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Voxel-wise analysis of dynamic 18F-FET PET:
a novel approach for non-invasive glioma
characterisation
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Abstract

Background: Glioma grading with dynamic 18F-FET PET (0–40 min p.i.) is typically performed by analysing the
mean time-activity curve of the entire tumour or a suspicious area within a heterogeneous tumour. This work
aimed to ensure a reader-independent glioma characterisation and identification of aggressive sub-volumes by
performing a voxel-based analysis with diagnostically relevant kinetic and static 18F-FET PET parameters.
One hundred sixty-two patients with a newly diagnosed glioma classified according to histologic and molecular
genetic properties were evaluated. The biological tumour volume (BTV) was segmented in static 20–40 min p.i. 18F-FET
PET images using the established threshold of 1.6 × background activity. For each enclosed voxel, the time-to-peak
(TTP), the late slope (Slope15–40), and the tumour-to-background ratios (TBR5–15, TBR20–40) obtained from 5 to 15 min p.i.
and 20 to 40 min p.i. images were determined. The percentage portion of these values within the BTV was evaluated
with percentage volume fractions (PVFs) and cumulated percentage volume histograms (PVHs). The ability
to differentiate histologic and molecular genetic classes was assessed and compared to volume-of-interest (VOI)-based
parameters.

Results: Aggressive WHO grades III and IV and IDH-wildtype gliomas were dominated by a high proportion of voxels
with an early peak, negative slope, and high TBR, whereby the PVHs with TTP < 20 min p.i., Slope15–40 < 0 SUV/h, and
TBR5–15 and TBR20–40 > 2 yielded the most significant differences between glioma grades. We found significant differences
of the parameters between WHO grades and IDH mutation status, where the effect size was predominantly higher for
voxel-based PVHs compared to the corresponding VOI-based parameters. A low overlap of BTV sub-volumes defined by
TTP < 20 min p.i. and negative Slope15–40 with TBR5–15 > 2- and TBR20–40 > 2-defined hotspots was observed.

Conclusions: The presented approach applying voxel-wise analysis of dynamic 18F-FET PET enables an enhanced
characterisation of gliomas and might potentially provide a fast identification of aggressive sub-volumes within the BTV.
Parametric 3D 18F-FET PET information as investigated in this study has the potential to guide individual therapy
instrumentation and may be included in future biopsy studies.
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Background
Structural imaging with T1-weighted magnetic resonance
imaging (MRI) [1], which is the gold standard in clinical
glioma assessment, is restricted to the interpretation of
properties like tumour contour, localisation, and enhance-
ment pattern [1]. Besides, several functional MRI tech-
niques have shown relevance for prediction of malignant
transformation, involving, e.g. perfusion-weighted imaging
(PWI) yielding information on relative cerebral blood vol-
ume and flow (rCBV, rCBF) [2–4]. In contrast, positron
emission tomography (PET) with amino acids aims to dir-
ectly image an elevated amino acid metabolism of rapidly
proliferating tumour cells [5–7]. According to the report
on response assessment in neuro-oncology (RANO), dy-
namic O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) PET has
shown its usefulness in diagnosis, in prognosis of tumour
progression, and in assessment of treatment response [8].
The current standard procedure for retrieving infor-

mation from dynamic 18F-FET PET consists of evaluat-
ing parameters such as the tumour-to-background ratio
(TBR) at a certain time point, the late slope, the time-ac-
tivity curve (TAC) pattern, and the time-to-peak (TTP)
[9–16]. In particular, the TTP and the TAC pattern have
proven to be suitable for identification of tumour recur-
rence or progression [12, 13, 17], and for glioma grading
[14, 15, 18]. Pharmacokinetic modelling of 18F-FET up-
take has also been considered. However, to our know-
ledge, its clinical relevance could not be shown yet, and
the requirement of (metabolite-corrected) plasma-in-
put data impairs the clinical applicability [19, 20].
While a slowly increasing TAC is characteristic of
low-grade gliomas, the TAC of high-grade gliomas
tends to exhibit a short TTP and decreasing TAC
[17, 21]. Those parameters are most frequently de-
rived from a mean volume-of-interest (VOI)-TAC of
the entire tumour or from the hot-spot of the tumour
with a 90% isocontour [17, 22]. However, in case of
heterogeneous tumours, it may occur that the
hot-spot in summation images does not correspond
to the tumour fraction defined as most suspicious re-
garding tumour aggressiveness according to TTP and
TAC pattern. This may potentially lead to an under-
estimation of malignancy and might impair treatment
planning. Recent approaches in current research aim-
ing to improve the assessment of tumour characteristics
include, e.g. a slice-by-slice TAC analysis or the extraction of
texture parameters from static 18F-FET PET images [23, 24].
The goal of this study was to investigate the

intra-tumoural distribution of the abovementioned
diagnostically relevant kinetic and static parameters
derived from dynamic 18F-FET PET data on a voxel
basis. A comparison with VOI-based methods, as cur-
rently utilised for non-invasive glioma characterisation
in clinical routine, is provided.

