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Abstract

Background: The D1-dopamine receptor radioligand [11C]SCH23390 has been frequently used in PET studies. In
drug-naïve patients with schizophrenia, the findings have been inconsistent, with decreases, increases, and no
change in the frontal cortex D1-dopamine receptors. While these discrepancies are likely primarily due to a lack of
statistical power in these studies, we speculated that an additional explanation may be the differences due to
methods of image analysis between studies, affecting reliability as well as bias between groups.

Methods: Fifteen healthy subjects underwent two PET measurements with [11C]SCH23390 on the same day. The
binding potential (BPND) was compared using a 95% confidence interval following manual and automated
delineation of a region of interest (ROI) as well as with and without frame-by-frame realignment.

Results: Automated target region delineation produced lower BPND values, while automated delineation of the
reference region yielded higher BPND values. However, no significant differences were observed for repeatability
using automated and manual delineation methods. Frame-by-frame realignment generated higher BPND values and
improved repeatability.

Conclusions: The results suggest that the choice of ROI delineation method is not an important factor for
reliability, whereas the improved results following movement correction confirm its importance in PET image
analysis. Realignment is therefore especially important for measurements in patient populations such as
schizophrenia or Parkinson’s disease, where motion artifacts may be more prevalent.
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Background
The development of molecular imaging in the 1980s was
largely driven by the need to examine the dopamine
system in CNS disorders such as schizophrenia and
Parkinson’s disease [1, 2]. For this reason, radioligands
were developed for the D1-dopamine receptor (D1-DR),
the D2-dopamine receptor (D2-DR), and for the pre-
synaptic synthesis of dopamine. In the research on the

pathophysiology of schizophrenia, a large number of
PET studies on the dopamine system have since then
been reported and covered in reviews and meta-analyses
[3, 4]. However, for the dopamine receptors and trans-
porters, the results have been inconsistent in several
respects. One example is D1-DR binding, which has
been reported as lower, unchanged, and higher in the
frontal cortex [5–10]. Medication effects may explain
some of the differences between the results since experi-
mental studies have shown that D1-R expression is
affected by antipsychotic medication [11–13]. However,
studies in drug-naïve patients have also been inconclu-
sive [5–8]. For these analyses, sample sizes have typically
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been small, leading to an increased risk for both type I
and type II errors [9, 13, 14]. A wider consideration is
that the series of D1-DR studies in schizophrenia has
been reported over many years during which time the
methods for image analysis have been improved, includ-
ing the development of new software and strategies for
the definition of regions of interest (ROI) and methods
for motion correction. Hence, it cannot be excluded that
differences in methodological reliability may also con-
tribute to the discrepant findings to some degree.
In the early years of PET imaging, the delineation of

ROIs was performed manually directly on the PET im-
ages and guided only by the regional distribution of
radioactivity. In the late 1980s, the advent of magnetic
resonance imaging (MRI) allowed for manual ROI defin-
ition on individual MR images and co-registration to the
PET images. Subsequently, structural brain atlases and
software tools were developed for automated definition
of ROIs, offering advantages in terms of reduced investi-
gator bias and workload [15].
The agreement between manual and automated ROI

delineations on PET-measured receptor-binding mea-
surements using PET has been addressed in several
studies. Good agreement has been demonstrated for
tracers with widespread homogenous cortical binding
[16–19] as well as more restricted subcortical binding
[20, 21]. For [11C] raclopride binding to the D2-DR,
which is restricted to the striatum, there was also a good
agreement in repeatability as assessed using a test-retest
design [21]. In contrast to the D2-DR, the D1-DR is
widely expressed in the cortical regions. Importantly, the
proximity of the cortical regions to the subarachnoidal
space provides specific challenges for ROI definition and
may also render measurements more susceptible to
motion artifacts.
The primary aim of the present PET study with

[11C]SCH23390 in healthy subjects was to compare
manual and automated methods for ROI definition of
both subcortical and cortical regions in a test-retest
design. The secondary aim was to evaluate the effect of
motion correction, and the third was to compare the use
of manual and automated ROIs for the reference region,
cerebellum. The methods were compared with regard to
the size and spatial agreement of the ROIs, the binding
potential (BPND) values, and repeatability of the BPND

values.

