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Abstract

Objective: The aim of this study was to assess the value of 18F-FDG PET/CT for quantitative assessment of hepatic
metabolism in patients with different stages of liver fibrosis/cirrhosis.

Materials and methods: 18F-FDG PET/CT scans of 37 patients either with or without liver fibrosis/cirrhosis, classified
according to the METAVIR score (F0-F4) obtained from histopathological analysis of liver specimen, were analyzed
retrospectively and classified as follows: no liver fibrosis (F0, n = 6), mild liver fibrosis (F1, n = 11), advanced liver
fibrosis (F2, n = 6), severe liver fibrosis (F3, n = 5), and liver cirrhosis (F4, n = 11). The liver-to-blood ratio (LBR, scan
time corrected for a reference time of 75 min) was compared between patient groups.

Results: Patients with liver fibrosis or cirrhosis (≥ F1; LBR 1.53 ± 0.35) showed a significant higher LBR than patients
with normal liver parenchyma (F0, 1.08 ± 0.23; P = 0.004). In direct comparison, LBR increased up to the advanced
stage of liver fibrosis (F2; 2.00 ± 0.40) and decreased until liver cirrhosis is reached (F4, 1.32 ± 0.14).

Conclusion: Functional changes in liver parenchyma during liver fibrosis/cirrhosis affect hepatic glucose metabolism
and significantly differ between stages of liver fibrosis/cirrhosis, classified according to the METAVIR scoring system, as
demonstrated by LBR quantification by 18F-FDG PET/CT.
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Introduction
The increasing prevalence of chronic liver diseases is a
growing problem for the Western Hemisphere, as pa-
tients’ morbidity and mortality are directly correlated
with the progression of hepatic fibrosis. Today, liver
cirrhosis is among the leading causes of mortality in
the Western Hemisphere and causes significant health
care costs [1–4].
Various imaging modalities, including computed

tomography (CT), magnetic resonance imaging (MRI),
and ultrasonography (US), are being used to evaluate

the liver parenchyma [5–9]. In conventional nuclear
medicine, scintigraphy and single-photon emission
computed tomography with 99mTc-IDA or 99mTc-GSA
can be used to quantify hepatic function and assess
liver fibrosis and hepatic functional reserve [10–14].
Apart from that, technically more complex positron
emission tomography (PET) is an emerging imaging
modality with superior spatial resolution, which is used
not only in oncology but increasingly also to visualize
infectious, inflammatory, and degenerative diseases
[15, 16]. 18F-fluoro-2-deoxy-D-glucose (FDG) is the
most commonly used radiopharmaceutical for PET ex-
aminations. It allows the quantification of glucose me-
tabolism in different tissues.
The quantification of regional glucose metabolism

can be achieved by kinetic analysis of FDG uptake of
dynamic PET acquisitions or more simply by means of
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standardized uptake value (SUV) measurements from
static PET images [15, 17]. However, the accuracy and
reproducibility of the SUV for quantitative analysis of
whole-body PET/CT examinations are influenced by
both technical and biological factors, leading to a lim-
ited test-retest reproducibility of SUV measurements
[18]. The tissue-to-blood ratio (TBR) specifies the ratio
between an organ and the (aortic) blood pool and is in-
sensitive to cross-calibration errors between PET scan-
ners and dose calibrators [18]. However—like SUV—it
does not take into account the biology-driven time de-
pendence of the FDG accumulation, which contributes
substantially to incongruent results with respect to
comparative studies. For tumors, the tumor-to-blood
standard uptake ratio (SUR) was introduced to over-
come both technical and biological factors, potentially
leading to a more accurate quantification of FDG up-
take and thus of glucose metabolism [19]. For tissue
analysis, the correction of SUV for the scan time inter-
val results in improved comparability of PET examina-
tions acquired at different times after FDG injection
[20]. The correction used for SUR calculations is based
mainly on the observations that, on the one hand, the
FDG concentration in arterial blood exhibits a hyper-
bolic decline pattern, and on the other hand, the
tumor-to-blood ratio over time becomes almost linear
after tracer equilibration in the blood. Unlike with
malignant tumors, the uptake of FDG into the liver
does not follow an irreversible kinetics. It exhibits a
low and homogeneous uptake of 18F-FDG into the liver
parenchyma [21–24].
To what extent FDG uptake is affected by diffuse

