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Abstract

Background: Building a universal genomic signature predicting the intensity of FDG uptake in diverse metastatic
tumors may allow us to understand better the biological processes underlying this phenomenon and their
requirements of glucose uptake.

Methods: A balanced training set (n =71) of metastatic tumors including some of the most frequent histologies, with
matched PET/CT quantification measurements and whole human genome gene expression microarrays, was used to
build the signature. Selection of microarray features was carried out exclusively on the basis of their strong association
with FDG uptake (as measured by SUVmean35) by means of univariate linear regression. A thorough bioinformatics
study of these genes was performed, and multivariable models were built by fitting several state of the art regression
techniques to the training set for comparison.

Results: The 909 probes with the strongest association with the SUVmean35 (comprising 742 identifiable genes and
62 probes not matched to a symbol) were used to build the signature. Partial least squares using three components
(PLS-3) was the best performing model in the training dataset cross-validation (root mean square error, RMSE = 0.443)
and was validated further in an independent validation dataset (n = 13) obtaining a performance within the 95% Cl of
that obtained in the training dataset (RMSE = 0.645). Significantly overrepresented biological processes correlating with
the SUVmean35 were identified beyond glycolysis, such as ribosome biogenesis and DNA replication (correlating with
a higher SUVmean35) and cytoskeleton reorganization and autophagy (correlating with a lower SUVmean35).

Conclusions: PLS-3 is a signature predicting accurately the intensity of FDG uptake in diverse metastatic tumors.
FDG-PET might help in the design of specific targeted therapies directed to counteract the identified malignant
biological processes more likely activated in a tumor as inferred from the SUVmean35 and also from its variations
in response to antineoplastic treatments.
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Background use of this technique that is gaining more acceptance in

2 [18F] Fluoro-2-deoxy-D-glucose (FDG) positron emis-
sion tomography (PET) is a metabolic imaging technique
commonly used in the clinic to evaluate the extension of
primary or metastatic tumors prior to therapy. Another
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oncology is the assessment of early metabolic response
to antineoplastic agents in advanced and metastatic
tumors [1, 2].

At the molecular level, FDG uptake has been related
mainly to aerobic glycolysis, but a full picture of the differ-
ent biological pathways involved in this process is currently
lacking. While the core molecular machinery of glycolysis
is widespread in all tumors, the intensity of FDG uptake is
quite variable among different tumor histologies and even
among the same tumor histotypes according to specific
tumor characteristics [3, 4]. Some studies have correlated
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the tumor FDG uptake with the expression of essential
glycolytic enzymes such as hexokinase-2 or related pro-
teins like glucose transporters Glutl-3 [5-9]. However, a
good correlation between these biomarkers and the inten-
sity of FDG uptake is not always found in all tumor types
[9]. Other preclinical studies in cancer cell lines have also
shown that other biological processes can also be concomi-
tantly upregulated in the presence of higher uptake of
FDG in tumors, as it happens in the activation of onco-
genic pathways such as KRAS, PI3K, and ¢-MYC [10-12].
All these studies have focused in a limited number of se-
lected genes and in specific tumor types, gathering thus a
limited view of the biology of FDG uptake.

As metastases are the main cause of cancer-related
death, a growing interest in metastatic cancer has been
recently spurred on by a more thorough characterization
of the genomic landscape of these tumors [13]. Hence,
we reasoned that a better understanding of the biological
processes involved in FDG uptake could be glimpsed by
studying a representative sample of diverse human meta-
static tumors, accounting thus for a greater tumor het-
erogeneity but retaining a number of common processes
underlying the biology of FDG uptake beyond glycolysis.