Methods
Sixteen healthy subjects, age 22–35 years, were enrolled at
the Center for Psychiatry Research, Department of Clinical
Neuroscience, Karolinska Institutet, and Stockholm County
Council, Stockholm, Sweden. One subject was excluded
from the analysis due to incorrect head positioning in the
PET system rendering a small portion of the cerebellum

visible in only one image section. All subjects were male
since this study was made in preparation for a planned
phase 1 trial on drug-induced D1-DR occupancy.
The subjects were healthy according to medical history,

physical examination, MRI, blood and urine chemistry, and
psychiatric screening based on M.I.N.I. interview, Becks
Anxiety Inventory, the Montgomery-Åsberg Depression
Rating Scale, and the Alcohol Use Disorders Identification
Test (AUDIT). They had no history of alcohol or drug
addiction or abuse [22], frequent nicotine use, or history or
presence of epilepsy and brain injury. A urine drug screen-
ing was performed at screening and before each PET
measurement.
All subjects underwent MRI, performed on a 1.5-T

Siemens Avanto imaging system (Siemens AG, Muenchen,
Germany) at Praktikertjänst Röntgen, Odenplan, Stockholm,
Sweden. Each individual underwent one MR examination. A
T2-weighted measurement was performed to rule out any
brain abnormality, and a T1-weighted measurement was
performed with isometric 1-mm voxels used for gray and
white matter segmentation and delineation of ROIs. The T2
protocol used the following sequence: repetition time/echo
time = 4990/100 ms, field of view 230 mm, image matrix 18
blades, flip angle 150°, and slice thickness = 5 mm. The T1
protocol used a 3D sagittal magnetization-prepared rapid
gradient-echo (3D MP-RAGE) with the following sequence:
repetition time/echo time/inversion time = 1790/3.53/
1100 ms, field of view 260 mm, image matrix 256 mm×
208 mm, flip angle 15°, and slice thickness = 1 mm.
For each subject, examinations were performed twice

on the ECAT EXACT HR PET system, in the morning
and afternoon, respectively. Radioactivity in the brain was
measured with 3D data acquisition. The spatial resolution
in the reconstructed sections is 3.6 mm at the center of
the field of view [23]. A transmission scan was performed
using three rotating 68Ge rod sources for 5 min.
To minimize head movement during the PET meas-

urement, a plaster helmet was made for each subject in-
dividually, for use during the PET measurement [24]. At
the start of the PET measurement, a sterile phosphate
buffer (pH = 7.4) containing [11C]SCH23390 was injected
as a bolus during several seconds into the cubital vein.
The venous catheter was then immediately flushed with
up to 10 mL saline solution.
The injected radioactivity was 333 ± 44 and 332 ±

49 MBq (mean, SD), in the morning and the afternoon,
respectively, with a specific radioactivity of 507 ± 244
and 574 ± 238 MBq/nmol, which correspond to a mass
of 0.23 ± 0.13 μg and 0.20 ± 0.10 μg (mean ± SD) [25].
Following injection, emission data were collected for

51 min in a sequence of 13 time frames. The time frames
of acquisition data were reconstructed into a series of 3D
PET images of radioactivity concentration. Images were re-
constructed to correct for attenuation and scatter using 2D
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filtered back projection, with a Hanning filter (2.0 mm) on
a 128 × 128 matrix and azoom = 2.17. The voxel size was
2.030 × 2.030 × 3.125 mm.

MR and PET image processing
Processing of MRI and PET data
The PET images were corrected for head movement
using a frame-by-frame realignment algorithm, in which
all frames were individually realigned to the first minute
of acquisition [26] using SPM5 (Wellcome Department
of Cognitive Neurology, University College London)
[27]. For comparison, a parallel data set was created for
which no realignment was performed.
The T1-weighted MR images were reoriented according

to the line defined by the anterior and posterior commis-
sures (AC-PC line) being parallel to the horizontal plane
and the inter-hemispheric plane parallel to the sagittal
plane. The MR images were then co-registered to the
summation PET image (9–51 min) using SPM5 (Wellcome
Department of Imaging Neuroscience, London, UK) using
the normalized mutual information algorithm [28] and the
default 7 × 7 FWHM smoothing of the 256 × 256 joint
histogram.
The MR images were used to delineate anatomical

regions of interest (ROI) for the caudate nucleus (CAU),
the putamen (PUT), the dorsolateral prefrontal cortex
(DLPFC), and the insular cortex (INS). Each region was
defined by a manual and an automated method, respect-
ively. The regions were chosen to represent the regions
of central interest in schizophrenia research and include
high- and low D1-DR density regions with different
degrees of proximity to CSF. Regions with more CSF
borders may be particularly vulnerable to errors in ROI
definition or motion artifacts. The caudate and putamen
are high-D1-DR density regions bordering and not
bordering to CSF, respectively. The DLPFC and INS are
low-density D1-DR regions bordering more and less to
CSF, respectively.