Methods
Patients
For this retrospective study we included 162 18F-FET
PET positive patients with a newly diagnosed, untreated
glioma who had undergone a dynamic 40 min 18F-FET
PET scan prior to diagnosis according to either biopsy
or resection. Both stereotactic biopsy and tumour resec-
tion were performed using navigation software (Brainlab
iPlan version 3.0, Brainlab, Feldkirchen, Germany). The
choice of surgical procedure was based on tumour loca-
tion, patient age, and performance status as well as pa-
tient preference; all treatment decisions have been
approved by an interdisciplinary tumour board. Neuro-
pathological diagnosis and grading have been performed
by at least two neuropathologists as part of the clinical
routine as described previously [18, 25]. Besides hist-
ology, mutation of IDH1/2 gene and, in case of IDH1
mutation, co-deletion of chromosomal material on 1p/
19q were analysed in accordance with the recently re-
vised version of the WHO grading system for central
nervous tumours [26]. The study was approved by the
local ethical review board and all patients gave written
informed consent (IRB 606-16).

Imaging
Dynamic 18F-FET PET scans were acquired on an ECAT
EXACT HR+ scanner (Siemens Healthineers, Erlangen,
Germany) after intravenous bolus injection of 176 ±
13 MBq 18F-FET, according to the protocol described in
[9, 11]. For patient comfort and minimization of motion
during the scan, patients were carefully positioned and
fixed. Dynamic 40-min emission data were recorded in 3D
mode with 16 frames (7 × 10 s, 3 × 30 s, 1 × 2 min, 3 ×
5 min, and 2 × 10 min). Standard corrections for random
and scattered coincidences, dead time, decay, and attenu-
ation were performed. Attenuation correction was based
on transmission scans measured with three rotating 68Ge
line sources. Data were reconstructed with filtered
back-projection and a 4.9-mm Hann filter. Matrix size
was 128 × 128 × 63, and voxel size 2.03 × 2.03 × 2.43 mm3.
All dynamic PET scans were checked frame-by-frame for
head movement. Motion correction was performed on af-
fected time frames within PMOD Fusion tool (v3.5,
PMOD Technologies, Zurich, Switzerland).

Delineation of tumour volume
Biological tumour volume (BTV) was defined by a
TBR20–40 above 1.6 in static 20–40 min p.i. summation
images [15, 27]. Background (BG) values were derived
from a crescent-shaped volume of interest (VOI) as de-
scribed previously [28]. VOIs were defined within the
PMOD View tool (version 3.5, PMOD Technologies,
Zurich, Switzerland). Only tumour volumes consisting
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of more than 18 voxels were included, approximating
the volumetric PET image resolution.

Extraction of ‘percentage volume fractions’ and
‘percentage volume histograms’
Voxel-wise analysis was performed with an in-house de-
veloped software (C++ with integration of the ROOT
data analysis framework, version 6.09/01, Cern,
Switzerland; and ITK segmentation and registration tool-
kit, version 4.11, National Library of Medicine). For each
voxel within the BTV, the following kinetic and static pa-
rameters were determined: the TTP, the late slope
(Slope15–40, 15–40 min p.i.), and the tumour-to-back-
ground ratios TBR5–15 and TBR20–40 in early 5–15 min
p.i. and late 20–40 min p.i. summation images, with the
BG signal derived from the respective time frame. The
Slope15–40 was estimated by linear fitting of the last three
time points, and the TTP was estimated as the time cor-
responding to the maximal TAC value starting from
2.7 min p.i. to avoid influence from early blood signal.
Within the BTV, the sub-volume fractions consisting of
voxels with a specific parameter value were determined
and stored in histograms. For this, the histograms were
plotted with the binned parameter values on the x-axis
(histogram bin sizes: time frames of dynamic PET images
for TTP, 0.6 SUV/h for Slope15–40, and 0.25 for TBR) and
the percentage fractions of the total BTV on the y-axis
(percentage volume fractions, PVFs). Cumulated percent-
age volume histograms (PVHs) were obtained by cumu-
lating these PVF histograms up to the specific bin, to
improve the robustness of parameter effect quantification
[29, 30]. For example PVFTTP15–20 corresponds to the
percentage portion of voxels within the BTV with peak
value in time frame 14 (15–20 min p.i.), and PVHTTP < 20

to the cumulated percentage portion of voxels with TTP
< 20 min p.i.. In order to exemplarily illustrate the influ-
ence of noise in dynamic PET data onto the estimation of
parametric TTP and Slope15–40 images, a simple method
for noise reduction, a spatial Gaussian filter with 10 mm
full width half maximum (FWHM), was applied to the
dynamic PET data prior to the estimation and analysis of
alternative TTP and Slope15–40 images.