liver diseases is not clear yet. Hernandez-Martinez et
al. reported that the FDG uptake was reduced in cir-
rhotic livers (defined by anatomical imaging criteria)
compared to the control group [25]. Some studies,
evaluating the 18F-FDG uptake in liver steatosis, re-
ported an increasing SUV compared to normal liver
parenchyma, whereas others observed no such differ-
ence [26–28]. In addition, there is evidence that a
higher hepatic glucose metabolism with higher
18F-FDG uptake into the liver parenchyma is associ-
ated with increased expression of GLUT-1 and hexoki-
nase II [29, 30].
For assessing liver inflammation in non-alcoholic

steatohepatitis (NASH), a recent study showed that the
dynamic 18F-FDG-PET with kinetic modeling has the
potential to assess liver inflammation in patients with
NASH, while hepatic glucose metabolism assessed by
means of SUV-analyzes gave no promising results [31].
The precise assessment of hepatic 18F-FDG accumu-

lation and distribution could be essential, considering
the unmet need for noninvasive staging of chronic liver
diseases. Given the potential role of molecular imaging

in the assessment of hepatic disorders, the aim of this
study was to evaluate hepatic glucose metabolism in
patients with different stages of liver fibrosis/cirrhosis
by means of 18F-FDG PET/CT.

Materials and methods
Patients
We retrospectively analyzed 37 consecutive 18F-FDG
PET/CT scans and corresponding histopathological
liver samples obtained between 11/2008 and 09/2017.
18F-FDG PET/CT was performed for staging and
follow-up of malignant diseases, whereas biopsy of the
liver was done due to known liver fibrosis/cirrhosis or
suspicious liver lesion. Patients were included if the
timespan between 18F-FDG PET/CT and histopatho-
logical examination did not exceed 6 months. Patients
treated with chemotherapy or radiation therapy during
the 6 months prior to FDG-PET/CT imaging were ex-
cluded. Patient characteristics are shown in Table 1.
Approval from the local ethics committee of the Uni-

versity Hospital Regensburg was obtained, and this
retrospective study was performed in accordance with
all relevant guidelines and regulations.

Imaging
18F-FDG PET/CT imaging was performed using a Bio-
graph 16 PET/CT scanner (CTI-Siemens, Erlangen,
Germany) consisting of a 16-slice multidetector CT
(0.5 s per revolution) and a PET detector with an axial
and transaxial field-of-view of 162 mm and 585 mm,
respectively.
After a fasting period of at least 6 h, 3 MBq 18F-FDG

per kilogram body weight were injected intravenously
(321 ± 48 MBq).The patients’ blood glucose level was
strictly controlled to be below 150 mg/dL (8.32 mmol/
L). To increase renal tracer elimination, they received
an injection of 20 mg furosemide as well as oral or
intravenous hydration shortly after 18F-FDG injection.
In order to minimize muscular 18F-FDG uptake, pa-
tients were advised to stay in a quiet lying position.
Warming blankets were used to avoid freezing of the
patients and to keep potential tracer accumulation in
brown fat tissue to a minimum. Patients were

Table 1 Patients characteristics. Continuous measures are
reported as mean with the corresponding standard deviation.

Male [n (%)] 22 (60)

Age [years] 61 ± 13

Height [m] 1.71 ± 0.07

Weight [kg] 81 ± 18

BMI [kg/m2] 27.5 ± 6.2

Blood glucose level [mg/dl] 112 ± 25

BMI body mass index
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instructed to void the bladder prior to scanning and to
remove all metal parts.
After a waiting period of about 60 min post-injection

(minimum 50 min, maximum 90 min), the PET/CT ac-
quisition was performed with elevated arms to acquire
images of the trunk (pelvis to skull base). Depending
on the patient size and clinical indication, six to eight
overlapping bed positions with 3 min of PET acquisi-
tion time each were used. The same area was covered
by a low-dose CT scan (tube current 50 mAs, tube
voltage 120 keV) if no contrast agents were used. In 17
patients, intravenous contrast agent (130 ml of Accu-
paque™ 300, GE Healthcare) was applied with consecu-
tive full-dose CT acquisition (120 keV, 100 mAs).
PET images (slice thickness 5 mm) were corrected

for random coincidences, decay, scatter, and attenu-
ation and reconstructed iteratively using the ordered
subsets expectation maximization algorithm (OSEM)
with four iterations and eight subsets. PET images
were scaled to allow SUV measurements. PET and CT
images were checked for breathing artifacts.