Manual ROIs
For the manual method, an in-house software, HBA
[29], was used where the reoriented MP-RAGE volume
was loaded for manual delineation of the ROIs on any of
the three orthogonal projections. The manual segmenta-
tion was performed by one investigator (PS) who has
more than 20 years of experience in manual ROI delin-
eation. The CAU and PUT were delineated as described
by Mawlawi et al. [30], with the modification that the sa-
gittal planes were used instead of the coronal. The
DLPFC was traced on all the coronal planes anterior to
the genu of the corpus callosum. The INS was delin-
eated on all of its transaxial planes. The cerebellum was
drawn on the central six transaxial images of the cere-
bellum separately on each hemisphere and about 1 cm

distant from the subarachnoidal space. The manual ROIs
were not masked by the GM map in order to have a
complete manual method of gray-white matter segmen-
tation for comparison with the automated ROIs that
were masked by the GM map. The ROIs were translated
into each PET study space using the inter-modality
co-registration matrices.

Automated ROIs
The automated definition of target ROIs was performed
using FreeSurfer (FS, version 5.0.0, http://surfer.nmr.mgh.-
harvard.edu/) [31] to obtain subject-specific anatomical de-
lineation by reconstruction of the cortex and segmentation
of subcortical structures as described elsewhere [32, 33].
The FreeSurfer morphometric procedures have been shown
to exhibit good reproducibility across scanner manufac-
turers and across different field strengths [34, 35] and have
been validated against histological [36] and manual mea-
surements [37]. In addition, the cortical structures are di-
vided based on individual cortical folding patterns to match
the cortical geometry across subjects [38].
The ROI for the dorsolateral prefrontal cortex used

here comprises the ctx-rostralmiddlefrontal and ctx-
parstriangularis regions of the Desikan-Killiany Atlas
in FreeSurfer [39].
Finally, an automated ROI for the cerebellum was de-

fined using FSL (the FMRIB Software Library), a library
of analysis tools for brain imaging data [40]. This region
was defined using the maximum probability FSL MNIf-
nirt atlas segmentation with 25% probability threshold
[41], from which a mask was defined containing cerebel-
lar regions VI, crus I, and crus II (indices [5, 7, 8, 10, 11,
13]). This mask was then registered to the space of each
individual’s MR using the inverse FNIRT warp parame-
ters. This mask was subsequently then trimmed as fol-
lows: 8 mm from the cortex, 8 mm from the vermis
(defined using the same atlas), 4 mm from the edge of
the brain mask (FSL brain mask). In addition, voxels
belonging to the two most inferior planes of the PET
image were excluded from the ROI. The resulting ROI
was multiplied by the FreeSurfer gray matter segmenta-
tion mask to obtain a ROI consisting of only those
voxels identified as belonging to gray matter. For more
information, see Matheson et al. [42]. The purpose was to
compare the different impact on the BPND value using a
standardized automatically delineated cerebellum com-
pared to using the manual cerebellum as reference region.

Time-activity curves
The two ROI data sets (manual and automated) were ap-
plied to extract time-activity curves (TACs) from the four
dynamic PET images (test and retest each processed with
or without realignment) amounting to eight sets of TACs.
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Calculation of BPND values
The regional BPND values for [11C]SCH23390 binding
to D1-DR were calculated with the simplified reference
tissue model using the cerebellum curve as an estimate
for non-specifically bound [11C]SCH23390 [43]. The
eight sets of TACs were analyzed twice using the man-
ual and modified FSL cerebellum ROI-derived TAC,
respectively, amounting to 16 sets of BPND values for
each measurement.

Comparison of ROI volumes
To compare manually and automatically generated ROIs
(FreeSurfer and FSL), the number of voxels for each
paired ROI (both hemispheres) was extracted from
the ROI files and converted to cubic millimeter. The
spatial agreement between the methods was expressed
by the Jaccard coefficient which is the ratio between
the size of the intersection and the size of the union
of the voxel sets:

J A;Bð Þ ¼ A∩Bj j
A∪Bj j ð1Þ

The coefficient can vary between 0 (no agreement)
and 1 (perfect match).
In addition, the spatial agreement was estimated for

the relatively smaller manual ROI by the percentage of
the manual ROI covered by the FreeSurfer or FSL ROI:

A∩Bj j
Manual ROI volume

� 100 ð2Þ

The values increase with the overlap of the manual
and automated ROIs so that 100% indicates that the
manual ROI is completely encompassed by the FreeSurfer
or FSL ROI.

