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Radiomics of the primary tumour as a tool
to improve 18F-FDG-PET sensitivity in
detecting nodal metastases in endometrial
cancer
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Abstract

Background: A radiomic approach was applied in 18F-FDG PET endometrial cancer, to investigate if imaging features
computed on the primary tumour could improve sensitivity in nodal metastases detection. One hundred fifteen women
with histologically proven endometrial cancer who underwent preoperative 18F-FDG PET/CT were retrospectively
considered. SUV, MTV, TLG, geometrical shape, histograms and texture features were computed inside tumour contours.
On a first group of 86 patients (DB1), univariate association with LN metastases was computed by Mann-Whitney test and
a neural network multivariate model was developed. Univariate and multivariate models were assessed with leave one
out on 20 training sessions and on a second group of 29 patients (DB2). A unified framework combining LN metastases
visual detection results and radiomic analysis was also assessed.

Results: Sensitivity and specificity of LN visual detection were 50% and 99% on DB1 and 33% and 95% on DB2,
respectively. A unique heterogeneity feature computed on the primary tumour (the zone percentage of the grey level
size zone matrix, GLSZM ZP) was able to predict LN metastases better than any other feature or multivariate model
(sensitivity and specificity of 75% and 81% on DB1 and of 89% and 80% on DB2). Tumours with LN metastases are in fact
generally characterized by a lower GLSZM ZP value, i.e. by the co-presence of high-uptake and low-uptake areas. The
combination of visual detection and GLSZM ZP values in a unified framework obtained sensitivity and specificity of 94%
and 67% on DB1 and of 89% and 75% on DB2, respectively.

Conclusions: The computation of imaging features on the primary tumour increases nodal staging detection sensitivity
in 18F-FDG PET and can be considered for a better patient stratification for treatment selection. Results need a
confirmation on larger cohort studies.
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Background
Endometrial cancer is the most common gynaecological
cancer in developed countries [1], with increasing inci-
dence as the global burden of obesity worsens [2]. Progno-
sis of this malignancy relies upon several factors as depth
of myometrium invasion, lympho-vascular space invasion

and lymph node (LN) involvement, being LNs the most
common site of malignancy extrauterine spread [3–5].
The surgical management for nodal stage is still con-

troversial. Two randomized trials and meta-analysis
demonstrated that pelvic lymphadenectomy had no im-
pact on survival for patients with early-stage endometrial
cancer [6–11]. To minimize treatment-related morbidity
and maintain the benefit of a surgical staging, the senti-
nel lymph node (SLN) concept has recently received an
increasing interest [12].
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18F-Fluorodeoxyglucose positron emission tomog-
raphy/computed tomography (18F-FDG PET/CT) has
been investigated as a non-invasive staging modality. In
a recent prospective multicentre study including 207 pa-
tients, it demonstrated a sensitivity of 0.65 (95% confi-
dence interval, 0.57–0.72) [13]. Small metastatic lymph
node lesions may indeed remain undetected because of
limited spatial resolution and associated partial volume
effects [14]. In addition, the introduction of SLN biopsy
ultrastaging, able to identify micrometastatic deposits,
increased false-negative PET/CT findings [15]. False
positive PET/CT findings in nodal detection are instead
less frequent and generally due to inflammatory states.
It has been shown in several malignancies that a proper

mining of quantitative FDG uptake distribution character-
istics inside tumours allows obtaining prognostic informa-
tion [16–20]. The aim of this study was to apply a radiomic
analysis of 18F-FDG distribution inside the primary uterine
lesion to help detecting suspicious nodal metastases, for a
more personalized patient care of endometrial cancer. The
radiomic analysis of gynaecologic primary tumour FDG
uptake to predict nodal metastases has been already pro-
posed in a cervical cancer study by Shen et al. [21].
However, in that study, a simple correlation between
radiomic-based prediction and PET visual nodal detection
was made. Conversely, in our study, histological analysis
was considered as gold standard.

Methods
Patient population and PET/CT protocol
In this monocentric retrospective study, two patient da-
tabases were considered: a first database of 86 patients
(DB1) used for radiomic model definition and prelimin-
ary leave one out (LOO) testing and a second database
of 29 patients (DB2) used for model testing. All DB1 and
DB2 women had a histologically proven endometrial
cancer and were treated at San Gerardo Hospital,
Monza, between January 2009 and January 2018. All
subjects underwent a 18F-FDG PET/CT scan (after sign-
ing an informed consent form), followed by surgical sta-
ging. Clinical and histological characteristics of patients
are reported in Table 1. Patients were injected with
3.7 MBq/kg of 18F-FDG; PET/CT scans were performed
according to the standard European Association of
Nuclear Medicine (EANM) protocol [22]. DB1 patients
were studied on two PET/CT scanners (33 on Discovery
ST and 43 on Discovery 600, GE Healthcare Milwaukee,
WI, USA), using the same acquisition/reconstruction
protocol: 3 min acquisition; reconstruction with ordered
subset expectation maximization (OSEM), 2 iterations,
16 subsets on a voxel grid on 2.73 × 2.73 × 3.27 mm3;
and post-filtering with a 5-mm filter in the transaxial
plane and with weights 1, 4 and 1 along the axial direc-
tion. Eight DB2 patients were studied on Discovery 600,

