
ORIGINAL RESEARCH Open Access

Statistical evaluation of test-retest studies
in PET brain imaging
Richard Baumgartner1* , Aniket Joshi2, Dai Feng1, Francesca Zanderigo3,4 and R. Todd Ogden4,5

Abstract

Background: Positron emission tomography (PET) is a molecular imaging technology that enables in vivo
quantification of metabolic activity or receptor density, among other applications. Examples of applications of PET
imaging in neuroscience include studies of neuroreceptor/neurotransmitter levels in neuropsychiatric diseases (e.g.,
measuring receptor expression in schizophrenia) and of misfolded protein levels in neurodegenerative diseases (e.g.,
beta amyloid and tau deposits in Alzheimer’s disease). Assessment of a PET tracer’s test-retest properties is an
important component of tracer validation, and it is usually carried out using data from a small number of subjects.

Results: Here, we investigate advantages and limitations of test-retest metrics that are commonly used for PET brain
imaging, including percent test-retest difference and intraclass correlation coefficient (ICC). In addition, we show how
random effects analysis of variance, which forms the basis for ICC, can be used to derive additional test-retest metrics,
which are generally not reported in the PET brain imaging test-retest literature, such as within-subject coefficient of
variation and repeatability coefficient. We reevaluate data from five published clinical PET imaging test-retest studies to
illustrate the relative merits and utility of the various test-retest metrics. We provide recommendations on evaluation of
test-retest in brain PET imaging and show how the random effects ANOVA based metrics can be used to supplement
the commonly used metrics such as percent test-retest.

Conclusions: Random effects ANOVA is a useful model for PET brain imaging test-retest studies. The metrics that
ensue from this model are recommended to be reported along with the percent test-retest metric as they capture
various sources of variability in the PET test-retest experiments in a succinct way.

Background
Positron emission tomography (PET) is a molecular im-
aging technology used for in vivo measurement of metabol-
ism and neurochemistry, including measurement of
cerebral blood flow, glucose metabolism, oxygen utilization,
and density of neuroreceptors or other molecular targets
[1, 2]. As an integral component of the validation of novel
PET tracers, a test-retest experiment is usually first con-
ducted to measure repeatability of the measurements.
The main purpose of a test-retest experiment is to in-

form about within-subject variability, i.e., how close the
measurements are when they are obtained repeatedly on
the same subject under identical conditions. It is common
then to compare these measures of repeatability—cer-
tainly, when considering multiple methods of processing
and/or modeling PET data. Often, standardized measures

of repeatability are used as general metrics to help judge
the general utility of a tracer, although it is not obvious
that it is appropriate to compare these measures across
tracers or across molecular targets.
The test-retest experiment is most naturally relevant for

evaluating a tracers’ utility for use in a study involving mul-
tiple measurements on the same subject, e.g., an occupancy
study or a study measuring the effect of some intervention.
As we will summarize here, most of the indices used to
summarize the results of test-retest experiments measure
quantities that are important for such experiments. Note,
however, that these indices by themselves do not provide all
the useful information when considering other types of PET
studies, i.e., a cross-sectional study of two groups of subjects.
Still, the test-retest repeatability of a tracer is an import-

ant criterion to help select a tracer for a particular target
among multiple available tracers [3], although of course
several other criteria (e.g., robust radiochemistry, large
specific-to-nonspecific signal, and absence of off-target
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binding) are also important factors. Going beyond tracer
evaluation, test-retest studies also provide useful data for
determining the optimal approach among various quantifi-
cation techniques (e.g., modeling strategies or outcome
measures) for a given tracer. Test-retest studies are also
useful for understanding the relative variability among mul-
tiple region of interests (ROIs).
In general, test-retest repeatability usually refers to meas-

uring the variability when repeated measurements are ac-
quired on the same experimental unit under identical (or
nearly identical) conditions [4]. Various metrics have been
proposed in the statistical and PET literature to evaluate
test-retest experiments such as percent test retest (PTRT),
intraclass correlation coefficient (ICC), within-subject coef-
ficient of variation (WSCV) or repeatability coefficient
(RC), and we will describe these in some detail in the next
section. Briefly, these metrics can be classified as either
scaled or unscaled indices of agreement [5]. Unscaled indi-
ces of agreement summarize the test-retest repeatability
based on differences of original measurements and there-
fore are obtained on the original unit of measurement, ex-
ample of which would be RC. In contrast, scaled indices of
agreement are normalized with respect to some given
quantity and are therefore (unitless) relative measures.
Common examples of scaled measures are “percent test re-
test” which is commonly reported in PET studies.
A very recent article by Lodge [6], assesses repeatability

