution [13]. Selection of
appropriate pixels is however performed via principal
component analysis. The temporal variations of the princi-
pal component weighting factors are then examined, and
the component with the strongest respiratory frequency is
retained. The variation of this component’s weighting fac-
tor with time is used as the DDG waveform.
Our evaluation has some limitations. The phantom ex-

periment considered changes in R with motion magni-
tude but did so for an otherwise fixed radioactivity
distribution and with relatively little activity in the

Fig. 7 Histogram of change in SUVmax. The data are split into two groups based on the corresponding R values, below and above an R value
threshold of 15. Where data are overlaid, a darker colour bar is shown
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scanner’s FOV. It is expected that R, and also the most ap-
propriate R value threshold, depends to some degree on a
variety of other factors in addition to the magnitude of the
respiratory motion. These include the radioactivity distri-
bution within the patient as well as the part of the patient
currently being imaged. We do not recommend choosing
an R value threshold based solely on the results of the
phantom experiment shown in Fig. 1. Calculated R values
could potentially be modulated by a number of factors in-
cluding those that change the statistical quality of the data.
R is hence expected to change not just with the region be-
ing imaged and scan duration but also the injected activ-
ity, uptake period, patient habitus, and especially if a
different radiotracer is used. The appropriate threshold
may hence be scanner and protocol dependent.
The current evaluation did not include a comprehen-

sive clinical evaluation of the gated images nor was a
comparison attempted against waveforms from an exter-
nal device. Our data did however confirm that applica-
tion of DDG led to an increased SUVmax, on average.
The observed increase due to respiratory gating was
both expected and similar to that reported by others
[26]. A comparison against the RPM device was made
previously using anthropomorphic phantom data, for
which the true driving waveform was known [12]. Al-
though the similarities between waveforms from the
PCA-DDG algorithm and the RPM system have been
presented for several patients [7, 13], the benefit from
such a comparison is limited by the lack of a gold stand-
ard. The reasonable agreement observed is reassuring,
but it is difficult to ascertain the superiority of either
method. There is a similar limitation in the current
work, where neither the R value nor the score S from
visual inspection can be considered as a gold standard
for determining the validity of the waveform and its cor-
respondence to the respiratory motion of internal or-
gans. We anticipate that these important questions will
be addressed by the results of a large, ongoing clinical
study including detailed clinical evaluations.

Conclusions
For the PCA-based DDG algorithm, the majority of
waveforms with high R corresponded to the part of the
patient where respiratory motion was expected, and the
waveforms were deemed suitable for respiratory gating
when assessed visually. Application of DDG was found
to significantly increase the SUVmax of focal lesions by
mitigating the blurring effects of respiratory motion.
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