Image analysis
Images were interpreted by a nuclear medicine physician
and a radiologist. To determine the SUVmean in the liver
parenchyma, a 3D volume of interest (VOI) was placed
manually in the right liver lobe, excluding visible vessels
and liver lesions. VOI size ranged from 13.6 to 17.2 cm3.
To control for the potential interindividual differences in
overall glucose metabolism, VOIs with a diameter of
1 cm were placed in the gluteal muscle to determine the
SUVmean. The aortic blood pool SUV was determined by
delineating the aorta in the attenuation CT. The result-
ing intraluminal ROI was then transferred to the core-
gistered PET image and the mean value was set as the
blood pool value. Tissue-to-blood ratios (TBR, Eq. 1)
and the time corrected liver-to-blood ratio (LBR, Eq. 2)
were calculated using the following formulas:

Tissue−to−blood ratio Tð Þ TBRð Þ
¼ SUV Tð Þ meanTarget

SUV Tð ÞmeanBlood pool
ð1Þ

Liver−to−blood ratio T ;T0ð Þ LBRð Þ
¼ T 0

T

� �b

� SUV Tð ÞmeanTarget
SUV Tð Þ meanBlood pool

¼ T 0

T

� �b

� TBR Tð Þ; ð2Þ

with T0: reference time (75 min), T: acquisition time, and
b: correction factor (set to 0.313 according to [20]).

Histopathological examination
For the histopathological examination, liver biopsies or
partial resections were used. The length of each biopsy
specimen was measured, and the number of portal
tracts was assessed. The liver samples were included in
the evaluations only when the tissue length exceeded
15 mm and more than ten portal tracts were visible.
Only non-tumorous liver tissue was included in this
study. All samples were fixed in formalin and embed-
ded in paraffin. Four-micrometer sections were cut
vertically and mounted on glass slides. The sections
were deparaffinized with xylene and ethanol and
stained with hematoxylin-eosin (HE) and Elastica van
Gieson (EVG) according to standard protocols. EVG
staining was used to evaluate the liver fibrosis with
collagen stained red and hepatocytes stained yellow.
Two pathologists (M.E. and K.U.), who specialize in

liver histopathology, assessed/evaluated/graded the
samples’ degrees of fibrosis/cirrhosis using the META-
VIR scoring system [32, 33]. Both readers were blinded
to the imaging results and the patient data. The scor-
ing was performed independently. In cases of disagree-
ment, additional microscopic analyses were performed
and a common final judgment was made in consensus.
The patients were subdivided into the following five cat-
egories: F0 (n = 6) no fibrosis, F1 (n = 11) mild fibrosis, F2
(n = 6) advanced fibrosis, F3 (n = 6) severe fibrosis, and F4
(n = 11) cirrhosis.

Statistical analysis
All statistical analyses were performed with IBM SPSS Sta-
tistics (version 24, Chicago, IL, USA). The data are pre-
sented as mean ± standard deviation (SD). Non-parametric
Mann-Whitney U test for independent variables were used
to compare groups. All tests were two-sided and a signifi-
cance level of p < 0.05 was considered significant.

Results
Patients with liver fibrosis/cirrhosis (≥ F1; SUVLiver

2.48 ± 0.32) showed a significantly higher SUV of the
liver parenchyma (SUV 2.48 + − 0.32) than patients
with normal liver parenchyma (F0; SUVLiver 1.76 ±
0.31; p < 0.001), while the SUV of the skeletal muscle
did not differ between the groups (Table 2). Figure 1
shows the SUVs of the liver parenchyma, aortic blood
pool, and skeletal muscle in patients with liver fibrosis/
cirrhosis and patients with normal liver parenchyma.
In the non-time-corrected TBR analysis, a compari-

son between patients with and without liver fibrosis/
cirrhosis as stratified according to the METAVIR scor-
ing system revealed that TBRLiver increased up to ad-
vanced liver fibrosis (F2; TBRLiver 1.93 ± 0.40) and then
decreased until liver cirrhosis is reached (Table 2).
Compared to the altered glucose metabolism of the
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liver parenchyma, no significant difference of TBR for
the skeletal muscle was found. Figure 2 shows the box-
plots of the ratio between the mean SUV in the liver
tissue (TBRLiver) and in the skeletal muscle (TBRMus-

cle), corrected with the aortic blood pool, in patients
with normal liver parenchyma and patients with liver
fibrosis/cirrhosis and the corresponding significance
values for the analyzed patients.
Patients with liver fibrosis/cirrhosis (≥ F1) showed a