of very common PET-based measurements in oncology
applications focusing on only one tracer (18F–FDG) and
one summary measure (standardized uptake value (SUV)).
In that paper, Lodge reviews multiple relevant test-retest
studies that report results in inconsistent ways depending
on several repeatability measures, and so syntheses of
these studies is quite challenging. This illustrates the need
to critically evaluate the various measures that are re-
ported in the PET imaging literature. Our objective here is
to provide a comprehensive assessment of test-retest eval-
uations in PET brain imaging, in particular with respect to
the assumptions of the random effects ANOVA model
that underlies the ICC statistic. Similar critical reviews of
repeatability experiments have recently been conducted
for other modalities (e.g., electrocardiogram data [7]). To
illustrate the utility of the different test-retest metrics, we
reevaluated data from five published brain PET test-retest

studies in humans. Finally, we provide a discussion of the
merits and applicability of the test-retest metrics for future
PET brain imaging studies.

Methods
Description of the data sets
We considered five published brain PET test-retest data-
sets [8–12], whose details are reported in Table 1.

Statistical model for test-retest
The most basic model for a test-retest experiment is the
standard random effects ANOVA:

yij ¼ μþ si þ eij ð1Þ
where yij is the PET outcome measure corresponding to
scan j observed on the i-th subject (i = 1…n) (typically
two repeated scans (j = 1,2) are obtained in brain PET
test-retest studies), si is the subject-level random effect,
and eij is the measurement error, with si and eij mutually
independent and normally distributed:

si � N 0; σ2s
� �

eij � N 0; σ2e
� �

where σsand σeare the between- and within-subject
standard deviations, respectively.
Estimation of the parameters μ, σe, and σs in model (1)

is described in Appendix for completeness. The compu-
tation was implemented using the R package “agRee”
[13]. There are two scaled indices and one unscaled
index of agreement that naturally ensue from model (1)
that were proposed for characterization of a test-retest
experiment:
1) the WSCV [14, 15], defined as

WSCV ¼ σe
μ

ð2Þ

2) the ICC, defined as

ICC ¼ σ2S
σ2
S þ σ2e

ð3Þ

3) an unscaled RC, that is given as

Table 1 Summary table of the considered clinical brain PET test-retest data sets

Data set Data set ID Study Target Number
of subjects

[11C]CUMI-101 DS1 Milak et al., J Nucl Med. 2010; 51(12): 1892–900 Serotonin 1A receptor 7

[11C]DASB DS2 Ogden et al., J Cereb Blood Flow Metab. 2007; 27(1): 205–17 Serotonin transporter 10

[11C]PE2I DS3 Delorenzo et al., J Cereb Blood Flow Metab. 2009; 29(7): 1332–45 Dopamine transporter 7

[11C]WAY-100635 DS4 Parsey et al., J Cereb Blood Flow Metab. 2000; 20(7): 1111–33 Serotonin 1A receptor 5

[11C]ABP688 DS5 Delorenzo et al., J Cereb Blood Flow Metab. 2011; 31(11): 2169–80 Glutamate receptor subtype 5 8
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RC ¼
ffiffiffi
2

p
z1−α=2 σe; ð4Þ

where z1−α/2 is the 1−α/2 quantile of standard normal dis-
tribution. The RC can also be interpreted as the smallest
detectable difference (SDD) between a test and retest meas-
urement for a given subject. It is defined as a 100(1−α/2)%
quantile of the distribution of test-retest differences. Thus,
this quantile represents limits of a typical range containing
large proportion (e.g., 95%) of the distribution of test-retest
differences (with α = 0.05, z1−α/2 = 1.96 [15]).
As described in the “Introduction” section, percent

test-retest (PTRT) is a ubiquitous measure in PET brain
imaging although it is not often used in other related
fields. In early PET test-retest papers, signed (or raw)
mean normalized test-retest differences were considered
[16, 17], but later authors generally used the absolute
values of the normalized differences instead [18]. Follow-
ing this latter definition, PTRT is calculated as follows:

PTRT ¼ 1
n

Xn
i¼1

2
yi2−yi1
yi2 þ yi1

����
���� ð5Þ

Where n is the number of subjects in the test-retest
study and yi1 and yi2 are the estimated PET outcome
measures obtained for the i-th subject in a given region
in the test and in the retest scan, respectively.