The purpose of the present study was to build a gen-
omic signature able to predict FDG uptake intensity in a
diverse population of metastatic tumors, by using an un-
biased gene expression profiling not limited to a prede-
fined set of genes, but rather using whole human
genome gene expression microarrays. To achieve this
goal, a different methodology from that used previously
in other signatures, that were trained on a single tumor
type [14, 15], was required. Individual genes were se-
lected exclusively by their strong association with FDG
uptake by means of univariate linear regression. Then,
these selected genomic features were used to build and
validate the signature, chosen by comparing several state
of the art predictive regression methods. The selected
genes would also allow us to deepen into the overrepre-
sented biological processes and signaling pathways com-
mon to glucose uptake in different metastatic tumors, as
well as into the potential protein-protein interaction
(PPI) subnetworks found among the selected features.

A deeper knowledge of the metabolic pathways beyond
glycolysis involved in FDG uptake might contribute to
establish the usefulness of FDG PET/CT in indications
such as the evaluation of early metabolic response with
different targeted therapies.

Patients and Methods

Inclusion criteria

The conditions that patients should meet to enter this
study were (a) a diagnosis of metastatic tumor (all were
solid except a single patient with non-Hodgkin
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lymphoma) with a baseline FDG-PET/CT in order to
evaluate the extent of disease and at a later point treat-
ment response, (b) a fresh frozen tumor biopsy taken at
the same metastatic location in which FDG uptake was
measured for a gene expression microarray, that was
performed within a maximum interval of 8 weeks of the
FDG-PET/CT, (c) the patients had not received
chemotherapy treatment in the 3 weeks prior to the in-
clusion in the study, and (d) patients in whom no active
tumor could be identified by FDG-PET were excluded
from the study. Seventy-one cancer patients, seen be-
tween July 2010 and July 2015 at Hospital Quironsalud
Torrevieja (Alicante, Spain), met these requirements and
were retrospectively evaluated. In 3 of these patients,
more than one microarray studies had been performed
several months apart, but only the first one was included
in this study. No other restrictions applied to the
patients entering the study on the basis of sex, age, hist-
ology of the tumor, or previous treatments. Informed
consents for the obtention of the diagnostic-therapeutic
biopsy and for undergoing FDG-PET/CT in the patients
included in this study were obtained. Approval of this
study by the Institutional Review Board of Hospital
Quironsalud Torrevieja (Alicante, Spain) was also
obtained.

These 71 patients comprised the training set used to
build the predictive genomic signature. A balanced pro-
portion of some of the most frequent tumor histologies
(eight tumor types comprising from 5 to 9 patients) along
with a group of miscellaneous tumor types constituted
this training set (see Table 2). The hypothesis made was
that we would be able to capture the underlying common
biological processes related to the intensity of FDG uptake
shared by different solid tumors by selecting the micro-
array probes most strongly correlated with FDG uptake
(by means of univariate linear regression) in order to build
a predictive signature (see Additional file 1 for full details).
Besides, 14 additional patients were seen at our institution
after July 2015 and were evaluated prospectively to valid-
ate (external validation set) the predictive signature gener-
ated with the training set. The signature underwent first
an internal validation (tenfold cross-validation x 5 in the
training set) to choose the best performing model among
the four tested as well as to estimate the performance of
the signature in an unseen (by the model) dataset [16] and
an external validation in an independent dataset (not used
to build the model) to test it further. One patient was ex-
cluded from the external validation set as he was consid-
ered a clear-cut outlier presenting extremely high values
of FDG uptake, as outliers have detrimental effects both in
the generation and in the validation of the model. An out-
lier was defined as those measurement values of FDG up-
take that, taking as reference the values of the training set,
were either:
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<P1-1.5 x (P3 - P1); or

>P3+1.5 x (P3 - P1)
where P1 was the 25% percentile and P3 was the 75%
percentile.

Among the remaining 13 patients of the validation set,
one had a value of FDG uptake just below the patient
with the lowest limit in the training set, although it was
not a low outlier as defined here. We called this patient
sample an “influential observation.” This term is taken
from the regression argot and used here with a similar
meaning: how different would it be a model prediction if
we were to exclude this observation. After logarithmic
transformation, this observation was just a little outside
the limit of the low outlier boundaries. Nevertheless, in
spite of being aware of the limitations of including such
a patient (with an uptake value below the prediction
range of the training set and a borderline low outlier) for
achieving an accurate prediction, we did not exclude her
from the validation set in order to study the effect on
the predictive accuracy of the signature of excluding this
influential observation from the validation set.