Extraction of VOI-based parameters
For comparison, the following parameters were assessed:
TBR5–15,mean and TBR20–40,mean from a mean VOI-TAC
(TBR20–40 > 1.6) and the maximal TBR5–15,max and
TBR20–40,max. The VOI for dynamic analysis with TTP
and late Slope15–40 was obtained with an isocontour set
to 90% of maximum uptake in 10–30 min p.i. summa-
tion images, yielding a mean TAC characterising the
tumour hot-spot [17, 22].

Statistical analysis
Results are presented as mean value and standard devi-
ation. Statistical analysis was performed with IBM SPSS
Statistics (version 24, IBM Corp., Armonk, NY, USA).
The threshold for sub-volume fractions defined in the
PVH of each derived parameter was optimised by evalu-
ating the overall group differences using the Kruskal-
Wallis H test. Differences between three groups (mo-
lecular genetic sub-groups or WHO grades) were
assessed with the Kruskal-Wallis H test (effect size, r
= √(H2/(N − 1), where H is the test statistic and N the
sample size)). This was followed by Dunn-Bonferroni
post-hoc analysis for the extraction of significant differ-
ences between two groups (effect size, r = |Z|/√N, where
Z is the Z score and N the sample size). Receiver-operat-
ing characteristics (ROC) analysis was performed in
order to determine the cut-off values for distinguishing
IDH-wt from IDH-mut gliomas and WHO grade III/ IV
from WHO grade II gliomas. For each test, the threshold
(T) yielding the highest product of sensitivity (Se) and
specificity (Sp) was chosen as optimal cut-off value.
Additionally, H test and post hoc analysis were per-
formed for sub-groups separated according to both mo-
lecular genetic and histologic features. Differences
between WHO grades II and III of IDH-mut codel gli-
omas (i.e. no WHO grade IV) were assessed with Mann-
Whitney U test.
The similarity between two sub-volume fractions was

quantified with the Sørensen-Dice coefficient, i.e. two
times the intersection volume divided by the sum of both
volumes (2 × (volume1 ∩ volume2)/(volume1 + volume2)).
Statistical significance was defined as two-tailed p value
below 0.05.

Results
Patients
One hundred twelve patients had a biopsy, and 40 pa-
tients underwent a microsurgical tumour resection. In
sum, 39 IDH1/2-mutant and 1p/19q-codeleted oligo-
dendrogliomas (IDH-mut codel), 39 IDH1/2-mutant as-
trocytomas (IDH-mut non-codel), 39 IDH1/2-wildtype
astrocytomas (IDH-wt), 6 IDH1/2-mutant glioblastomas
(GBM IDH-mut), and 39 IDH1/2-wildtype glioblastomas
(GBM IDH-wt) were included. Histologic evaluation re-
vealed 55 WHO grade II gliomas, 62 WHO grade III gli-
omas, and 45 WHO grade IV gliomas. The patient
characteristics are given in Table 1.

Statistical analysis
The VOI-based parameters and voxel-based PVHs are
presented with respect to WHO grade differentiation
(Table 2), molecular genetic differentiation (Table 3),
and a combination of both (Table 4). All tables show
mean and standard deviation of the parameters.
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Significance of differences in parameters was predomin-
antly higher for PVH data compared to VOI-based pa-
rameters especially in case of molecular genetic
differentiation and for differences between WHO grade
II and WHO grade III/ IV gliomas. In the following, the
respective results for (1) VOI-based and (2) voxel-based
analyses are presented. Mean values and results from
Kruskal-Wallis H test are presented in Tables 2, 3, and 4
with post hoc results coded with upperscript signs (a

complete list of results is given in Additional file 1: Table
S1, results from ROC analysis are illustrated in Add-
itional file 1: Table S2).