Statistics
Statistical analysis—general
In the following, the terminology related to the statistical
analysis follows the recommendations of the Termin-
ology Working Group of the Quantitative Imaging
Biomarker Alliance [44]. The inclusion of a test-retest
analysis serves two purposes. First, it allows for the
examination of the repeatability of PET measurements
with [11C]SCH23390. Second, it can be viewed as a
duplicate measure of the same variable, i.e., in the same
way as the mean of triplicate measurements commonly
are used in biochemistry and bioanalyses.

Test-retest analysis
Repeatability was measured by calculating the absolute
variability (AV) expressed as the difference in the BPND

values between the first and second PET measurements

relative to the mean of the two values according to the
following equation:

AV ¼ 2� j BPPET1
ND −BPPET2

ND j
BPPET1

ND þ BPPET2
ND

ð3Þ

The intraclass correlation coefficient (ICC) was used
as a relative measure of reliability in BPND, where the
variability between the test and retest BPND is related to
the variability of BPND among the subjects according to
the following equation:

ICC ¼ MSB−MSW
MSB þ k−1ð ÞMSW

ð4Þ

where MSB is the between-subject mean sum of squares,
MSW is the within-subject mean sum of squares, and k
represents the number of observations (in this case 2).
The ICC is an estimation of reliability, which is the
“true” variance/total variance. Thus, a value of 1 means
that there is no measurement error at all, while a value
of 0 means that the obtained measurements are entirely
comprised of measurement error. Zero is therefore tech-
nically the lowest value for the ICC, and a negative value
can be approximated by 0.

Comparisons of ROI volumes and BPND values between the
methods for image analyses
The advantages of interval estimate compared to point
estimate as the output of statistical analysis have been
demonstrated for medical research in general [45, 46]
and specifically for the comparison of quantitative bio-
markers [47]. Hypothesis testing for a point estimate
using a p value is a binary (yes or no) decision even for
minor differences that may not be of practical import-
ance [48]. It may thus be more useful to evaluate the
data with an interval estimate that in addition to a p
value provides a plausible range for the true value, which
can be judged subjectively on an agreement between and
precision of the methods [49].
Computation of median, interquartile range (25th to

75th), and coefficient of variation (CoV; standard deviation
mean )

was applied to evaluate the distribution and variability of
the BPND values. Computation of a 95% confidence
interval was applied for the evaluation of the agreement
and precision of the two ROI volumes (manual and auto-
mated), and the two BPND values from the three compari-
sons in the image analysis (ROI definition, realignment
and definition of reference region).
The two PET measurements and the two methods in

each of the three comparisons of the analysis amounted
to 2 × 2 × 2 × 2 equals 16 sets or 8 pairs of BPND values
for each ROI as illustrated in Additional file 1: Table S1
for the test-retest combinations. The balanced data set
made it possible to test for agreement between the pairs
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of BPND values only once instead of for each of the eight
combinations of the test-retest and three pairs of
methods of analysis (manual target ROI/automated tar-
get ROI, no realignment/realignment, manual reference
ROI/automated cerebellum ROI). Hence, the statistical
computations were applied once for each pair of BPND

values using the mean BPND value of the other eight
combinations of data (2 × 2 × 2). This averaging was
justified after testing by ANOVA for the absence of two-
and three-way interactions among the pairs of variables.
The two absolute variability (AV) values and ICC

values were also evaluated for agreement and precision
by the mean differences and confidence intervals in the
same way as for the BPND values with the difference that
there were 2 × 2 × 2 (i.e., eight sets or four pairs) AV and
ICC values for each of the three parts of the image ana-
lysis. The comparison of ICC values between the
methods was assessed by using the 95% confidence
intervals [50] to examine whether there was an overlap
between the confidence intervals between the pairs of
methods compared.

Results
The subjects completed the study according to the
protocol. Each subject underwent one T1 MRI scan on
1 day and two PET measurements in the morning and
afternoon of another day after a negative urine drug
screen on the same day. The time gap between PET and
MRI studies was 1 to 96 days, median 6 days.
The spatial agreement of the manual and FreeSurfer

ROIs estimated by the Jaccard coefficient varied between
32 and 69% (Table 1). The highest values were obtained
for the caudate (59%), putamen (57%), and insula (69%),
indicating that the ROIs overlapped to a major extent.
The percentage of the manual ROI covered by the Free-
Surfer ROI varied between 51.3 and 92.5%.
The ROI volumes were calculated by the number of

voxels multiplied by the voxel volume for each paired ROI
(both hemispheres) extracted from the ROI files. Worth
noting is that the positioning of the head in the gantry dif-
fered slightly between the two PET measurements, and
the subsequent two sets of re-sliced ROIs in PET space
differed in volumes by 1.7 ± 3.0% (mean ± SD).