Bland-Altman plot
Bland-Altman plots show mean vs. difference of test-
retest observations for each subject involved in the study
and therefore provide a comprehensive visual assess-
ment of the data [19].

PET test-retest data
The total volume of distribution (VT) [20] was considered
as the PET outcome measure that was calculated using
three different quantification strategies, one- (1TC) and
two-tissue compartment (2TC) models [21], and a graph-
ical approach, the likelihood estimation in graphical analysis
(LEGA) [22].It should be noted that the purpose here of
considering three different quantification approaches is not
to revisit the question of determining the “best” modeling
approach for each tracer. This question has been ad-
equately addressed in the original manuscripts for the re-
spective tracers. Rather, multiple quantification approaches
provide additional datasets to illustrate how the different
test-retest metrics can be applied and what attributes of the
data and quantification method can be measured. Ten
ROIs were considered in common across all five data sets:
anterior cingulate, amygdala, dorsal caudate, dorsolateral
prefrontal cortex, gray matter cerebellum, hippocampus, in-
sula, midbrain, parietal lobe, and ventral striatum. In the
case of [11C]WAY-100635, an additional ROI, the white

matter cerebellum, was considered [11], but not included in
this analysis to maintain the same ROIs across all tracers.
The test-retest variability is a result of noise in the ROI and
in the arterial input function and is impacted by the size of
the ROI. Analysis in this paper does not consider the ROI
size as a factor, since ROI-size is the same for different
tracers binding to the same target.

Results
The variability of PTRT and WSCV across datasets and
considered ROIs is shown in Fig. 1. For a given dataset,
each point in this plot represents a particular ROI. Both
metrics show similar values (between 5 and 20%) for
most datasets and for the majority of ROIs. Whether the
test-retest metric of any given tracer is adequate for any
particular clinical study depends on the effect size being
investigated. Among the relevant ROIs, the ROIs with
better test-retest reliability will be typically used for the
main analysis. For some datasets, measures of reliability
may be different depending on the selected modeling ap-
proach. As an example, results for the DS1 dataset
([11C]CUMI-101) are summarized below. According to
the PTRT and WSCV criteria, for most datasets, the
2TC model shows worse test-retest reliability than the
more parsimonious 1TC model, as expected. Graphical
approaches (such LEGA) tend to be more robust than
kinetic models to presence of noise in the data, and thus
usually yield fewer or no outliers, which can influence
test-retest repeatability. Among kinetic models, the 2TC
model is more prone to generating outliers than the
more parsimonious 1TC model. To demonstrate how
various ROIs are performing across different test-retest
metrics, they are plotted in the same color across data-
sets and fitting methods.
The ICC values obtained across datasets (shown in

Fig. 2 in the same fashion as in Fig. 1) provide a similar
picture as PTRT and WSCV in terms of test-retest re-
peatability. The ICC ranges between very high (close to
1) and lower (ICC value ~ 0.5). Again, outlying ROIs for
the 2TC model in datasets DS1 and DS3 considerably
reduce the corresponding ICC.
Figure 3 shows RC as an unscaled index of agreement

along with the grand mean μ derived from random ef-
fects ANOVA (Eq. 1). The outlying ROIs appear as influ-
ential points in the plots.
A key utility of the test-retest metrics is selecting a

tracer among many for a particular target. For example,
[11C]WAY-100635 and [11C]CUMI-101 are both tracers
for the serotonin 1A receptor. The ICC, PTRT, and
WSCV show lower test-retest variability for [11C]CUMI-
101 compared to [11C]WAY-100635 (Figs. 1 and 2),
indicating that [11C]CUMI-101 considering only the
test-retest repeatability aspect would be preferred of the
tracer, for the serotonin 1A receptor.
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In order to investigate various real-life scenarios, a
graphical representation of the data by means of the
Bland-Altman plots is shown for a particular dataset
([11C]CUMI-101) and a particular ROI (amygdala)
across different quantification strategies (Fig. 4). Ninety-
five percent of differences between test-retest measures
are expected to lie between the limits of agreement, and
these lines indicate if the two measures can be inter-
changed without altering the clinical interpretation [15].
The other metrics obtained from this particular dataset