VOI-based parameters
Figure 1 shows the mean TACs of tumour hotspots
(90% isocontour) which were used for dynamic analysis
separated according to molecular genetic and histologic
features. The mean and standard deviation of the param-
eters are given in the upper parts of Tables 2, 3, and 4.
All considered VOI-based parameters yielded significant

differences (p < 0.001) between WHO grades (Table 2),
with the highest effect size for TBR5–15,mean (r = 0.53).
TBR20–40,max was not able to differentiate between WHO
grade II and III gliomas (P = 0.053, r = 0.19), and the effect
size for TBR20–40,mean was low (P = 0.023, r = 0.21). The
highest effect size for distinguishing WHO grade III from
II was found for the TTP (P < 0.001, r = 0.30, AUC = 0.70,
for T = 21 min p.i.: Se = 69%, Sp = 67%), and TBR5–15,mean

(P < 0.001, r = 0.37, AUC = 0.76, for T = 1.9: Se = 77%, Sp
= 67%). The differences between WHO grades II and IV
were strongly significant for all parameters (P < 0.001)
with highest effect size for TBR5–15,max (r = 0.49, AUC =
0.86, for T = 3.4: Se = 91%, Sp = 78%) and TBR5–15,mean (r
= 0.51, AUC= 0.87 for T = 2.1: Se = 84%, Sp = 80%). TTP,
Slope15–40, and TBR5–15,mean were not able to differentiate
between WHO grades III and IV (P = 0.957, r = 0.08; P =
0.554, r = 0.10; P = 0.091, r = 0.17), and the most signifi-
cant differences were found for TBR20–40,max (P = 0.002, r
= 0.27, AUC = 0.69, for T = 3.0: Se = 80%, Sp = 56%).

Table 1 Patient characteristics

Patients 162

Gender (f; m) 67; 95

Age (year) 49 ± 15

Procedure for diagnosis

Biopsy 122

Surgery 40

WHO grade

II 55

III 62

IV 45

Molecular genetic and histologic classification

IDH-mut, non-codel (WHO II; III) 39 (19; 20)

IDH-mut, codel (WHO II; III) 39 (24; 15)

IDH-wt (WHO II; III) 39 (12; 27)

GBM IDH-mut 6

GBM IDH-wt 39

Table 2 TTP (units: min p.i.), Slope15–40 (units: SUV/h), TBR (units: 1), and BTV20–40 (units: mL) from VOI-based analysis and voxel-wise
PVH (units: %) separated according to histologic grading

Tumour VOI, post-filtering Parameter WHO II (55) WHO III (62) WHO IV (45) H test P; r Post hoc

90% isocontour TTP 25 ± 8 19 ± 9 17 ± 8 < 0.001; 0.39 *°

Slope15–40 − 0.0 ± 0.9 − 0.9 ± 1.6 − 1.0 ± 1.2 < 0.001; 0.36 *°

TBR20–40 > 1.6 TBR5–15,max 2.9 ± 1.1 3.9 ± 1.6 4.6 ± 1.2 < 0.001; 0.50 *°#

TBR5–15,mean 1.8 ± 0.3 2.2 ± 0.5 2.4 ± 0.4 < 0.001; 0.53 *°

TBR20–40,max 2.8 ± 0.9 3.4 ± 1.3 4.0 ± 1.0 < 0.001; 0.43 °#

TBR20–40,mean 1.9 ± 0.2 2.1 ± 0.4 2.2 ± 0.3 < 0.001; 0.43 *°#

BTV20–40 15 ± 16 26 ± 30 36 ± 25 < 0.001; 0.38 °#

PVHTBR,5–15 > 2 25 ± 24 53 ± 27 64 ± 18 < 0.001; 0.55 *°

PVHTBR,20–40 > 2 26 ± 21 37 ± 24 51 ± 17 < 0.001; 0.43 *°#

PVHTTP > 30 50 ± 23 32 ± 23 25 ± 15 < 0.001; 0.43 *°

PVHTTP < 15 11 ± 14 26 ± 25 31 ± 15 < 0.001; 0.47 *°

PVHTTP < 20 23 ± 20 45 ± 29 52 ± 18 < 0.001; 0.49 *°

PVHSlope < 0 25 ± 19 46 ± 27 50 ± 17 < 0.001; 0.47 *°

TBR20–40 > 1.6, 10 mm Gauss PVHGaussTTP > 30 67 ± 28 41 ± 34 32 ± 23 < 0.001; 0.44 *°

PVHGauss TTP < 20 13 ± 20 39 ± 34 44 ± 24 < 0.001; 0.51 *°

PVHGauss,Slope < 0 16 ± 23 45 ± 36 51 ± 26 < 0.001; 0.50 *°

Post hoc P < 0.05: WHO grade * II vs. III, ° II vs. IV, # III vs. IV
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Molecular genetic differentiation (Table 3) was
strongly significant (P < 0.001) for TTP (r = 0.45),
Slope15–40 (r = 0.44), TBR5–15,max (r = 0.37), and TBR5–