FDG-PET/CT imaging and quantification

All patients fasted for at least 6 h prior to imaging, and pre-
examination blood glucose levels were obtained. Patients
were injected with 444 MBq (12 mCi) pyrogen-free
18F-FDG. Imaging was performed 90 min (+ 10) later on a
Biograph 6 Hi-Rez (Siemens Medical Solutions). Whole
body PET/CT scanners were acquired in accordance with
the HQT PET protocol. CT data was used for attenuation
correction (120 mAs Care Dose; 110 Ky, slice 5 mm) and
X-ray contrast medium was injected (65 ml ULTRAVIST®,
rate 1.6-1.8 ml/s and delay 50 s). All images were iteratively
reconstructed using post-emission transmission attenuation-
corrected datasets (size 168; zoom 1; full width at half
maximum (FHWM) 5.0 mm; iterations 4; subsets 8).

FDG uptake in the biopsied location was quantified.
Individual tumor VOIs (volume of interest) were automat-
ically drawn threshold-based, one for each patient. A stand-
ard VOI analysis tool provided with the scanner was used
to calculate the different quantitative parameters obtained
(Leonardo workstation; TRUE D Syngo MMWP 2009B).
We did not correct for partial volume effect based on the
resolution of our Siemens FDG-PET scanner (<5 mm.),
considering that the minimum diameter of all the lesions
studied were at least threefolds the FHWM (> 1.5 cm). The
following parameters of FDG quantitation were obtained
(as defined below): SUVmax, SUVmean35, SUL, SUVglu,
MTV (metabolic tumor volume), TLG (total lesion
glycolysis), and tumor to background index (T/B).

Microarray processing and statistical methodology
The protocol followed for the obtention of the matched
biopsies is the usual one at our institution and has been
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previously published [17]. Total RNA extraction was
done with RNAeasy columns (QIAGEN), and the
amount obtained was measured with the Nanodrop
spectrophotometer (ND-1000). Quality of the RNA was
measured with the Agilent 2100 Bioanalyzer. Microarray
processing and the statistical methodology used to
build and validate the signature is described in the
Additional file 1.

PET quantification parameters
SUVmean35 was defined based on our previous study
(unpublished data) as the SUV mean in a thresholded
VOI (3D isocontour at 35% of the maximum pixel
value). To calculate T/B index, two identical circular
ROIs (region of interest) 50% in size to corresponding
VOIs were centered on the area with maximum uptake
tumor localization and on the tumor-free neighboring
area respectively.

SUL (SUV normalized to lean body mass) was
calculated as follows:

SUL = LBM x SUVmeanSS/ patient weight (kg)’ where

LBM (lean body mass) was calculated according to the
formula of Janmahasatian et al. [18]

LBM male — 9270 x Patient weight (i) /
(6680+216><BMI)

LBM female = 9270 x patient weight (kg)/
(8780-+244xBMI)’

BMI (body mass index): weight/height® (kg/m?).
SUVg, (SUV corrected for the blood glucose level)
was obtained as follows [19]:

SUVglu _ (SUVmean35xbasal glucose)/loo mg/dl

MTYV was calculated as tumor volume in centimeter
cube contained in the 35% thresholded VOI. TLG was
calculated as (SUV mean) x (MTV).