with the same acquisition/reconstruction protocol used in
DB1. Twenty-one DB2 patients were instead studied on a
third scanner (Discovery IQ, GE Healthcare Milwaukee,
WI, USA) with different parameters: 1.5 min acquisition;
reconstruction with OSEM, 6 iterations, 12 subsets with
Point Spread Function modelling, on the same voxel grid
of 2.73 × 2.73 × 3.27 mm3; and post-filtering with
a-6.4 mm filter in the transaxial plane and with weights 1,
4 and 1 along the axial direction. All patients underwent
surgical treatment including peritoneal cytology, total hys-
terectomy, bilateral salpingo-oophorectomy and surgical
nodal status assessment (lymphadenectomy ± sentinel
node biopsy). Nodal status at histology was considered as

Table 1 Characteristics of DB1 and DB2 patient population

DB1 (n = 86) DB2 (n = 29)

Age (mean, range) (66, 27–86) (63, 30–80)

Grade

G1 12 4

G2 38 11

G3 36 14

Histology

Endometrioid 69 23

Clear cell/serous/mixed 12 5

Malignant mixed mesodermal tumour 5 1

Myometrial invasion

< 50% 49 10

> 50% 37 19

LN metastases (histology)

Yes 16 9

No 70 20

Staging FIGO

I 55 19

II 7 1

III 23 9

IV 7 0

Adjuvant treatment

Chemotherapy/RT 38 17

No 48 12

PET LN detection rate

TP 8 3

TN 69 19

FP 1 1

FN 8 6

De Bernardi et al. EJNMMI Research  (2018) 8:86 Page 2 of 9



the standard reference for nodal involvement. The stand-
ard PET diagnosis of lymph node involvement was based
on visual evidence of pathological tracer uptake at lymph
node sites identified on CT images [23].

Radiomic analysis of primary uterine lesion 18F-FDG
uptake
A radiomic model for the prediction of lymph node in-
volvement based on a quantitative analysis of the FDG up-
take inside the primary lesion was developed and assessed.
A scheme of the followed pipeline is shown in Fig. 1.

Tumour segmentation and feature extraction
Endometrial primary tumours were contoured with the it-
erative thresholding algorithm implemented in PET-VCAR
software (GE Healthcare Milwaukee, WI, USA). On each
volume of interest (VOI), 75 features were computed: SUV-
max, SUVmean, metabolic tumour volume (MTV) and
total lesion glycolysis (TLG); 6 geometrical shape features;
7 first-order features based on the grey level histogram; and
58 texture features. As to texture features, the freely avail-
able CGITA software [24] was used. Grey levels inside each
VOI were resampled in N = 64 quantization levels [25] and
nine texture matrices were computed in 3D with a 26-voxel
connectivity: grey level co-occurrence matrix (GLCM) and
normalized grey level co-occurrence matrix (NGLCM)
[26–28]; voxel alignment matrix (VAM) [29]; grey level size
zone matrix (GLSZM) [29, 30]; neighbourhood grey tone
difference matrix (NGTDM) [31]; texture spectrum (TS)
[32]; texture feature coding matrix (TFCM) and texture

feature coding co-occurrence matrix (TFCCM) [33];
and neighbourhood grey level dependence matrix
(NGLDM) [34]. Texture features were computed on
these texture matrices.

Univariate analysis
Univariate analysis for association between features and
LN metastases was performed by means of Wilcoxon
rank sum test and area under the ROC curve (AUC)
computation. For the feature most related with nodal in-
volvement (i.e. the one with the smallest P value), an op-
timal cut-off was obtained by means of ROC analysis
and Youden’s index maximization. The feature stratifica-
tion ability was assessed on DB1 with LOO (i.e. for each
excluded patient, the cut-off was defined on the
remaining 85 patients) and on DB2 with the optimal
cut-off defined on whole DB1.

Multivariate analysis: feature reduction and model selection
Correlation between features was investigated using
Spearman rank correlation since relationships are
non-linear and variables not normally distributed. The
pool of image features for multivariate analysis (i.e.
feature reduction) was obtained by first selecting the
feature with the smallest univariate P value and the
largest AUC and by subsequently adding features with
increasing P values (if ≤ 0.01) only if characterized by an
absolute value of the Spearman rank correlation < 0.85
vs already selected features.