15,mean (r = 0.45). Differences in TBR20–40,max and in
TBR20–40,mean were not significant (P = 0.056, r = 0.19; P
= 0.075, r = 0.18). None of the parameters differentiated
IDH-mut non-codel and codel gliomas (P > 0.846, r <
0.08). Differences between IDH-mut non-codel or IDH--
mut codel and IDH-wt gliomas exhibited the highest ef-
fect size (with P < 0.001) for Slope15–40 (r = 0.38, AUC =
0.75, for T = − 0.4 SUV/h: Se = 74%, Sp = 69%; r = 0.34,
AUC = 0.75, for T = − 0.4 SUV/h: Se = 73%. Sp = 74%)
and TBR5–15,mean (r = 0.39, AUC = 0.77, for T = 2.1: Se =
78%, Sp = 71%; r = 0.35, AUC = 0.76, for T = 2.1: Se =
78%, Sp = 79%).

Percentage volume fractions and percentage volume
histograms
Data from voxel-wise analysis of TTP, Slope15–40, and
TBR5–15 are presented in Figs. 2, 3, and 4. The upper
rows depict PVFs, and the middle rows the correspond-
ing cumulated PVFs as PVHs. The red lines represent
the PVH cut-offs optimised to yield most significant dif-
ferences between all glioma entities (minimal P value
with Kruskal-Wallis H test). This resulted in the defin-
ition of volume fractions considered to be suspicious of
aggressive high-grade characteristics: voxels with TTP
below 20 min p.i. (PVHTTP < 20), negative Slope15–40
(PVHSlope < 0), TBR5–15 above 2 (PVHTBR,5–15 > 2), and
TBR20–40 above 2 (PVHTBR,20–40 > 2) (Tables 2, 3, and 4
and lower rows of Figs. 2, 3, and 4). Additionally, the

PVH values for TTP above 30 min p.i. and below
15 min p.i. were included (PVHTTP > 30, PVHTTP < 15).
All PVH-based parameters showed strongly significant

differences between the WHO grades (P < 0.001), with the
highest effect size for PVHTBR,5–15 > 2 (r = 0.55) (Table 2).
The differentiation of WHO grades II and III and WHO
grades II and IV remained strongly significant (P < 0.001)
for all PVH-based parameters except for PVHTBR,20–40 > 2

(WHO grade II vs. III: P = 0.022, r = 0.21). Effect size was
again the highest for PVHTBR,5–15 > 2 (distinguish WHO
grade III from II: r = 0.40, AUC = 0.77, for T = 39%: Se =
73%, Sp = 75%; WHO grade IV from II: r = 0.53, AUC =
0.89, for T = 39%: Se = 91%, Sp = 75%). In contrast, differ-
entiation of WHO grade IV from III was only significant
for PVHTBR,20–40 > 2 (P = 0.007, r = 0.24, AUC = 0.66, for T
= 44%, Se = 69%, Sp = 61%).
All PVH data except PVHTBR,20–40 > 2 (P = 0.072, r =

0.18) yielded strongly significant (P < 0.001) differences
between molecular genetic groups and remained
strongly significant in post hoc analysis of differences be-
tween IDH-mut (non-codel; codel) and IDH-wt gliomas.
The highest effect size in post hoc analysis was found
for PVHTTP < 20 (r = 0.47, AUC = 0.82, for T = 38%: Se =
77%, Sp = 76%; r = 0.47, AUC = 0.86, for T = 41%: Se =
74%, Sp = 90%) and PVHSlope < 0 (r = 0.47, AUC = 0.81,
for T = 31%: Se = 86%, Sp = 71%; r = 0.48, AUC = 0.86,
for T = 40%: Se = 77%, Sp = 90%).
For a more precise interpretation of the results, glioma

types were also separated according to both molecular
genetic and histologic features (Table 4). As expected,
the mean fraction with early peak (PVHTTP < 20) and

Table 3 Data shown as in Table 2, separated according to molecular genetic grading

Tumour VOI, post-filtering Parameter IDH-mut non-codel (45) IDH-mut codel (39) IDH-wt (78) H-test P; r Post hoc