Selection of a representative FDG uptake value for the
predictive signature

Among the different FDG quantification parameters
mentioned above, a thorough descriptive statistic was
carried out in the 71 patients belonging to the training
set. This preliminary analysis showed that SUVmax,
SUVmean35, and SUVglu had certain linearity and a
data distribution close to a normal distribution as dem-
onstrated by normality tests (Shapiro-Milk and
Kolmogorov-Smirnov) and QQ-plots. However, the
remaining parameters obtained (SUL, MTV, T/B, and
TLG) did not follow a normal distribution and were not
linear. We reasoned that it was convenient to choose a
representative parameter that followed a normal distri-
bution and that showed certain linearity as some
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methods making use of principal components are known
to have a better fit to this kind of data. Hence, we pre-
ferred to use either the SUVmax, SUVmean35, or
SUVglu as continuous dependent variable (the response
or outcome variable). As expected, there was a very good
correlation between SUVmean35, SUVmax, and SUVglu.
The Pearson correlation coefficient was highest and
most significant between SUVmean35 and SUVmax (r =
0.976, p<0.001). Given the concordance between
SUVmean35 and SUVmax and to avoid redundancies,
SUVmean35 was chosen. Moreover, we selected the
SUVmean35 as the dependent (or outcome) variable to
be predicted as the parameter representing FDG uptake
because of the higher intrinsic uncertainty associated
with the calculation of SUVmax and also for the better
reproducibility of SUVmean35 in accordance to our ex-
perience (unpublished data). Among these three quanti-
fication parameters mentioned above, SUVmean35 was
also preferred because its calculation has demonstrated
greater inter- and intra-observer reproducibility, in
agreement with reports recommending the use of the
SUV mean in quantifying the biological effects on tumor
response [20, 21]. SPSS software version 15.0 for
Windows was used for the descriptive statistics.

To get a better fit of the SUVmean35 to a normal dis-
tribution, and also to achieve a similar range as the pre-
dictors (probes), the SUVmean35 underwent a base 2
logarithmic transformation. The transformed data would
be used in the elaboration of the predictive model. It is
important to notice that the log-transformed
SUVmean35 values from the 71 patients in the training
set did not contain any outlier. To improve readability,
the term SUV instead of SUVmean35 was used through-
out the manuscript.

Feature selection for building the genomic signature

A key factor to the good performance of predictive
models containing a higher number of features (probes
in our case) than observations (patient samples) (i.e.,
p > N) is the selection of the most relevant features to
the response. The algorithm of supervised principal
components suggested by Hastie et al. [22] was followed
with some modifications. In brief, first, with the predic-
tors standardized, univariate regression coefficients for
the outcome (the SUV) for each one of the 22,814 fil-
tered probes was obtained. Second, reduced matrices
were formed including only those features that exceeded
certain absolute threshold in their regression coeffi-
cients, and the first three principal components of these
matrices were calculated; then, these principal compo-
nents were used in a regression model to predict the
SUV. The absolute regression coefficient threshold used
and the number of principal components were chosen
by tenfold cross-validation (CV). The functions
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superpc.cv and superpc.plotcv from the superpc library
(created by one of the authors of [22]) from the R
statistical environment were used for this purpose. The
third principal component and a regression coefficient
threshold of +1 were selected. The selected threshold
included 909 probes corresponding to 742 genes with
gene symbol and 62 probes without it. As these 62
probes without symbol might also have an important
contribution to the performance of the signature, they
were also kept.

All the 909 probes selected were included to build the
predictive model considering each one of them individu-
ally as predictor (independent variable). Thus, the statis-
tical models tested were allowed to assign the
coefficients (for three of the methods used in this study,
see the Additional file 1) or proximity measures (for
random forest, the fourth method tested in this study as
shown in the Additional file 1) most appropriate for
each probe, with the intention of increasing the overall
accuracy of the tested models. Also, bias related to any
form of summarization of the probes can be avoided in
the comparison of the models tested. The full list of the
909 probes along with their regression coefficients is
shown in Additional file 2: Table S4. As a measurement
of importance of the 909 selected probes, variable im-
portance of projection (VIP) values were calculated
using the R library plsVarSel.

Bioinformatics analysis of the selected probes
Hierarchical clustering with the selected 909 probes was
performed with the function hclust of R, using the
Spearman correlation coefficient as distance metric
(more precisely 1—correlation coefficient) and complete
linkage. A heatmap was generated with the gplots library
from R.