Fig. 1 Complete pipeline of the performed radiomic analysis
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A neural network classifier with one hidden layer of neu-
rons was used. Model selection implies the choice of the
number of inputs (among the pool of features previously
selected) and the choice of the hidden layer neuron num-
ber. A stepwise backward feature selection scheme was
adopted, and for each group of input features, neural
networks with 2, 3, 4 and 5 hidden layer neurons were
assessed. Each model was evaluated by means of the mean
gmean index (square root of product between sensitivity
and specificity) on 20 LOO sessions on DB1. In each
session, the 85 patients were randomly divided in training
set (72 patients) and validation set (13 patients), paying
attention to maintain the positive lymph node percentage
found in DB1 (23%) in both sets. The positive case weight
during training was quadruplicated in order to compensate
for sample imbalance. Features given in input to neural
networks were all normalized in the range [− 1 1]; neural
network weights and biases were randomly initialized.

Multivariate analysis: model testing
The selected multivariate model (i.e. neural network
with the selected input features and the selected hidden
layer neuron number) was firstly assessed on DB1 by
means of 20 LOO sessions. Mean and standard deviation
of sensitivity and specificity were computed. The neural
network was then trained 200 times on whole DB1
(following the rules for subdivision in training and valid-
ation sets described in the ‘Multivariate analysis: feature
reduction and model selection’ section) and then tested
on DB2. The average of the 200 session outputs was
taken as model output.

Construction of an unified prognostic framework
The results of lymph node visual assessment and radiomic
analysis were combined together into a unified prognostic
framework for nodal involvement detection, represented
in Fig. 2. The unified framework was assessed following
the same scheme used for radiomic model testing.

Results
On the 86 DB1 patients, the prevalence of nodal metastases
was 23%; FDG PET/CT sensitivity and specificity in detect-
ing nodal metastases were respectively 50% and 99%. On
the 29 DB2 patients, the prevalence of nodal metastases
was 45%; FDG PET nodal metastases detection sensitivity
and specificity were respectively 33% and 95%. Results are
reported in Table 1.

Radiomic analysis of primary uterine lesion 18F-FDG
uptake
Univariate analysis
In the univariate analysis, the widely used SUVmax was
not significant (Fig. 3). Twelve features (TLG, two geo-
metrical features, two GLCM features, two NGTDM

features, two GLSZM features, one NGLCM feature,
one NGLDM feature) were instead able to differentiate
patients with LN metastases with a P value ≤ 0.01.
The lowest P value and the highest AUC were ob-
tained by GLSZM ZP (zone percentage of GLSZM).
GLSZM in each sample (n, s) contains the number of
3D zones of size s and grey level n in VOI. Features
computed on GLSZM provide a characterization of
regional tumour heterogeneity, i.e. describe variations
of intensity between regions and variations of homoge-
neous area size [35]. Zone percentage of GLSZM is
the ratio between the total number of zones and the
number of voxels in VOI. Tumours with nodal metas-
tases show a reduced GLSZM ZP if compared with
tumours without nodal metastases, with a P value of
2.8 × 10−4 and an AUC of 0.79.

Multivariate analysis: feature reduction and model selection
Feature reduction for multivariate analysis was applied
to the 12 features with P ≤ 0.01, and 3 further features
were selected: TLG, solidity (ratio between VOI volume
and VOI convex hull volume, smaller for VOIs present-
ing concavities or surface irregularities) and NGLCM
ENTROPY (Entropy of NGLCM). NGLCM is a N ×N
matrix, where N is the number of grey levels in VOI
after quantization (N = 64 in our implementation).
NGLCM (i, j) counts the relative frequency of grey levels
i and j at a one voxel distance. NGLCM features there-
fore characterize tumour local heterogeneity on the basis
of grey levels variations between neighbouring voxels.
Entropy in particular measures the randomness of grey
level distributions [28]. Spearman rank correlation vs
GLSZM ZP of TLG, solidity and NGLCM ENTROPY is
− 0.65, 0.83 and − 0.49, respectively. In Fig. 3, the distri-
bution of the four selected features in DB1 patients with
and without LN metastases is displayed, together with
corresponding univariate analysis P values and AUC
values. For GLSZM ZP, the optimal cut-off defined on
DB1 (0.2755) is also represented. As to model selection,
the best results were obtained with a 13 parameter
neural network with three hidden layer neurons and 2
inputs (GLSZM ZP and SOLIDITY).
In Fig. 4, two examples of endometrium tumours (the