significantly higher LBR (1.53 ± 0.35) than patients with
normal liver parenchyma (F0; 1.08 ± 0.23; p = 0.004).
In pairwise comparison, significant differences in LBR
were observed between patients without fibrosis (F0)
and those with mild liver fibrosis (F1; LBR 1.44 ±
0.27; p = 0.035) and between patients with initial and
those with advanced liver fibrosis (F2; LBR 2.00 ±
0.40; p = 0.015). A significant difference was observed
between the patients with advanced and severe liver
fibrosis (F3; LBR 1.53 ± 0.20; p = 0.028). No significant
difference was observed between patients with severe
liver fibrosis and liver cirrhosis (F4; LBR 1.32 ± 0.14;
p = 0.053). However, a p value of 0.053 indicates a
trend towards significance.
Figure 3 and Table 3 show the boxplots and the corre-

sponding significance values for the analyzed patients.

Discussion
Liver cirrhosis is characterized by nodular regeneration
of liver tissue with the destruction of the lobular and
vascular architecture [34–36]. The progression of liver
fibrosis and the development of liver cirrhosis are cur-
rently viewed as a dynamic process [37]. In the devel-
opment of inflammation and fibrosis, different factors
such as oxidative stress, mitochondrial changes, and
hormonal disorders are taken into account as factors
[38–40]. With increased tissue remodeling during
wound healing processes, one can assume higher glu-
cose metabolism in the liver parenchyma.
We observed that the TBR and the LBR of the liver

increase with advanced liver fibrosis (F1 to F2). In pa-
tients with severe liver fibrosis (F3) or liver cirrhosis
(F4), the LBR then decreases compared to patients
with advanced liver fibrosis, indicating a higher activity
level of tissue remodeling in patients with advanced
liver fibrosis (Fig. 4). These findings are in accord with
the morphological changes in the expression of GLUT
in the liver parenchyma because hepatocytes are cap-
able of gluconeogenesis and their need for glucose up-
take is modest [41]. In normal liver parenchyma, all
GLUTs are expressed, except for GLUT-7 [42], and the
liver parenchyma shows overexpression of GLUT-2, − 8,

Table 2 This table shows the mean standardized uptake values (SUV) of the liver parenchyma, aortic blood pool, and skeletal muscle
with their corresponding tissue-to-blood ratios (TBR), as well as the time corrected liver-to-blood-ratio (LBR) for patients with normal liver
parenchyma and patients with different stages of liver fibrosis according to the METAVIR classification

Mean SUV blood Mean SUV liver Mean SUV muscle TBRLiver TBRMuscle LBR

No liver fibrosis
(F0, n = 6)

1.72 ± 0.23 1.76 ± 0.31 0.77 ± 0.20 1.04 ± 0.23 0.44 ± 0.08 1.08 ± 0.23

Mild liver fibrosis
(F1, n = 11)

1.75 ± 0.31 2.31 ± 0.31 0.74 ± 0.25 1.35 ± 0.25 0.42 ± 0.16 1.44 ± 0.27

Advanced liver fibrosis
(F2, n = 6)

1.45 ± 0.46 2.64 ± 0.36 0.58 ± 0.07 1.93 ± 0.40 0.43 ± 0.09 2.00 ± 0.40

Severe liver fibrosis
(F3, n = 5)

1.75 ± 0.33 2.62 ± 0.29 0.72 ± 0.18 1.55 ± 0.23 0.41 ± 0.06 1.53 ± 0.20

Liver cirrhosis
(F4, n = 11)