90% isocontour TTP 25 ± 8 23 ± 9 16 ± 8 < 0.001; 0.45 Δx

Slope15–40 − 0.2 ± 1.5 − 0.2 ± 1.0 − 1.1 ± 1.3 < 0.001; 0.44 Δx

TBR20–40 > 1.6 TBR5–15,max 3.3 ± 1.5 3.5 ± 1.7 4.2 ± 1.3 < 0.001; 0.37 Δx

TBR5–15,mean 2.0 ± 0.5 2.0 ± 0.5 2.4 ± 0.4 < 0,001; 0.45 Δx

TBR20–40,max 3.2 ± 1.2 3.2 ± 1.4 3.5 ± 1.1 0.060; 0.19

TBR20–40,mean 2.0 ± 0.3 2.1 ± 0.4 2.1 ± 0.3 0.074; 0.18

BTV20–40 21 ± 22 28 ± 32 26 ± 24 0.347; 0.11

PVHTBR,5–15 > 2 32 ± 27 32 ± 26 62 ± 23 < 0.001; 0.52 Δx

PVHTBR,20–40 > 2 33 ± 23 33 ± 25 41 ± 22 0.071; 0.18

PVHTTP > 30 47 ± 21 50 ± 18 23 ± 20 < 0.001; 0.57 Δx

PVHTTP < 15 12 ± 13 10 ± 9 34 ± 22 < 0.001; 0.56 Δx

PVHTTP < 20 26 ± 20 24 ± 14 56 ± 25 < 0.001; 0.58 Δx

PVHSlope < 0 27 ± 20 25 ± 14 55 ± 23 < 0.001; 0.58 Δx

TBR20–40 > 1.6, 10 mm Gauss PVHGaussTTP > 30 62 ± 30 67 ± 24 29 ± 28 < 0.001; 0.55 Δx

PVHGauss TTP < 20 17 ± 22 12 ± 13 50 ± 31 < 0.001; 0.56 Δx

PVHGauss,Slope < 0 21 ± 26 15 ± 16 56 ± 32 < 0.001; 0.57 Δx

Post hoc P < 0.05: +IDH-mut non-codel vs. IDH-mut codel, ΔIDH-mut non-codel vs. IDH-wt, xIDH-mut codel vs. IDH-wt
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negative slope (PVHSlope < 0) was slightly increased (not
significant) in WHO grade IV compared to that in
WHO grade III for IDH-mut non-codel gliomas. How-
ever, in the case of IDH-wt gliomas, the fraction of vox-
els with an early peak (PVHTTP < 20: P = 0.035, r = 0.29)

and negative slope (PVHSlope < 0: P = 0.010, r = 0.33) was
significantly higher in WHO grade III compared to that
in WHO grade IV gliomas. Simultaneously, PVHTBR,20–

40 > 2 was significantly higher in IDH-wt GBMs (P =
0.001, r = 0.42).
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Fig. 2 The upper row shows the average percentage volume fractions of the TTP (PVFTTP), i.e. the percentage portion of voxels with TTP in the
respective time frame. In the middle row, the corresponding cumulated histograms (PVHTTP) are presented, i.e. the percentage portion of voxels
with TTP below a certain value. The most significant differences between groups were found for PVHTTP < 20 (with the cut-off value TTP < 20 min
p.i. marked with red lines). The lower row depicts the boxplots of PVHTTP < 20. a IDH-mut non-codel. b IDH-mut codel. c IDH-wt

0 10 20 30
0

1

2

3

4

Time (min p.i.)

S
U

V
/S

U
V

B
G

,2
0−

40

 

 

10 20 30
0

1

2

3

4

Time (min p.i.)

S
U

V
/S

U
V

B
G

,2
0−

40

 

 

10 20 30
0

1

2

3

4

Time (min p.i.)

S
U

V
/S

U
V

B
G

,2
0−

40

 

 

WHO grade II

WHO grade III

WHO grade IV

BG

a b cIDH−mut non−codel IDH−mut codel IDH−wt

Fig. 1 Average over mean time-activity curves of all patients for tumour volumes delineated with a threshold of 90% times maximum activity:
a IDH-mut non-codel, b IDH-mut codel, and c IDH-wt

Vomacka et al. EJNMMI Research  (2018) 8:91 Page 7 of 13



The application of the exemplary Gaussian filter
(10 mm FWHM) yielded a comparable ability to differ-
entiate WHO grades and molecular genetic groups, as
reported in Tables 2, 3, and 4 and Additional file 1: Ta-
bles S1 and S2. However, a tendency of this spatial filter-
ing to reduce the fraction of voxels exhibiting an early
peak or negative slope was observed (Additional file 1:
Figure S1).