left one with LN metastases, the right one without LN
metastases) are represented, together with the relevant
feature values and SUV max values. GLSZM ZP practic-
ally quantifies the number of uniform uptake regions
inside the lesion after 64 level quantization, i.e. after the
subdivision of the whole range of lesion uptake values
into 64 equally spaced intervals. Lesions with lower
GLSZM ZP, like the left one in Fig. 4, are the ones char-
acterized by a wider range of uptake values before
quantization (e.g. by the co-presence of very high-uptake
voxels and very low-uptake regions, like necrotic areas)
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so that, after quantization, the number of uniform areas
inside the lesion results small. Conversely, lesions with
higher GLSZM ZP, like the right one in Fig. 4, are those
characterized by a more uniform uptake and so by a nar-
rower uptake value range, resulting in a higher number
of uniform areas after quantization.

Radiomic model testing
Results of univariate and multivariate model testing on
DB1 (LOO) and DB2 are shown in Table 2, together
with the results of the nodal status visual assessment

and the results of the unified prognostic framework
combining nodal status visual assessments and primary
tumour radiomic analysis (described in Fig. 2).
In Fig. 5, results obtained on all DB1 (left panel) and

DB2 patients (right panel) are shown.
The analysis of Fig. 5 and Table 2 shows that LN visual

detection and primary tumour radiomic analysis are
complementary. In particular, there are patients with
negative LN at visual detection which have very low
GLSZM ZP values and so are classified as positive by
the radiomic analysis. The performance of visual analysis

Fig. 2 Unified prognostic framework combining lymph node visual assessment and radiomic primary lesion analysis

Fig. 3 Boxplot representation of the four features selected after feature reduction to classify patients with and without LN metastases. P values of
univariate test and AUC values are reported. SUVmax distribution is added for completeness

De Bernardi et al. EJNMMI Research  (2018) 8:86 Page 5 of 9



is worse on DB2 than on DB1, while radiomic analysis
(trained on DB1) performs better on DB2. This could be
explained by the increased incidence of micrometastases
in DB2 (24% vs 13% in DB1). The combination of LN
visual detection and radiomic analysis increases sensitiv-
ity compared to LN visual detection alone; however,
since patients classified as LN positives by one of the
two approaches are globally classified as positive, false
positive findings augment, thus reducing specificity. The
neural network multivariate model performs equally
(on DB2) or even worse (on DB1) than the univariate
model relying on GLSZM ZP only.

Discussion
American College of Radiology Appropriateness Cri-
teria suggest 18F-FDG PET/CT as the best technique
for endometrial cancer nodal staging (score = 9), in par-
ticular for high-risk histologies. However, PET spatial
resolution limits make visually detectable only LN

metastatic deposits larger than 5 mm, resulting in FN
findings. The PET/CT FN rate has recently further in-
creased, due to sentinel node biopsy and ultrastaging
improvement, able to identify micrometastases (<
2 mm) and isolated tumour cells, not detectable at
PET/CT scans [15]. The aim of this study was therefore
to assess if a radiomic approach on the primary uterine
lesion could improve 18F-FDG PET sensitivity for nodal
metastases. Standard imaging features like SUV, MTV
and TLG were taken into account, together with
histogram-based features, texture features and geomet-
rical shape features. Data acquired and reconstructed
on three different scanners were considered, with the
specific aim of finding a nodal involvement predicting
model with a certain robustness degree. It is worth no-
ticing that the reconstruction voxel size was maintained
identical in the three scanners, since it is known to be
the factor most influencing texture feature absolute and
prognostic values.

Fig. 4 Example of endometrial tumour with LN metastases (left panel) and endometrial tumour without LN metastases (right panel). Feature
values computed on the tumours are displayed in the central table

Table 2 Results of univariate and multivariate model testing on DB1 (LOO) and DB2, together with results of nodal status visual
assessment and unified prognostic framework

DB1-LOO (#86) LN visual
detection

Univariate model
(GLSZM ZP)

LN visual detection
+ univariate model

Multivariate model
(GLSZM ZP + Solidity)

LN visual detection
+ multivariate model

Sensitivity 50% 75% 94% 67% ± 8% 86% ± 6%

Specificity 99% 81% 67% 68% ± 3% 66% ± 3%

DB2 (#29) LN visual
detection

Univariate model
(GLSZM ZP)

LN visual detection
+ univariate model

Multivariate model
(GLSZM ZP + Solidity)