and ROI are reported in Table 2. From Fig. 4a, c as well as
Table 2, it can be seen that the test-retest repeatability for
the 1TC model and LEGA is very good across both scaled
indices of agreement (WSCV and PTRT are about 5%, and
ICC is higher than 0.93) and where the Bland-Altman plots
show random variation across the sampling range, albeit

with small bias for both methods. Good repeatability can
also be observed in the ratio of the RC and grand mean μ,
as this ratio is obtained as WSCV scaled by a constant fac-
tor. For the 2TC model, however, the test-retest repeatabil-
ity is quite poor. As shown in the Bland-Altman plot in
Fig. 4b, there is an influential, outlying observation for a
particular subject. This may be due to poor identifiability of
one of the four kinetic rate parameters of the 2TC model,
which results in unreasonably high value for that ROI VT

and thus may cause deterioration of the overall test-retest
metrics. Notably, the PTRT appears to be less sensitive to
the outlier. This may be explained by the local as opposed
to global scaling of the PTRT and WSCV, respectively. This
potential insensitivity of PTRT to outliers values under-
scores the utility of Bland-Altman plots to visualize test-
retest data. This result also strongly underscores the value

Fig. 1 Percent test-retest (PTRT, upper panel) and within-subject coefficient of variation (WSCV, lower panel) across the considered datasets. Each
point in the plot, for a given dataset, represents a particular region of interest (ROI) so that the plot represents the variability of PTRT or WSCV
across the considered ROIs. For each data set, DS1, DS2, DS3, DS4, and DS5, there were three quantification methods investigated (1, 2, and L
denote one-tissue compartment model, two-tissue compartment model, and likelihood estimation in graphical analysis, respectively)
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of reporting more than just PTRT in PET test-retest stud-
ies, since this metric attenuates a poor test-rest datapoint,
while ICC and WSCV appropriately highlight its influence.

Discussion
Our main goal was to investigate current approaches to
the evaluation of test-retest experiments in PET brain im-
aging from a statistical point of view and to provide in-
sights and guidance for using indices of agreement in
addition to the typically reported PTRT metric. In this
evaluation, the random effects ANOVA model underpins
the rationale for most metrics and we found it to be a use-
ful model for brain PET imaging, as it describes and quan-
tifies the test-retest PET experiments in a succinct way,
while at the same time capturing various random varia-
tions present in the data. With respect to random effects
ANOVA, three metrics obtained from the model (ICC,
RC, and WSCV) reveal several aspects of the data. The
ICC provides information about distinguishability of the
subjects [23]. As ICC is a ratio of between-subject vari-
ance to total variance, it quantifies the agreement of the
test-retest readings (given by the within-subject standard
deviation (WSSD)) relative to the spread of the subjects
(characterized by between-subject standard deviation).
The higher the between-subject variability is, the better
the distinguishability. As ICC depends on the between-
subject variability expressed by the between-subject devi-
ation, it has been pointed out that care needs to be paid to
comparisons of the ICC across groups for which the

between-subject variability may be different [23]. WSCV
provides information about the agreement between test-
retest readings with respect to the overall signal (estimated
as population mean from the random effects ANOVA
model). RC is an unscaled index of agreement, reflecting
agreement between the test-retest readings proportional
to the WSSD (which is estimated as a square root of the
within-subject mean sum of squares or WSMSS).
In PET imaging literature, several test-retest outcome

metrics are commonly reported, but there has been no
general consensus as to which outcome metrics should be
used. We found it useful to classify the metrics based on
the underlying statistical model, such as random effects
ANOVA vs. other metrics. The most popular metrics
based on random effect ANOVA are ICC and WSMSS
[8–12, 24, 25]. WSMSS is directly related to the RC, as
square root of WSMSS and is an estimate of the WSSD.
WSCV, which also ensues for random effect ANOVA
model, is only rarely reported in test-retest studies in PET
brain imaging [11]. In PET test/retest studies, ICC is usu-
ally calculated assuming a one-way ANOVA (4). However,
in some cases, a two-way mixed effect model has also
been applied [26]. Since typical test/retest studies consist
of two images per subject, we generally recommend calcu-
lating ICC according to the one-way model.
The most commonly used test-retest metric in PET

imaging is PTRT (reported virtually in all PET imaging
studies with test-retest experiment). PTRT is obtained
from mean normalized differences of test-retest samples.