Spatial correlation of sub-volume fractions
The Sørensen-Dice coefficient, quantifying similarity of
the sub-volume fractions, was 0.72 between volumes
with TTP < 20 min p.i. and with negative Slope15–40, in-
dicating a high overlap of both properties. The
Sørensen-Dice coefficients of sub-volumes derived from
the static parameter TBR5–15 > 2 with sub-volumes de-
rived from kinetic parameters (TTP < 20 min p.i. or
negative Slope15–40) were 0.50 and 0.48. The corre-
sponding coefficients for the later TBR (TBR20–40 > 2)
sub-volume were 0.33 and 0.35.
Figure 5 shows the T1-weighted MRI images, TBR5–15

and TBR20–40 images, and parametric maps of TTP and

Slope15–40 for two typical WHO grade II gliomas (non--
codel and codel) and one IDH-wt WHO grade III glioma.
Additionally, an exemplary tumour with heterogeneous
pattern in parametric maps is displayed (classified by bi-
opsy as IDH-mut codel WHO grade II glioma), where the
maximum uptake in TBR images does not co-localise with
the hot-spot in early TTP and negative Slope15–40 images.

Discussion
In this study, we established an automated and reader-
independent method for voxel-wise 18F-FET PET glioma
analysis, which enables a fast identification of sub-vol-
umes consisting of voxels with aggressive high-grade
kinetics. By quantifying the intra-tumoural parameter
distribution with percentage volume histograms, we
found significant differences between WHO grades and
between molecular genetic groups. Both, association
with WHO grade and IDH mutation status, were higher
for PVH data compared to VOI-based parameters in
most cases. Interestingly, sub-group analyses showed
that in the special case of IDH-wt gliomas, the fraction
with early peak or negative slope was significantly higher
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in WHO grade III compared to WHO grade IV gliomas,
with simultaneously significantly higher PVHTBR,20–40 > 2

in WHO grade IV gliomas. Aggressive sub-volumes de-
fined by TTP < 20 min p.i. and negative Slope15–40
showed high overlap with each other, but a low overlap
with TBR5–15 > 2- and TBR20–40 > 2-defined hotspots, indi-
cating a possible complementarity of the investigated
kinetic and static parameters. The corresponding para-
metric images as presented in Fig. 5 may provide valu-
able information for a fast visual screening of glioma
tissue. In summary, this study demonstrates the rele-
vance and suitability of tumour heterogeneity assessment
on a voxel basis with static and kinetic 18F-FET PET pa-
rameters for a differentiated characterisation of gliomas,
although the clinical applicability of parametric 3D infor-
mation yet requires a comprehensive validation by utilis-
ing stereotactic biopsies.
In this context, an elaborate understanding of the

underlying processes of 18F-FET uptake is crucial and a
matter of current research [20, 31–35]. So far, various
studies suggest that regional information from static
18F-FET PET images and from MR-based morphological
and functional images is complementary, showing only

moderate overlap and low spatial correlation [36–39].
Still, tissue properties such as rCBV and rCBF might be
relevant for the delivery of 18F-FET, potentially influen-
cing 18F-FET uptake behaviour. rCBF was found to cor-
relate significantly with early slope (0–5 min p.i.) in
18F-FET PET and with TBR (20–40 min p.i.), however,
not with TAC patterns and late slope (10–50 min p.i.)
[40]. Recently, a negative correlation of rCBV and late
slope (10–30 min p.i.) and a positive correlation with
TBR (10–20 min p.i.) could be shown; however, only a
small fraction of the variance of early and late FET up-
take could be explained by rCBV [38]. Therefore, it was
concluded that rCBV and 18F-FET PET provide congru-
ent and complementary information on the underlying
processes. While late TBR may mainly reflect specific
trapping within tumour cells, the early TBR and the
TAC pattern may be influenced by rCBV and rCBF [38,
41]. Correlation of IDH mutation status with MRI pa-
rameters has among others shown that IDH-wt gliomas
tend to exhibit high rCBV values, which is a robust esti-
mate of tumour angiogenesis [32, 35]. In order to re-
trieve comprehensive information on the underlying
processes and their influence on 18F-FET uptake, further
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investigations may combine information from PWI and
pharmacokinetic modelling with dynamic 18F-FET PET
data, also considering blocking studies.
Various studies were published evaluating thresholding

techniques optimised for the reproduction of true object
boundaries in PET images, possibly taking into account dif-
ferent image characteristics [42–45]. The currently estab-
lished method for BTV definition was verified with at least
one biopsy per patient, which was utilised for an optimisa-
tion of sensitivity and specificity and resulted in the optimal
TBR cut-off of 1.6 [15, 27]. As shown previously in mice, a
threshold relying on background and maximal uptake within
the tumour is superior for reproduction of histologically
proven glioma boundaries [46]. Hence, future studies consid-
ering glioma segmentation in humans, possibly further

including information from the characteristic kinetics of the
different glioma types, are desirable.
The proposed voxel-wise analysis including TTP and