LN visual detection
+ multivariate model

Sensitivity 33% 89% 89% 89% 89%

Specificity 95% 80% 75% 80% 75%
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SUVmax, the most widely used PET feature, considered
as an important indicator reflecting tumour aggressiveness,
such as myometrial invasion or tumour grade, was not
significantly correlated to lymph node status according to
previous studies [36, 37]. Tumours with LN metastases
were conversely generally characterized by higher MTV
and higher TLG, as already observed in our previous report
[23], and even more by higher heterogeneity and irregular
borders, thus confirming the poorer prognosis of tumours
presenting these characteristics, as already observed in PET
radiomic literature.
An univariate prediction model relying on a unique het-

erogeneity feature (GLSZM ZP) and a neural network
multivariate model considering GLSZM ZP and a
geometrical shape feature (SOLIDITY) were defined on a
database of 86 patients (DB1) and successively assessed on
DB1 with a LOO approach and on a second independent
database of 29 patients (DB2). On DB1, where sensitivity
and specificity of LN visual detection were 50% and 99%,
the univariate model obtained a sensitivity of 75% and a
specificity of 81%, while the multivariate model a sensitiv-
ity of 67% ± 8% and a specificity of 68% ± 3% on 20 LOO
sessions. On DB2, where sensitivity and specificity of LN
visual detection were instead 33% and 95%, univariate and
multivariate models performed identically, achieving a
sensitivity of 89% and a specificity of 80%.
Our results show that, for nodal staging, GLSZM ZP

alone performs better than any other feature or multi-
variate model. GLSZM ZP is a regional texture feature

whose ability in differentiating patients with different
prognosis has been already observed in various tumours
[38]. Tumours characterized by the co-presence of
high-uptake and low-uptake areas (and so by heteroge-
neous content) have a lower GLSZM ZP value and a
poorer prognosis. In DB1, GLSZM ZP correlates with
LN metastases presence with P = 2.8 × 10−4. GLSZM ZP
has already been shown to be reproducible in test-retest
studies [35], robust vs. segmentation algorithms, recon-
struction parameters and algorithms [17, 19, 39]. The
robustness of GLSZM ZP is here confirmed. Models were
indeed defined on DB1 patients, which were studied on
Discovery 600 and Discovery STE GE scanners, and vali-
dated on DB2 patients, which were instead for the most
part (21/29) studied on a Discovery IQ GE scanner with a
different acquisition/reconstruction protocol. In particular,
Discovery 600 and Discovery ST patients were recon-
structed without PSF modelling, while Discovery IQ
patients with PSF modelling, which is known to influence
image texture appearance. GLSZM ZP appears therefore
particularly robust vs this aspect. The independency of
GLSZM ZP from the scanner (together with that of
Solidity, MTV, TLG, SUVmax and SUVmean) was also
a-posteriori verified by means of a Kruskal-Wallis test.
In this study, we propose to combine a radiomic pre-

diction model and the results of LN metastases visual
detection into a unified framework to improve PET
technique sensitivity. On DB1, the unified framework
obtained a sensitivity of 94% and a specificity of 67%,

Fig. 5 Results of LN visual detection and radiomic analysis are represented together on DB1 (left panel) and DB2 (right panel). For each patient,
GLSZM ZP and SOLIDITY values are shown. Blue circles correspond to patients with histologically negative lymph nodes, while red circles to
patients with histologically positive lymph nodes. Patients with a ‘+’ in the red circle and with a ‘*’ in the blue circle are those which are
misclassified by the LN visual detection: in particular, blue circles containing a ‘*’ are false positives at LN visual detection, while red circles
containing a ‘+’ are false negatives. The grey area contains patients classified as positive by the univariate radiomic analysis (GLSZM ZP < 0.2755);
therefore false positives are blue circles in the grey area, while false negatives are red circles in the white area. The curve line is an example of
neural network trained on the 86 DB1 patients
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while on DB2 a sensitivity of 89% and a specificity of
75%. A joint model of this kind maximizes the exploit-
ation of the PET technique information for a more
personalized and effective surgical treatment selection.
The combination of PET/CT and SLN mapping has been
proposed to minimize complications and to maximize
LN status and cure rate definition [15]. The high PPV of
FDG PET allows to direct patients positive at LN visual
detection to lymphadenectomy, with debulking aim.
However, in case of negative PET, microdisease cannot
be excluded. Radiomics can help in further stratifying
the risk of nodal metastases, to better select women who
can benefit from SLN procedure and ultrastaging, for
resource optimization. Negative PET patients with low
GLSZM ZP seem in fact more likely to have microme-
tastases and should therefore be referred to SLN biopsy
and ultrastaging in third level specialized hospitals.
Our preliminary results are promising in order to gather

as much information as possible from an examination that
is necessary in clinical setting of endometrial cancer
patients. GLSZM ZP can be easily extracted from PET
images by means of many freely available radiomic tools.
Future perspectives will include the further assessment of
the predictive values of CT/MRI features and eventually
the construction and validation of multimodal models to
further exploit PET/CT technique potentialities.
The main limitations of the present study are the small