Each of the FreeSurfer ROIs and the modified FSL cere-
bellum ROI were significantly larger compared to the cor-
responding manual ROIs (Figs. 1a and 2, Table 2). The
95% CI for the differences was relatively narrow indicating
a high precision for both methods (Fig. 1a, Table 2). The
CoV (%) for the manual ROI volume was generally higher
than for the automatically generated ROIs.
As can be seen from the TACs, there was a rapid

initial increase of brain radioactivity that peaked
after 5–10 min followed by a rapid decline (Fig. 3).
The AUC of the TACs for the realigned PET images
was 2–18% higher for the manually generated target
ROIs when compared to that of the FreeSurfer (p <
0.001; data not shown) (Fig. 3). The AUC of the
cerebellum TACs were similar in the beginning and
3% higher during the last 24 min for the manual
CBL compared to modified FSL CBL (p < 0.001 for
the last 24 min; data not shown).
The eight sets of target TACs and two sets of cerebel-

lum TACs amounted to 16 BPND values for each ROI
(Additional file 1: Table S1). The statistical computations
of the regional BPND values for the three parts of the
analysis are listed in Table 2. The 95% CI for most of the
differences was relatively narrow and did not contain zero
indicating statistical significance for the difference between
methods (Fig. 1b). The manually generated BPND

values were 3–21% higher with a generally low CoV
and interquartile range compared to that of the
automatically generated BPND values. After realign-
ment, the BPND values became higher for the caud-
ate and DLPFC (Table 2). On the contrary, the BPND

values for putamen and insula did not increase after
realignment. The use of the modified FSL cerebellum
ROI increased BPND by 3 to 7% in all regions as
compared to that of the manual CBL.
The absolute variability values (AV) for each of the

four regional BPND values were calculated for the total
of eight pairs of regional BPND values from the three
parts of the analysis (2 × 2 × 2 = 8) (Additional file 1:
Table S1). The AV values among the methods varied
between 3.9–11.9% for the caudate and putamen and
8.0–17.9% for the DLPFC and insula. The 95% CI of
the mean difference in AV was wide and included
zero in most cases indicating no significant differ-
ences (Table 3). However, following realignment, the
95% CI of the mean difference in AV did not overlap
with zero for caudate, putamen, and DLPFC, sug-
gesting a small but significant improvement. The use
of automated cerebellum did not improve the AV
values in any region compared to that of the manual.
The ICCs were generally higher using FreeSurfer, but
all comparisons fell within the limits of the 95%
confidence intervals, meaning that these differences
are not significant.

Table 1 Jaccard coefficients obtained by comparison of ROIs
made manually and by FreeSurfer

ROI Jaccard coefficient Intersect (voxels) Intersect % of
manual volume

CAU 0.59 450 92.5

PUT 0.57 614 92.0

DLPFC 0.32 1756 56.2

INS 0.44 652 79.9

CBL 0.32 291 51.3
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a b

Fig 1 Bland-Altman plots with the mean and 95% confidence interval of ROI volumes (a) and binding potential (BPND) of [
11C]SCH23390 (b)

of the caudate, putamen, dorsolateral prefrontal cortex, and insula derived from manual (man) and FreeSurfer (FS) methods. Man = manual,
FS = FreeSurfer, CAU = caudate, PUT = putamen, DLPFC = dorsolateral prefrontal cortex, and INS = insula
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Discussion
The main objective of the present study was to examine
the impact of specific methodological steps used in
quantitative image analysis of [11C]SCH23390 binding to
D1-DR on variability and reliability. The methods were
chosen to allow for comparison to historical conditions
so that the results would be applicable for interpreting
the existing PET literature. For that purpose, data were
acquired using the PET system ECAT EXACT HR,
which has a resolution comparable to the currently
widely used whole-body PET systems. In relation to the
major aims of the study, the results show that automated
ROIs generally produce lower BPND values than manual
ROIs, whereas absolute variability was similar. Moreover,

the use of realignment improved the absolute variability,
and an automated cerebellum ROI yielded slightly in-
creased BPND values.
The volumes were significantly larger for the auto-

mated ROIs, with lower interindividual variability except
for the cerebellum, which had larger variability for the
automated ROI (Table 2). The differences in volumes
between the methods were largest for the caudate and
putamen. Similar results of smaller manual compared to
FreeSurfer striatal ROIs, but with greater interindividual
variability, have recently been reported when analyzing
MRI data for the caudate and putamen [22, 51]. Other
studies have demonstrated that FS can produce mea-
surements that are comparable to those derived from