For a correct interpretation of the results presented in
this work, it is worth noticing that no patient in this
study had a SUV=0 (or “negative”). Thus, when we
speak below (and throughout this work) about genes (or
biological processes) positively or negatively correlated
with the SUV, what is implied is that positive refers to a
higher and negative to a lower SUV. In other words, all
the genes and biological processes studied here have a
clear relationship with the SUV.

The DAVID Bioinformatics Resources 6.7 (https://
david.ncifcrf.gov/) was used to study the biological
processes overrepresented among the signature selected
genes. To include additional biological processes less
represented in DAVID, another public resource used
was the Consensus Pathway Database, release 31 (http://
ConsensusPathDB.org) as a complement.

For the study and identification of potential protein-
protein interaction (PPI) networks among the genes se-
lected for the predictive signature, all the genes in each
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subnetwork (positive and negative correlation with the
SUV) were first mapped to their respective protein prod-
ucts using the bioinformatics resource STRING 10.0
(https://string-db.org). The threshold used to establish
the edges (interactions) among the nodes (proteins) of
the PPI networks was 0.7 (“high confidence”). Two sub-
networks were studied separately. One built using the
genes with positive and another with those with negative
correlation with the SUV (according to the sign of their
regression coefficients). In addition, hierarchical cluster-
ing using a fastgreedy algorithm (done separately in the
two subnetworks) was carried out with the libraries
STRINGdb (http://www.bioconductor.org) as an API to
the STRING database and igraph from R in order to as-
sign membership in the two subnetworks obtained. The
study of network characteristics such as those related
with centrality and connectivity was done with the
igraph library from R in the two subnetworks obtained.

Gene Set Enrichment Analysis (GSEA) was done using
the method single-sample GSEA (ssGSEA) as imple-
mented in the library GSVA (function gsva, method =
“ssgsea”) from R. Default parameters of this method
were used as described by Barbie et al. [23]. This method
was applied to all the normalized and filtered microarray
intensity data after summarization of the 22,814 probes
in the training set (retaining only the maximum intensity
value for those genes represented by more than one
probe and eliminating those probes without a gene
symbol). The C2 subset (curated gene sets) from the
Molecular Signatures Database (MSigDB) v5.1 main-
tained by the Broad Institute (http://software.broadinsti-
tute.org/gsea/msigdb/collections.jsp) was used. The
scores obtained with ssGSEA for each patient and each
signature used in the training set were then pairwise cor-
related independently with the corresponding trans-
formed SUV values of each patient (Pearson correlation),
and the corresponding correlation coefficients and prob-
abilities were obtained for each signature of the C2 sub-
set. To gain further insight into some specific findings
obtained with the C2 subset of MSigDB v5.1, other sub-
sets from this database were also used such as the H,
C5, and C6 subsets. Using the same ssGSEA method-
ology described, we also used the 10 genesets containing
highly selective and specific genes for 10 different cell
populations. These genesets have been validated exten-
sively in thousands of different human solid tumors
(>19,000) to estimate the abundance of immune and
non-immune cells and have also been shown to have
a good correlation with immunohistochemistry [24].

Results

FDG-PET quantification

The characteristics of the patients (demographics and
quantification data) and biopsies are shown in Tables 1
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Table 1 Demographics and quantification data in the training
and validation sets; mean and range values are given

Training set Validation set
(n=71) (n=13)
Age (years) 58 (28-80) 58 (36-77)
Females/males 40/31 9/4
LBM 52.3 (29.5-81.8) 479 (32.8-60.7)
Baseline blood glucose (mg/dl)  100.8 (66-149) 100.1 (78-126)
Injected dose (mCi) 11.5(99-134) 11.3 (10,0-12.9)
PET quantification data
Diameter of the lesion (cm) 64 (1.5-18.9) 8.1 (2.1-18.3)
SUVmax 11.8 (3.7-31.3) 123 (2.7-21.7)
SUVmed35 6.7 (24-16.7) 6.5 (20-10.7)
SuL® 48 (1.5-11) 5.1 (23-88)
SUVglu 6.7 (2-14.9) 6.5 (21-11.5)
MTV (cm?)?® 452 (0.7-434) 197.4 (2.1-1009)
TLG? 358.7 (23-3958.1) 1784 (4.1-9058.1)
T/B 9.5 (14-35.8) 109 (2.5-26.8)