number of patients, in particular in DB2. In addition,
DB2 is more recent and all patients underwent to SLN
biopsy and ultrastaging, able to identify micrometastatic
deposits not detectable by older histological techniques
and largely under the PET spatial resolution limit [40].
This may justify the higher rate of micrometastases (24%
vs 13%), the lower sensitivity of LN visual detection
(33% vs 50%) and the better performance of the radio-
mic analysis observed in DB2 with respect to DB1. We
plan to collect new data for training and new independ-
ent data for testing to confirm trends observed on DB2.
Furthermore, we hope that these preliminary data could
encourage cooperative efforts to confirm or to reject
results on a wider and therefore more significant patient
cohort of endometrial cancer patients.
The objective of this work was to try to improve PET

sensitivity for nodal staging. A further step for treatment
definition improvement may concern the insertion of
PET features and laboratory/histological parameters into
a global multivariate staging model. On the 115 patients
we have, we have verified that, in accordance with litera-
ture, myometrium invasion and lympho-vascular space
invasion are significantly correlated with LN metastases
presence. These two variables may therefore be signifi-
cant covariates in a global staging model. Grade and
histology were instead not correlated. It is worth no-
ticing however that most of patients in our database

have endometrioid histology; thus, the correlation with
histology may be assessed on a larger and more hetero-
geneous sample.

Conclusions
Endometrial cancers with LN metastases were generally
characterized by higher heterogeneity at PET scan, and
imaging features computed on the primary tumour were
able to improve PET sensitivity in LN metastases detection.

Abbreviations
18F-FDG: 18F-Fluorodeoxyglucose; AUC: Area under the ROC curve;
CT: Computed tomography; DB1: First database of 86 patients; DB2: Second
database of 29 patients; EANM: European Association of Nuclear Medicine;
FN: False negative; FP: False positive; GLCM: Grey level co-occurrence matrix;
GLSZM ZP: Zone percentage of GLSZM; GLSZM: Grey level size zone matrix;
LN: Lymph node; LOO: Leave one out; MRI: Magnetic resonance imaging;
MTV: Metabolic tumour volume; NGLCM ENTROPY: Entropy of NGLCM;
NGLCM: Normalized grey level co-occurrence matrix;
NGLDM: Neighbourhood grey level dependence matrix;
NGTDM: Neighbourhood grey tone difference matrix; OSEM: Ordered subset
expectation maximization; PET: Positron emission tomography; SLN: Sentinel
lymph-node; SUV: Standardized uptake value; SUVmax: Standardized uptake
value maximum; SUVmean: Standardized uptake value mean; TFCCM: Texture
feature coding co-occurrence matrix; TFCM: Texture feature coding matrix;
TLG: Total lesion glycolysis; TN: True negative; TP: True positive; TS: Texture
spectrum; VAM: Voxel alignment matrix; VOI: Volume of interest

Acknowledgements
The authors are grateful to Dr. Marco Cuzzocrea and Alice Scarabelli for their
help in collecting the data.

Availability of data and materials
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Authors’ contributions
ED was involved in study design, implementation, analysis, machine-learning
analysis and manuscript preparation. CC was involved in study design, imple-
mentation, analysis, PET analysis and segmentation and manuscript prepar-
ation. LG, FE and CL were involved in scan optimization, PET/CT
interpretation, image analysis and manuscript preparation. DV, AB and RF
were involved in clinical care, surgical and histopathological data collection
and and manuscript preparation. CM contributed to prepare and revise the
manuscript enhancing its content and its usefulness in clinical practice. All
authors read and approved the final manuscript.

Ethics approval and consent to participate
All procedures performed in studies involving human participants were in
accordance with the ethical standards of the institutional and/or national
research committee and with the 1964 Declaration of Helsinki and its later
amendments or comparable ethical standards. For this type of study, formal
consent is not required. Informed consent was obtained from all individual
participants included in the study.

Consent for publication
Not applicable.

Competing interests
Luca Guerra has had honoraria as a lecturer from GE Healthcare. The other
authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

De Bernardi et al. EJNMMI Research  (2018) 8:86 Page 8 of 9



Author details
1Medicine and Surgery Department, University of Milano Bicocca, via Cadore
48, 20900 Monza, MB, Italy. 2Clinic of Obstetrics and Gynaecology, San
Gerardo Hospital, via Pergolesi 33, 20900 Monza, MB, Italy. 3Nuclear Medicine
Department, San Gerardo Hospital, via Pergolesi 33, 20900 Monza, MB, Italy.
4Tecnomed Foundation, University of Milano Bicocca, via Pergolesi 33, 20900
Monza, MB, Italy.