Fig 2 Color-coded voxels of the manual (Man) and automated (Aut) ROIs superimposed on the corresponding MR image of a healthy volunteer
selected at random. ROIs generated manually are superimposed on those generated by FreeSurfer. CAU = caudate, PUT = putamen, DLPFC =
dorsolateral prefrontal cortex, INS = insula, and CBL = cerebellum
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manual tracing of ROIs [52, 53]. However, manual edit-
ing of FS ROIs may still be required in order to improve
validity [54].
The intersection of the manual and FreeSurfer ROIs

was smaller than the manual ROI itself, which indicates
that the ROIs did not overlap completely or in a sym-
metrical fashion (Table 1). Hence, to shrink or erode the

FreeSurfer ROI, as shown for partial volume correction
[55], to the same volume as the manual would still result
in a placement mismatch.
FreeSurfer has become the standard for obtaining cor-

tical metrics with demonstrated high validity and reliabil-
ity [56]. For the subcortical regions, manual segmentation
still remains the gold standard due to a better specificity

Table 2 ROI volumes and binding potential (BPND) values for [
11C]SCH23390 binding obtained by two repeated PET measurements

analyzed by three different comparisons of methods: (1) ROI definition (manual (Man)/FreeSurfer (FS)), (2) movement correction (no
realignment/realignment), and (3) definition of the cerebellum as reference region (manual/modified FSL)

CAU PUT DLPFC INS CBL

ROI volume by ROI method (mL) Man FS Man FS Man FS Man FS Man FSL

Median 6.5 9.5 8.4 13.0 39.3 53.7 10.8 16.6 7.6 8.1

Interquartile range 5.7–8.8 8.8–9.9 8.0–9.4 12.4–13.8 37.4–43.4 49.2–57.2 10.0–11.1 16.4–18.2 6.3–8.3 6.9–10.1

CoV % 16.4 8.9 12.9 8.4 15.8 10.0 9.1 8.0 19.2 21.1

Mean diff (CI 95%) − 3.1 (− 3.4, − 2.8)a − 4.5 (− 5.0, −3.9)a − 12 (− 15.9, − 9.8)a − 6.7 (− 7.4, − 6.0)a − 1.0 (− 2.0, − 0.4)a

BPND by ROI method Man FS Man FS Man FS Man FS

Median 1.65 1.39 1.85 1.62 0.32 0.26 0.55 0.53

Interquartile range 1.43–1.76 1.14–1.52 1.72–1.88 1.49–1.68 0.26–0.33 0.21–0.29 0.50–0.58 0.50–0.57

CoV % 16.1 20.9 7.0 8.9 17.0 19.4 8.8 8.4

Mean diff (CI 95%) 0.28 (0.24, 0.31)a 0.20 (0.17, 0.23)a 0.05 (0.04, 0.06) 0.01 (0.01, 0.02)

BPND by realignment No realign Realign No realign Realign No realign Realign No realign Realign

Median 1.46 1.57 1.74 1.73 0.27 0.30 0.54 0.53

Interquartile range 1.24–1.63 1.33–1.65 1.61–1.81 1.61–1.75 0.21–0.29 0.26–0.32 0.50–0.58 0.50–0.58

CoV % 22.1 14.7 9.0 9.7 21.2 15.4 8.8 8.2

Mean diff (CI 95%) − 0.10 (− 0.16, − 0.05)a 0.00 (− 0.03, 0.03) − 0.04 (− 0.05, − 0.02)a 0.00 (− 0.01, 0.01)

BPND by reference region Man CBL FSL CBL Man CBL FSL CBL Man CBL FSL CBL Man CBL FSL CBL

Median 1.49 1.53 1.70 1.77 0.28 0.29 0.52 0.55

Interquartile range 1.26–1.62 1.31–1.67 1.58–1.76 1.63–1.80 0.22–0.30 0.25–0.31 0.49–0.57 0.51–0.58

CoV % 18.7 17.6 8.3 7.3 18.8 16.9 8.8 8.3

Mean diff (CI 95%) − 0.04 (− 0.06, − 0.03)a − 0.05 (− 0.06, − 0.03)a − 0.02 (− 0.03, − 0.01)a − 0.03 (− 0.03, − 0.01)a

The values were obtained from four brain regions in 15 subjects, each value represents the mean of the eight values for that measurement or part of the analysis.
Interquartile range = 25th to 75th percent
CoV coefficient of variation, CI confidence interval
aThe confidence interval does not contain zero