Slope15–40 maps and percentage volume histograms of
static and kinetic parameters has the potential to provide
encompassing information not only for planning of bi-
opsy, surgery, or radiation therapy but also for progno-
sis, follow-up, and prediction of tumour recurrence
based on improved 3D information regarding the local
aggressiveness of tumour tissue. In this context, this
study has two limitations which need to be addressed in
future studies. Firstly, this work would benefit from a
correlation analysis of histopathologically assessed
tumour heterogeneity and the tumour heterogeneity in-
dicated by the proposed parametric 3D maps. Secondly,

Fig. 5 Contrast-enhanced T1-weighted MRI images of four example patients, and the corresponding parametric images of the early and late TBR,
the TTP, and the negative and positive Slope15–40 for the voxels within the BTV (zoom factor 2; BTV marked with white contour; TTP and Slope5–
15 images estimated from dynamic PET data smoothed with a Gaussian with 10 mm FWHM). a Images of three example patients with parameter
distributions characteristic of one IDH-mut non-codel WHO grade II glioma, one IDH-mut codel WHO grade II glioma, and one IDH-wt WHO
grade III glioma. b One example patient (IDH-mut codel WHO grade II glioma) with a mixed pattern in parametric images, where maximum
uptake in TBR images does not co-localise with the hotspot with early TTP and negative Slope15–40
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voxel-TACs are prone to noise in dynamic PET data, es-
pecially for shorter time frames. In this study, sensitive
parameters TTP and Slope15–40 were derived directly
from single-voxel TACs without the application of TAC
smoothing or fitting in order to avoid the introduction
of bias, i.e. change in temporal pattern, from TAC pre-
processing, and allow for an easy adoption by other re-
search centres. An exemplary simple method for
per-frame noise suppression with a spatial Gaussian fil-
ter was included and showed that PVH data changed
while the ability to differentiate glioma types was pre-
served, which further underlines the need for stereotac-
tic biopsies. Although the incorporation of a kinetic
model which is suitable to describe 18F-FET pharmaco-
kinetics seems conceivable, provided that appropriate
blood input data are available, voxel-based fitting of
complex models might also be sensitive to noise [19].
The presented data indicate the direct applicability for

non-invasive glioma grading and prediction of molecular
genetic profile. This is important, since the WHO classi-
fication was updated [26], and stratification is now based
on molecular genetic information, i.e. IDH-wt gliomas
are considered as having the same prognosis as glioblast-
omas themselves. A direct application is the clinical as-
sessment of lesions suspected of glioma, in particular for
the selection of the subsequent clinical steps such as bi-
opsy, resection, or “watch and wait”, but also for risk-
stratification in non-contrast-enhancing gliomas (IDH--
mut vs. IDH-wt). The next steps may further include
multi-parametric 3D analysis, machine learning ap-
proaches, the evaluation of the influence of small scale
motion on voxel-wise analysis, and the assessment of the
robustness of alternative methods for the voxel-wise
characterisation of gliomas, such as pharmacokinetic
modelling or the inclusion of information from other
imaging modalities like perfusion-weighted imaging.

Conclusions
Voxel-wise assessment of static and kinetic parameters
and partitioning of the entire tumour according to
voxel-wise properties enables an improved characterisa-
tion of glioma tissue, compared to VOI-based parame-
ters. Moreover, the 3D information might enable a fast
visual screening supporting the identification of aggres-
sive sub-volumes, thus guiding individual therapy instru-
mentation. The correlation between histopathology and
the impact on prognosis and prediction of tumour re-
currence needs to be evaluated in future studies.

Additional file

Additional file 1: Table S1. P values end effect sizes r from post hoc
analysis for histologic and molecular genetic differentiation. Effect size r is
shown colour coded (white-yellow-red continuously scaled from minimal to

maximal r value). Table S2. Area under the curve (AUC) from ROC analysis
and the optimal thresholds (T) chosen for the highest product of sensitivity
(Se, units: %) and specificity (Sp, units: %). Thresholds are given in units of
TTP (units: min p.i.), Slope15–40 (units: SUV/h), TBR (units: 1), and BTV20–40
(units: mL) from VOI-based analysis, and voxel-wise PVH (units: %). AUC is
shown colour coded (white-yellow-red continuously scaled from minimal to
maximal AUC value). Figure S1. Exemplary voxel-wise TACs belonging to
the glioma examples shown in Fig. 5. a Voxel-TACs with application of a
Gaussian (10 mm FWHM) on dynamic PET data. b Original voxel-TACs
without pre-processing of the dynamic PET data. (DOCX 145 kb)
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