Received: 3 July 2018 Accepted: 15 August 2018

References
1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al.

Cancer incidence and mortality worldwide: sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

2. Bollineni VR, Ytre-Hauge S, Bollineni-Balabay O, Salvesen HB, Haldorsen IS.
High diagnostic value of 18F-FDG PET/CT in endometrial cancer: systematic
review and meta-analysis of the literature. J Nucl Med. 2016;57(6):879–85.

3. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer
statistics, 2005. CA Cancer J Clin. 2005;55(1):10–30.

4. Frederick PJ, Straughn JM Jr. The role of comprehensive surgical staging in
patients with endometrial cancer. Cancer Control. 2009;16(1):23–9.

5. Lewin SN, Herzog TJ, Barrena Medel NI, Deutsch I, Burke WM, Sun X, et al.
Comparative performance of the 2009 international federation of
gynecology and obstetrics’ staging system for uterine corpus cancer. Obstet
Gynecol. 2010;116(5):1141–9.

6. Benedetti Panici P, Basile S, Maneschi F, Alberto Lissoni A, Signorelli M,
Scambia G, et al. Systematic pelvic lymphadenectomy vs. no
lymphadenectomy in early-stage endometrial carcinoma: randomized
clinical trial. J Natl Cancer Inst. 2008;100(23):1707–16.

7. Chan JK, Cheung MK, Huh WK, Osann K, Husain A, Teng NN, et al.
Therapeutic role of lymph node resection in endometrioid corpus cancer: a
study of 12,333 patients. Cancer. 2006;107(8):1823–30.

8. Chan JK, Kapp DS. Role of complete lymphadenectomy in endometrioid
uterine cancer. Lancet Oncol. 2007;8(9):831–41.

9. Seracchioli R, Solfrini S, Mabrouk M, Facchini C, Di Donato N, Manuzzi L, et
al. Controversies in surgical staging of endometrial cancer. Obstet Gynecol
Int. 2010;2010:181963.

10. Kitchener H, Swart AM, Qian Q, Amos C, Parmar MK. Efficacy of systematic
pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a
randomised study. Lancet. 2009;373(9658):125–36.

11. Cragun JM, Havrilesky LJ, Calingaert B, Synan I, Secord AA, Soper JT, et al.
Retrospective analysis of selective lymphadenectomy in apparent early-
stage endometrial cancer. J Clin Oncol. 2005;23(16):3668–75.

12. Crivellaro C, Baratto L, Dolci C, De Ponti E, Magni S, Elisei F, et al. Sentinel
node biopsy in endometrial cancer: an update. Clin Transl Imaging. 2018;
6(2):91–100.

13. Atri M, Zhang Z, Dehdashti F, Lee SI, Marques H, Ali S, et al. Utility of PET/CT
to evaluate retroperitoneal lymph node metastasis in high-risk endometrial
cancer: results of ACRIN 6671/GOG 0233 trial. Radiology. 2017;283(2):450–9.

14. Signorelli M, Guerra L, Buda A, Picchio M, Mangili G, Dell'Anna T, et al. Role
of the integrated FDG PET/CT in the surgical management of patients with
high risk clinical early stage endometrial cancer: detection of pelvic nodal
metastases. Gynecol Oncol. 2009;115(2):231–5.

15. Signorelli M, Crivellaro C, Buda A, Guerra L, Fruscio R, Elisei F, et al. Staging
of high-risk endometrial cancer with PET/CT and sentinel lymph node
mapping. Clin Nucl Med. 2015;40(10):780–5.

16. Tixier F, Vriens D, Cheze-Le Rest C, Hatt M, Disselhorst JA, Oyen WJ, et al.
Comparison of tumor uptake heterogeneity characterization between static
and parametric 18F-FDG PET images in non-small cell lung cancer. J Nucl
Med. 2016;57(7):1033–9.

17. Hatt M, Majdoub M, Vallieres M, Tixier F, Le Rest CC, Groheux D, et al. 18F-
FDG PET uptake characterization through texture analysis: investigating the
complementary nature of heterogeneity and functional tumor volume in a
multi-cancer site patient cohort. J Nucl Med. 2015;56(1):38–44.

18. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization
of PET/CT images using texture analysis: the past, the present... Any future?
Eur J Nucl Med Mol Imaging. 2017;44(1):151–65.

19. Hatt M, Tixier F, Cheze Le Rest C, Pradier O, Visvikis D. Robustness of
intratumour (1)(8)F-FDG PET uptake heterogeneity quantification for therapy

response prediction in oesophageal carcinoma. Eur J Nucl Med Mol
Imaging. 2013;40(11):1662–71.