Fig 3 Time-activity curves from a healthy volunteer after i.v. injection of [11C]SCH23390 in the morning (left) and afternoon (right). The curves
were derived from realigned dynamic PET images using manually and automatically generated ROIs, respectively. PUT = putamen, DLPFC =
dorsolateral prefrontal cortex, CBL = cerebellum. SUV = standardized uptake value = (CROI/inj dose) × body weight
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of anatomic boundaries compared to FreeSurfer which
yields larger caudate and putamen and to FSL-FIRST gen-
erating larger caudate ROIs [51, 57]. However, manual
subcortical ROI volumes do also vary between different
raters [57]. Hence, the differences in the size and place-
ment of the ROIs in the present study may be due to both
systematic differences in anatomical designation and in
software-based segmentation.
The higher BPND for the manual ROIs is consistent

with their smaller volumes (Table 2). All regions exam-
ined have a higher BP when compared with surrounding
tissue or the subarachnoidal space. More spill-out than
spill-in of the measured radioactivity will yield a recov-
ery coefficient < 1. It is thus conceivable that recovery
and BPND will be lower for a larger delineation of a
particular ROI.
After realignment of the dynamic PET images, the BPND

values were significantly higher for the caudate and the
dorsolateral prefrontal cortex. For putamen and insula,
there was no evident effect of realignment on the BPND
values. A possible explanation for the regional differences
in the impact of realignment is that the caudate and dorso-
lateral prefrontal cortex border to the subarachnoidal or
ventricular space where radioactivity is very low or negli-
gible. These regions are thus more sensitive to movement
artifacts, while the putamen and insula are embedded in
the white matter and subsequently less sensitive.
The use of the modified FSL ROIs for CBL increased

the BPND values by a few percents and decreased the
corresponding CoVs for all regions compared to those ob-
tained using the manual cerebellum (Table 2). A possible
explanation is that the trimmed and masked FSL ROIs for
CBL are less sensitive to the partial volume effects.

However, the small difference and narrow CI indicate
similarity between these measures and hence the useful-
ness of both the manual and automated cerebellum ROI.
Generally, the absolute variability decreased signifi-

cantly after realignment, likely due to the influence of
more reliable TACs on the subsequent calculation of
the BPND. For the CAU and PUT, which were the re-
gions showing the highest degree of anatomical overlap
in our study and therefore represents the best points of
comparison, the absolute variability was 6.47
and 3.54% respectively for the automated ROIs (Add-
itional file 1: Table S1). These observations are in line
with two previous test-retest studies using manual
ROIs to quantify [11C]SCH23390 binding. Hirvonen
and coworkers investigated five healthy volunteers and
found an absolute variability of 4.2–6.6% [58], whereas
the absolute variability was 7.8–8.4% in a recent study
on 13 individuals [59]. Importantly, the present study
shows that the use of automated ROIs has a similar ab-
solute variability of D1-DR BPND values as compared to
that of manual ROIs.
The present level of absolute variability among all the brain

regions is comparable to that of other PET neuroreceptor
radioligands such as [11C]raclopride [21, 60], [11C]FLB 457
[61], [11C]MADAM [62], and [11C]AZ10419369 [63]. The
repeatability of PET-measured BPND is of importance to
increase the statistical power in receptor occupancy studies,
as well as in both cross-sectional and longitudinal studies.
For instance, a power analysis based on the present results
gives a statistical power to detect a 20% change in
BPND (n = 10) in the putamen of 100 and 96% for the
manual and FreeSurfer methods, respectively. A 20%
change represents a Cohen’s d of over 6, which is

Table 3 Two sets of mean absolute variability (AV) values and intraclass correlation coefficients (ICC) of the binding potential (BPND)
of [11C]SCH23390 in four brain regions derived from two different methods (each defined in the leftmost column) in each of three
parts of the image analysis process: (1) manual/FreeSurfer ROIs, (2) no realignment/realignment, and (3) manual cerebellum ROI/
automated FSL cerebellum ROI)

Method (1/2) ROI AV (%)
method 1

AV (%)
method 2

AV diff (95% CI) ICC (95% CI)
Method 1

ICC (95% CI)
Method 2

ROI definition
Method 1: manual
Method 2: FreeSurfer

CAU 9.45 9.79 1.61 (− 1.96, 1.27) 0.79 (0.49, 0.92) 0.87 (0.66, 0.95)

PUT 4.82 4.72 0.95 (− 0.86, 1.05) 0.73 (0.38, 0.90) 0.84 (0.59, 0.94)

DLPFC 13.17 14.30 2.67 (− 3.79, 1.55) 0.72 (0.36, 0.89) 0.72 (0.36, 0.90)

INS 9.73 7.94 1.76 (0.03, 3.54) 0.31 (− 0.25, 0.70) 0.46 (− 0.07, 0.78)