1.90 ± 0.22 2.49 ± 0.24 0.68 ± 0.10 1.32 ± 0.15 0.36 ± 0.05 1.32 ± 0.14

a b c

Fig. 1 The standardized uptake values (SUV) of the liver parenchyma (a), the aortic blood pool (b), and the skeletal muscle (c) in patients with
normal liver parenchyma and patients with liver fibrosis/cirrhosis are shown. The Mann-Whitney U test was used to compare the following groups: no
(F0), mild (F1), advanced (F2), severe liver fibrosis (F3), and liver cirrhosis (F4)
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− 9, and − 10 [43]. GLUT-1 and GLUT-2 allow for
efficient uptake of glucose at low plasma glucose con-
centrations [44]. Expression of these transporters in
liver cells is restricted to hepatocytes proximal to the
hepatic venule [45]. In damaged liver parenchyma, the
majority of GLUTs are upregulated compared to nor-
mal liver parenchyma [43] and the expression of
GLUT-1 in hepatocytes is increased, while GLUT-2 is
decreased [46]. While GLUT-2 ensures, independently
of insulin, with its low affinity and high transport cap-
acity, that intracellular and extracellular glucose con-
centrations are in equilibrium [47], GLUT-1 has a
higher affinity for glucose and is nearly saturated
under physiological conditions [48]. In addition, the
amine oxidase activity of VAP-1 is upregulated in
chronic liver diseases [49]. VAP-1 plays a significant
role in glucose uptake into hepatocytes as it stimulates
glucose uptake via translocation of transporters to the
cell membrane [43, 50]. In conclusion, the high affinity
of GLUT-1 for glucose in combination with its

increased expression in damaged liver parenchyma
might explain the increased 18F-FDG uptake we ob-
served in patients with liver fibrosis suggesting a
higher glucose uptake for liver cells.
Non-parenchymal liver cells, which cannot carry out

gluconeogenesis, rely on glucose uptake rather than on
endogenous formation. GLUT-1 is the dominant trans-
porter protein in both endothelial cells and Kupffer
cells, and its expression levels increase during inflam-
mation induced by lipopolysaccharide [51].
In the process of tissue remodeling in liver parenchyma,

inflammation plays an important role [52–54]. As a reac-
tion to damaged hepatocytes, apoptotic bodies will be re-
cruited to interact with quiescent hepatic stellate cells and
Kupffer cells to activate and promote inflammatory and
fibrogenic responses [55, 56]. As a consequence, the en-
hanced inflammatory and immune-mediated responses
will promote hepatocyte necrosis and apoptosis, which
nurtures further fibrogenic processes [57].
One may argue that Kupffer cells are more dominant

in patients with higher levels of active tissue remodel-
ing, as it is observed for patients with advanced liver
fibrosis (F2). This might explain the increased glucose
metabolism in patients with advanced liver fibrosis in
addition to elevated 18F-FDG uptake in damaged hepa-
tocytes as described above.
In our study, patients with severe liver fibrosis (F3) or

liver cirrhosis (F4) showed a decreased glucose

A B

Fig. 2 Shows the tissue-to-blood ratios (TBRLiver, (a); TBRMuscle, (b)) in patients with normal liver parenchyma and patients with liver fibrosis/cirrhosis.
The Mann-Whitney U tests was used to compare the groups: no (F0), mild (F1), advanced (F2), severe liver fibrosis (F3), and liver cirrhosis (F4)

Fig. 3 LBR in patients with normal liver parenchyma and patients
with liver fibrosis/cirrhosis. Mann-Whitney U tests were used to compare
the groups: no (F0), mild (F1), advanced (F2), severe liver fibrosis (F3),
and liver cirrhosis (F4)

Table 3 Differentiation between the stages of liver fibrosis

F0 F1 F2 F3 F4

F0 0.035 0.002 0.006 0.045

F1 0.035 0.015 0.571 0.362

F2 0.002 0.015 0,028 0.001

F3 0.006 0.571 0.028 0.053

F4 0.045 0.362 0.001 0.053

Comparison of the different stages of liver fibrosis, stratified by the METAVIR
scoring system, with the corresponding p values: no (F0), mild (F1), advanced
(F2), severe liver fibrosis (F3), and liver cirrhosis (F4)
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metabolism compared to patients with advanced liver fi-
brosis (F2), while maintaining a higher glucose metabol-
ism than patients with normal liver parenchyma (F0)
(Fig. 3). These results are in contrast to Hernandez-
Martinez et al., who reported a reduced FDG uptake in
cirrhotic livers in comparison to the control group [25].
However, Hernandez-Martinez et al. [25] used a combin-
ation of clinical, histopathological, and imaging data for
the classification of liver disease, whereas we used a vali-
dated histopathological scoring system, the METAVIR
scoring system. Furthermore, they used the error-prone
SUV measurements, in contrast to our scan time cor-
rected LBR quantification.
There are some potential biological explanations for