Fig. 2 Intraclass correlation coefficient (ICC) across the considered datasets. Each point in the plot, for a given dataset, represents a particular
region of interest (ROI) so that the plot represents the variability of ICC across the considered ROIs. For each data set, DS1, DS2, DS3, DS4, and
DS5, there were three quantification methods investigated (1, 2, and L denote one-tissue compartment model, two-tissue compartment model,
and likelihood estimation in graphical analysis, respectively)

Baumgartner et al. EJNMMI Research  (2018) 8:13 Page 5 of 9



With respect to the random effects ANOVA model,
PTRT does not estimate any parameter or function of
parameters of the model. Using a first order Taylor ex-
pansion (see also Appendix), it can be shown that the
mean normalized differences are akin to taking log
transform of the data. Therefore, it is expected that the
PTRT will not be as sensitive to outliers, as these will be
scaled “locally” by the corresponding test-retest mean.
Also, due to local scaling, the spread of PTRT is small
compared to ICC where the scaling is global. This may
significantly underestimate the test-retest repeatability
measured with PTRT as seen in the analysis of
[11C]CUMI dataset (Table 2). Both PTRT and WSCV
provide an intuition to the tracer’s limit on detecting dif-
ferences (e.g., a difference smaller than PTRT and
WSCV is unlikely to be detected). The overall rank

ordering of regions in terms of test-retest reliability is
similar between PTRT and WSCV. Due to inherent
small sample size in PET reliability experiments, confi-
dence intervals for the test-retest metrics will generally
be fairly wide. Thus, small differences in these measures
may not be meaningful. As a general recommendation,
the random effect ANOVA model is a useful model for
the PET test-retest studies and therefore measures ensu-
ing from it should be reported together with the PTRT,
in the case of two repeated measures (one test and one
retest). Although more than two repetitions for the
PET imaging are not typical, it is worth to note that
PTRT is not straightforwardly generalizable for more
than two test/retest periods, whereas the ANOVA in-
dices can be applied naturally regardless of the num-
ber of repeated observations.

Fig. 3 Repeatability coefficient (RC) and grand mean across the considered datasets (upper panel and lower panel respectively). Each point in the
plot, for a given dataset, represents a particular region of interest (ROI) so that the plot represents the variability of RC across the considered ROIs.
For each data set, DS1, DS2, DS3, DS4, and DS5, there were three quantification methods investigated (1, 2, and L denote one-tissue compartment
model, two-tissue compartment model, and likelihood estimation in graphical analysis, respectively)
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Test-retest metrics that are directly derived from the
random ANOVA model (WSCV, ICC, and RC) can be
also used for sample size calculation when planning a
study that involves multiple PET scans per subject. A
method for sample size calculation for ICC was suggested
in [27], which is based on determination of necessary sam-
ple size to achieve pre-specified precision of ICC given by
a corresponding confidence interval width. This approach
can be used in a straightforward way also for the WSCV
and RC indices, but not for the PTRT. We emphasize that
while these summaries are quite valuable for planning
studies that involve multiple PET scans per subject, they
are not directly relevant for planning cross-sectional stud-
ies. For example, for a pre-post study design, within-
subject standard deviation obtained from a test-retest ex-
periment may be used for sample size calculation given an
assumed effect size (mean difference between pre- and
post- periods) as shown in [28].
Bland-Altman plots represent a mainstay in the graph-

ical display of test-retest data. However, they are rarely
used in PET brain imaging [29]. Bland-Altman plots
should be used as a first step in the analysis as they may
be helpful in better understanding the dependence of
variability on the signal strength as well as potential bias
between test and retest measurements.
When characterizing test-retest properties of a par-