Abbreviations: LBM lean body mass, SUVmax maximum standard uptake value,
SUVmed35 thresholded 35% medium standard uptake value, SUVglu standard
uptake value corrected for plasma glucose levels, SUL standard uptake value
normalized by lean body mass, MTV metabolic tumor value, TLG total lesion
glycolysis, T/B tumor-to-background ratio

@Missing data: 3 in the training set and 1 in the validation set

and 2. The detailed tumor histologies can be found in
Additional file 3: Table S6. No statistically significant dif-
ferences were found between the training and validation
set (U Mann-Whitney p > 0.05 for all variables shown).
The only difference with the training set was the inclu-
sion of two aggressive locally advanced primary tumors
in the validation set: a patient with a pancreatic adeno-
carcinoma and another with a biliary duct carcinoma.

Hierarchical clustering with the probes selected for the
elaboration of the signature

Hierarchical clustering was performed in order to check
whether the selected probes (the 909 most strongly cor-
related with FDG uptake as measured by the SUV) were
able to discriminate different groups of patients in the
training set according to the SUV values and not to
other clinical or pathological data. In Fig. 1, a heatmap is
shown with the results of the patient samples hierarch-
ical clustering with the 909 probes (as described in the
“Methods” section). Five main clusters could be easily
distinguished (C1 to C5 in Fig. 1). Comparing the aver-
age SUV values of the patient samples of each of the five
clusters (Table 3a), they were significantly different as
shown by one-way ANOVA (p =0.001). The SUV aver-
ages of the clusters were significantly different on ac-
count of significant differences between the higher
average SUV of C1 samples versus the average SUV of
the remaining clusters (i.e, C1 vs C2, C1 vs C3, C1 vs
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Table 2 Tumor histologies and locations of the biopsies obtained
for microarray analysis of the patients in the training set

Histology Total (n=71)  Percentage (%)

Colorectal cancer 9.0 12.7
Breast cancer 80 113
Soft tissue sarcoma 7.0 9.9
Genitourinary tumor 7.0 9.9
Ovarian cancer 7.0 9.9
Lung cancer 7.0 9.9
Pancreatic cancer 6.0 85
Head and neck cancer 50 70
Esophageal cancer 4.0 56
Thyroid cancer 20 28
Bile duct cancer 20 28
Carcinoma of unknown primary (CUP) 1.0 14
Gastric cancer 1.0 14
Lymphoma 1.0 14
Melanoma 1.0 14
Mesothelioma 1.0 14
Merkel cell carcinoma 1.0 14
Kidney cancer 1.0 14
Locations of biopsies Total (n=71)  Percentage (%)
Liver 25 352
Retroperitoneal 16 225
Lymphadenopathy 13 183
Head and neck mucosa 3 4.2
Skin 3 42
Pleural 3 4.2
Lung 3 42
Breast 2 2.8
Mediastinum 2 28
Pancreas 1 14

C4, and C1 vs C5, p<0.05 for all comparisons by the
Student ¢ test). The C2 vs C5 comparison was found
close to significance by ¢ test (p = 0.076). Therefore, this
unsupervised methodology is indeed able to discriminate
clusters of patients with statistically significant average
SUV values. Furthermore, none of the major tumor
types in this series was grouped in a single cluster (for
example, breast, colorectal, genitourinary, ovarian, lung
cancers, or soft tissue sarcomas). We found that as a
group in our training set, lung cancers (7 patients) had
an average SUV value significantly higher than most of
the other major tumor types. However, lung cancers
were evenly distributed in three different clusters. The
remainder of the most represented tumor types had
average SUV values that were not significantly different
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among them, and nevertheless, they were distributed in
a minimum of two or more clusters. In addition, no sta-
tistically significant differences were found between the
average SUV values of the metastatic tumors located in
the liver (liver biopsies) and the rest of metastatic loca-
tions (¢ test p = 0.34). Likewise, the samples coming from
liver metastases were widely distributed among the five
clusters. Overall, these results point to the suitability of
these genes as building blocks of a multivariable model
to predict the SUV. As a control, hierarchical clustering
using the same methodology was also applied to the
training set with all the filtered unselected probes to
identify five clusters. However, the SUV averages of
the clusters identified with all the unselected probes
were not significantly different by one-way ANOVA
(p =0.357), as shown in Table 3b.