our observations. The decreased glucose metabolism
in patients with liver cirrhosis compared to patients
with liver fibrosis corresponds to reports that cirrhotic
liver tissue has a depleted glycogen storage [58]. Fur-
thermore, collagen accumulation in liver fibrosis may
be associated with reduced uptake of glucose into the
liver tissue [59], as observed here. GLUT-4 trans-
porters were detected in sinusoidal endothelial cells as
well as in stellate cells where they can mediate glucose
uptake by semi-carbazide-sensitive amine oxidase [60]
and may contribute to the fibrogenesis in patients with
chronic liver diseases. This might contribute to the

increased FDG uptake of active fibrosis (F2). In con-
trast, the expression level of GLUT-4 was found to be
decreased in liver cirrhosis [61]; these findings are in
line with our data, showing a significantly decreased
FDG uptake for patients with METAVIR score F4 in
comparison to F2.
These changes in glucose metabolism were solely re-

lated to the liver as we can confirm by our observa-
tions. In contrast, the skeletal muscle showed no
significant difference in glucose metabolism for pa-
tients with and without liver fibrosis/cirrhosis.
In direct comparison, quantitative measurements by

TBRLiver showed similar findings as LBR. However, the
variance in the analyzed subgroups was lower for LBR,
resulting in a significant difference in the pairwise
comparison of F0, F1, F2, and F3, as well as a trend to-
wards significance between F3 and F4.
There is growing evidence that time-dependent mea-

surements of tumor tissue lead to more exact estima-
tions of metabolic rates of glucose than conventional
SUV quantification [62, 63]. While TBR displays the
ratio at the time point of acquisition, LBR is computed
as the ratio of SUVLiver and SUVBlood with a scan time
correction to a reference time (75 min), which ac-
counts for the time-dependent blood SUV, but pres-
ently does not try to account for a possible time

Fig. 4 CT- (left column) and fused PET/CT-images (middle column) of patients with normal liver parenchyma (a), advanced liver fibrosis (b), and
with liver cirrhosis (c) with the corresponding histopathology images demonstrating EVG staining (right column). CT images are displayed with
the same window (400) and center (40) level. The fused PET/CT-images are shown with an upper SUV threshold of 7.0 using the spectrum color
lookup table (SyngoVia) for PET. The scale on histological slices represents 500 μm
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dependence of the liver SUV in the considered time
window.
In most cells, the metabolism of 18F-FDG stops after

phosphorylation to 18F-FDG-6-phosphate, i.e., irreversible
kinetics. Therefore, the modeling of the 18F-FDG kinetics
usually contains three rate constants k1, k2, and k3,
whereas hepatocytes contain glucose-6-phosphatase cap-
able of dephosphorylating 18FDG-6-phosphate resulting in
reversible kinetics with non-negligible k4 [23]. Kinetics of
18F-FDG in liver parenchyma is mainly determined by k1
and k2, with a minor impact of k3 and k4 in short-term
studies lasting about 60 to 90 min post-FDG injection [31,
64]. In line with the glucose kinetics, SUVLiver in normal
liver parenchyma varies little between 60 and 120 min
post-injection [65, 66], while the blood activity slowly de-
creases with time in a hyperbolic manner, i.e., proportional
to 1/T^0.313) [20].
However, one must note that the kinetics of fibrotic/cir-

rhotic tissue is not yet fully understood; a dynamic acquisi-
tion at different time points could reveal the actual time
dependence of FDG uptake in fibrotic liver parenchyma.
Due to the high methodological effort, such an analysis is
reserved for a prospective study. In our retrospective study
using clinical routine data, PET measurements were only
available from static PET scans. With the scan time correc-
tion used here, significant disadvantages of conventional
SUV quantification, such as cross-calibration errors and
time dependence of the FDG distribution, are partially
overcome.
Our study has some further limitations. First, the num-

ber of patients included in this study was limited, espe-
cially for the different small subgroups of liver fibrosis and
cirrhosis. We used distribution-free statistical tests to ac-
count for this drawback. Second, the accepted time span
of 6 months between 18F-FDG PET/CT and liver biopsy
may be considered rather long. However, as liver fibrosis
advances rather slowly, the time span should be tolerable.
In prospective studies, a shorter time span would be ap-
preciated. Another limitation might be the sampling error
of the liver biopsy: histopathological samples were re-
ceived from distinct liver areas which might not represent
the overall hepatic status.

Conclusion
In conclusion, we were able to show different activity
levels of hepatic glucose metabolism during the process of
liver fibrosis and cirrhosis as demonstrated by 18F-FDG
uptake with PET/CT imaging. These findings highlight
the potential of noninvasive molecular imaging for esti-
mating progression and activity of liver fibrosis.
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