20. Orlhac F, Soussan M, Chouahnia K, Martinod E, Buvat I. 18F-FDG PET-derived
textural indices reflect tissue-specific uptake pattern in non-small cell lung
Cancer. PLoS One. 2015;10(12):e0145063.

21. Shen WC, Chen SW, Liang JA, Hsieh TC, Yen KY, Kao CH.
[18]Fluorodeoxyglucose positron emission tomography for the textural
features of cervical cancer associated with lymph node metastasis and
histological type. Eur J Nucl Med Mol Imaging. 2017;44(10):1721–31.

22. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W,
et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version
2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.

23. Crivellaro C, Signorelli M, Guerra L, De Ponti E, Pirovano C, Fruscio R, et al.
Tailoring systematic lymphadenectomy in high-risk clinical early stage
endometrial cancer: the role of 18F-FDG PET/CT. Gynecol Oncol. 2013;
130(2):306–11.

24. Fang YH, Lin CY, Shih MJ, Wang HM, Ho TY, Liao CT, et al. Development
and evaluation of an open-source software package “CGITA” for quantifying
tumor heterogeneity with molecular images. Biomed Res Int. 2014;2014:
248505.

25. Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I.
Tumor texture analysis in 18F-FDG PET: relationships between texture
parameters, histogram indices, standardized uptake values, metabolic
volumes, and total lesion glycolysis. J Nucl Med. 2014;55(3):414–22.

26. Tesar L, Shimizu A, Smutek D, Kobatake H, Nawano S. Medical image
analysis of 3D CT images based on extension of Haralick texture features.
Comput Med Imaging Graph. 2008;32(6):513–20.

27. Haralick RM, Shanmugam K. Textural features for image classification. IEEE
Transactions on systems, man, and cybernetics. 1973;3(6):610–21.

28. Kurani AS, Xu DH, Furst J, Raicu DS. Co–occurrence matrices for volumetric
data. In: The 7th IASTED International Conference on Computer Graphics
and Imaging – CGIM 2004, Kauai, Hawaii, US; 2004.

29. Tang X. Texture information in run-length matrices. IEEE Trans Image
Process. 1998;7(11):1602–9.

30. Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, et al. Texture indexes
and gray level size zone matrix. Application to cell nuclei classification. In:
10th international conference on pattern recognition and information
processing, PRIP 2009. Minsk; 2009. p. 140–5.

31. Amadasun M, King R. Textural features corresponding to textural properties.
IEEE Trans Syst Man Cybern. 1989;19:1264–74.

32. He D, Wang L. Texture features based on texture spectrum. Journal Pattern
Recognition. 1991;24(5):391–9.

33. Horng MH, Sun YN, Lin XZ. Texture feature coding method for classification
of liver sonography. Comput Med Imaging Graph 2002;26:33–42.

34. Sun C, Wee W. Neighboring gray level dependence matrix for texture
classification. Computer Vision, Graphics, and Image Processing. 1983;23:
341–52.

35. Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility
of tumor uptake heterogeneity characterization through textural feature
analysis in 18F-FDG PET. J Nucl Med. 2012;53(5):693–700.

36. Nakamura K, Hongo A, Kodama J, Hiramatsu Y. The measurement of
SUVmax of the primary tumor is predictive of prognosis for patients with
endometrial cancer. Gynecol Oncol. 2011;123(1):82–7.

37. Nakamura K, Kodama J, Okumura Y, Hongo A, Kanazawa S, Hiramatsu Y. The
SUVmax of 18F-FDG PET correlates with histological grade in endometrial
cancer. Int J Gynecol Cancer. 2010;20(1):110–5.

38. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al.
Intratumor heterogeneity characterized by textural features on baseline
18F-FDG PET images predicts response to concomitant radiochemotherapy
in esophageal cancer. J Nucl Med. 2011;52(3):369–78.

39. Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural
features in FDG PET images due to different acquisition modes and
reconstruction parameters. Acta Oncol 2010;49:1012-6.

40. Ayhan A, Celik H, Dursun P. Lymphatic mapping and sentinel node biopsy
in gynecological cancers: a critical review of the literature. World J Surg
Oncol. 2008;6:53.

De Bernardi et al. EJNMMI Research  (2018) 8:86 Page 9 of 9


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Patient population and PET/CT protocol
	Radiomic analysis of primary uterine lesion 18F-FDG uptake
	Tumour segmentation and feature extraction
	Univariate analysis
	Multivariate analysis: feature reduction and model selection
	Multivariate analysis: model testing
	Construction of an unified prognostic framework


	Results
	Radiomic analysis of primary uterine lesion 18F-FDG uptake
	Univariate analysis
	Multivariate analysis: feature reduction and model selection
	Radiomic model testing


	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