ticular tracer, one may aim at an overall measure
across several ROIs or at a region-specific measure of
reliability in a priori regions with hypothesized or con-
firmed biological relevance to the population and/or
application at hand. In our investigation, we found that
some ROIs may exhibit better performance than
others, so ROI-wise comparisons are worth consider-
ing. In addition, various ROIs may show different
uptake characteristics that influence their noise proper-
ties (e.g., high-binding vs. low-binding ROIs), and in
that case, test-retest properties could be investigated
region-by-region; however, pooling all ROIs into an ag-
gregate test-retest metric may also be carried out if
there is an application specific requirement. The differ-
ence in ROI-size influences the noise in the region
which is the cause of test-retest repeatability metric.
Thus, the ROI size will not have an impact on the con-
clusions drawn from test-retest repeatability metrics if
the image processing is performed in a uniform fashion
across studies, which was the case in the datasets
chosen for this paper.
All the scaled metrics will be useful to compare re-

peatability of the same ROIs from different tracers as
well as different ROIs of the same tracer. As seen in
case of [11C]CUMI-101 and [11C]WAY-100635 for the
serotonin 1A receptor; all things being equal, these
repeatability metrics can help choose the tracer for a
given target.

Fig. 4 Bland-Altman plots of the [11C]CUMI-101 dataseDS1 for a 1TC
model, b 2TC model, and c LEGA approach
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Conclusions
Random effects ANOVA is a useful model for PET
brain imaging test-retest studies. The metrics that
ensue from this model such as ICC, RC and WSVC
are recommended to be reported along with the
percent test-retest metric as they capture various
sources of variability in the PET test-retest experi-
ments in a succinct way.

Appendix
Estimation of the parameters in test-retest experiment
(estimators denoted by hat):

σ̂2
e ¼ WSMSS ¼ 1

n

Xn
i¼1

X2
j¼1

yij−yi
� �2

BSMSS ¼ 1
n−1

Xn
i¼1

yi−μ̂ð Þ2

μ̂ ¼ 1
n

Xn
i¼1

yi

σ̂2
S ¼

n−1ð ÞBSMSS−n WSMSS
n−1ð ÞBSMSSþ n WSMSS

RĈ ¼
ffiffiffi
2

p
z1−α=2σ̂e

Where WSMSS and BSMSS are within and between
mean sum of squares, respectively.
Also, confidence intervals for the estimates of ICC and

WSCV are available (see [14] and [30], respectively).
For the RC under the one-way random ANOVA

model, the confidence limits of the exact 100(1−α)% CI
can be obtained as follows (r is number of repetitions,
typically r = 2):

RĈCL ¼ z1−α=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n r−1ð ÞWSMSS=χ2n r−1ð Þ 1−α=2ð Þ

q

RĈCU ¼ z1−α=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n r−1ð ÞWSMSS=χ2n r−1ð Þ α=2ð Þ

q

CIWIDTH ¼ RĈCU−RĈCL

where χ2dðαÞ is an α quantile of χ2 distribution with d de-
grees of freedom.
Mean normalized difference as a Taylor expansion-

based approximation of log transformed differences.
Consider two real numbers y2 and y1 (e.g. they could

represent two test-retest measurements):

Then, their difference (diff), mean normalized difference
(mdiff), and log difference (ldiff) are defined as follows:

diff ¼ y2−y1

mdiff ¼ y2−y1ð Þ 1
y2 þ y1ð Þ=2 ¼ 2diff

y2 þ y1ð Þ
ldif f ¼ logy2− logy1 ¼ log

y2
y1

Let R be defined as follows:

R ¼ 1−
y2
y

Then expressing mdiff and ldiff in terms of R and
expanding them as the Taylor series in terms of R we ob-
tain the following:

mdiff ¼ R−
R2

2
þ R3

4
−
R4

8
þ… −1ð Þi−1 Ri

2i−1
þ…

ldiff ¼ R−
R2

2
þ R3

3
−
R4

4
þ… −1ð Þi−1 R

i

i
þ…

We observe that the first two terms of the Taylor
expansion for mdiff and ldiff are identical, and they
differ at the higher order terms greater than 2.
Therefore, mdiff can be considered an approximation
of ldiff.
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