Movement correction
Method 1: none
Method 2: realignment

CAU 13.78 6.81 4.43 (2.55, 11.40) 0.79 (0.50, 0.93) 0.86 (0.64, 0.95)

PUT 5.88 3.76 1.68 (0.45, 3.80) 0.75 (0.40, 0.91) 0.81 (0.53, 0.93)

DLPFC 19.48 10.08 6.08 (3.32, 15.48) 0.63 (0.21, 0.86) 0.77 (0.44, 0.91)

INS 9.40 8.47 1.50 (− 0.56, 2.44) 0.38 (− 0.18, 0.74) 0.37 (− 0.18, 0.74)

Definition of reference region (cerebellum)
Method 1: manual
Method 2: FSL

CAU 10.60 9.15 1.86 (− 0.41, 3.30) 0.81 (0.53, 0.93) 0.84 (0.59, 0.94)

PUT 5.37 4.38 2.04 (1.05, 3.03) 0.77 (0.45, 0.91) 0.76 (0.41, 0.91)

DLPFC 15.29 11.54 6.08 (− 2.33, 9.82) 0.71 (0.33, 0.89) 0.73 (0.38, 0.90)

INS 10.73 7.88 2.81 (0.05, 5.66) 0.23 (−0.34, 0.66) 0.50 (− 0.02, 0.80)
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extremely high for biological changes but commonly
seen in drug receptor occupancy studies.
Whereas significant ventricular enlargement and

cerebral cortical atrophy are a well-replicated observa-
tion in schizophrenia, these changes are usually small
and require large sample sizes for detection [64, 65].
Hence, the present findings in healthy volunteers
should be applicable in schizophrenia research. Im-
portantly, our results do not support a role for differ-
ent ROI delineation methods as an explanation for
discrepant results in studies on D1-R in drug-naïve
schizophrenia. In contrast, the present increase in
BPND in putamen and DLPFC with improved absolute
variability after realignment may be more relevant. In
studies in drug-naïve samples, Okubo et al. found
lower D1-R in the frontal cortex in patients, whereas
Abi-Dargham and colleagues found higher levels [5, 6]
and Karlsson et al. found no significant differences, al-
though D1-R was numerically higher with an effect size of
0.3 in the frontal cortex [8, 13]. Across all of these papers,
movement correction is only described in the 2002 study
by Abi-Dargham et al. [5], but no information is pro-
vided in the 2012 paper [6]. Although both our previ-
ous and the present studies employed head fixation to
minimize head movement, the present results show
that the absence of movement correction may still
produce both lower BPND and lower reliability. It
should be noted that the magnitude of change in
BPND values following movement correction would
not be sufficiently large to explain the differences in
the direction of the reported clinical findings. How-
ever, it may be speculated that movement artifacts
may have occurred more commonly among patients
than healthy volunteers and subsequently biased the
results.
In contrast to the subtle structural brain changes in

schizophrenia, gross changes are consistently seen in
neurodegenerative diseases such as Alzheimer’s, Parkin-
son’s, and Huntington’s diseases [66–68]. Structural
brain changes may be biased differently by the manual
and automated methods, as shown in a recent
cross-validation study among automated and manual
ROI methods on patients with multiple sclerosis where
differences in atrophy measurements both in size and
proportionality were demonstrated [69]. Although Free-
Surfer has functionality for manual intervention to
accommodate for certain morphological changes [54],
the present results of similar absolute variability of
manual and automated FresSurfer ROI definition (for
PET) in healthy subjects need to be confirmed in pa-
tient with neurodegenerative disorders.
There are two major advantages of automated ROI def-

inition. First, it is less labor-intensive than tedious hand
tracing of ROIs, especially in large high-resolution data

sets, and second, it is less biased to rater subjectivity when
compared to manual methods. Additionally, automated
ROI definition is more amenable for pooling data for
meta-analysis, an important aspect since PET studies in
patient populations usually have small sample sizes.

Conclusions
In summary, the results show that the repeatability of
BPND was similar between the manual and FS ROIs,
while it improved after realignment in all regions. The
results suggest that the choice of the ROI method is
more dependent on questions of validity, such as ana-
tomical precision, which may be particularly important
in patients with gross morphological changes or very
localized pathology. The importance of the correction of
motion artifacts by realignment to obtain higher and
more reliable BPND values may be particularly important
in patient populations such as schizophrenia where
motion artifacts may be more prevalent.

Additional file

Additional file 1: Table S1. Mean BPND values of [11C]SCH23390 in the
morning and afternoon, the absolute variability, and ICC in 15 healthy
men in four brain regions. There are eight BPND values for each region
derived from the different combinations of methods in the analysis
process. (DOCX 18 kb)
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