Biological processes related to the selected genes

Tables 4 and 5 show the top 20 most significantly over-
represented biological processes related to the genes
with positive and negative correlation with the SUV.
Among the biological processes with positive correlation
with the SUYV, it was interesting to note the RNA pro-
cessing, ncRNA processing, RNA splicing, ribosome bio-
genesis, and protein aminoacid N-linked glycosylation
via asparagine. All these processes were related to the
preliminary and required steps conducing to the synthe-
sis and processing of proteins. Cellular growth rate is
directly proportional to the number of new ribosomes
formed in a cell [25]. Among the biological processes
with negative correlation with the SUV, cell adhesion,
actin cytoskeleton organization and its regulation, regu-
lation of glycogen biosynthetic process, and ruffle
organization were noticeable.

We also checked the Consensus Pathway database
with the same genes (see Additional file 4: Table S1).
Other processes of potential interest not identified by
DAVID were noted (all with g<0.1). Regarding the
genes with positive correlation with the SUV, this database
unveils biological processes such as scavenging by class A
receptors, DNA replication, and its regulation. Other rele-
vant processes identified are those related to the immune
system: PD1 signaling, antigen processing and presenta-
tion, CD4 T cell receptor signaling, downstream TCR
signaling, phosphorylation of CD3, and TCR zeta chains
among others. Previous reports have shown that a high
glucose uptake is required for T cell activation [26].

Although less statistically significant than the afore-
mentioned biological processes, those related to the en-
ergetic metabolism of carbohydrates were apparent:
glycolysis, pentose phosphate cycle, and insulin-
mediated glucose transport. In common with DAVID,
protein processing and N-linked glycosylation were also
apparent. As far as the genes with negative correlation
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upper part of the dendrogram
A\

Fig. 1 Hierarchical clustering and heatmap of samples in the training set with the 909 probes of the signature. Microarray samples of the 71
patients in the training set are in columns and standardized probes in rows. The five sample clusters obtained are denoted by C1 to C5 in the

with the SUV were concerned, a deeper biological
insight could be obtained from the Consensus Pathway
database (all with g < 0.05). In common with DAVID, the
regulation of the actin cytoskeleton scores high. How-
ever, a relevant contribution to this regulation can be

Table 3 SUVmean35 (SUV) averages, standard deviations (SD),

minimum and maximum values of the samples of each of the

five clusters identified using the indicated number of probes in
the training set

Cluster n Average SUV SD Minimum Maximum SUV
SUV

a) 909 selected probes
1 14 9.28 2.88 5.27 16.69
2 21 6.89 3.08 252 13.63
C3 M 6.46 286 378 12.08
C4 10 5.28 1.69 262 838
() 15 521 2.08 235 9.16

One way ANOVA, p =0.001

b) 22,814 unselected probes
C1 13 7.01 349 235 13.63
c2 11 6.38 2.74 261 12.08
a 15 6.09 249 252 12.61
C4 19 7.77 3.51 262 16.69
(€5 13 5.86 1.97 341 9.16

One way ANOVA, p=0.357

envisaged in the identified biological pathways related to
the small GTPases RHO, RAC1, and CDC42 as they
are known potential controllers of dynamic processes
affecting the cytoskeleton such as the formation of
stress fibers (RHO), lamellipodia (RAC1), and filo-
podia (CDC42) as well as membrane ruffling (RAC1).
E-