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Abstract

scans for each feature.

8E_FDG.

Background: Texture features are being increasingly evaluated in '®F-fluorodeoxyglucose positron emission
tomography ('®F-FDG PET) as adjunctive imaging biomarkers in a number of different cancers. Whilst studies have
reported repeatability between scans, there have been no studies that have specifically investigated the effect that
the time of acquisition post-injection of '®F-FDG has on texture features. The aim of this study was to investigate if
texture features change between scans performed at different time points post-injection.

Results: Fifty-four patients (30 male, 24 female, mean age 35.1 years) with neurofibromatosis-1 and suspected
malignant transformation of a neurofibroma underwent '®F-FDG PET/computed tomography (CT) scans at 101.5
+150 and 251.7 + 184 min post-injection of 350 MBq '®F-FDG to a standard clinical protocol. Following tumour
segmentation on both early and late scans, first- (n =37), second- (n =25) and high-order (n = 31) statistical features,
as well as fractal texture features (n=6), were calculated and a comparison was made between the early and late

Of the 54 tumours, 30 were benign and 24 malignant on histological analysis or on clinical follow-up for at least

5 years. Overall, 25/37 first-order, 9/25 second-order, 13/31 high-order and 3/6 fractal features changed significantly
(p < 0.05) between early and late scans. The corresponding proportions for the 30 benign tumours alone were 22/37,
7/25,8/31 and 2/6 and for the 24 malignant tumours, 11/37, 6/25, 8/31 and 0/6, respectively.

Conclusions: Several texture features change with time post-injection of '®F-FDG. Thus, when comparing texture
features in intra- and inter-patient studies, it is essential that scans are obtained at a consistent time post-injection of

Keywords: Texture features, Neurofibromatosis-1, '®F-FDG PET/CT

Background

There is an assumption that medical images contain
additional data that is not apparent to the human eye
and the field of radiomics aims to extract this informa-
tion through (semi) automated analysis, without the
need to change the image acquisition protocols [1, 2].
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Texture analysis, measuring image heterogeneity, is an
example of additional information that is contained
within medical images. Although first-order statistics,
based on global measures from voxel intensity histo-
grams, are not a true measure of image texture, they are
often reported due to their clinical relevance in a num-
ber of studies. Second-order statistics consider the rela-
tionship between pairs of voxels providing a measure of
local texture features. High-order statistics consider the
relationship between three or more voxels and provide a
measure of both local and regional texture features.
Fractal analysis is a further method that can be used to
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quantify texture information on the basis of repeating
geometric patterns (self-similarity) and roughness [3-5].
Whilst a number of factors have been described that
influence the measurement, accuracy and reproducibility
of texture features [4, 6, 7], to our knowledge, there have
been no published data on how texture features change
with time post-injection of 'F-FDG in soft tissue
tumours. As there is a growing interest in using texture
features in the clinical environment, these data are
essential to inform on the design of clinical and research
protocols to enable intra/inter-patient scans to be com-
pared reliably and multi-centre trials to be carried out.
Standardised uptake value (SUV) parameters have
been shown to change with time post-injection of
"SE-FDG [8-11], and we hypothesised that texture
parameters may also change with time. Therefore, the
aim of this study was to investigate the effect of time
post-injection of ®F-FDG on the measurement of tex-
ture features in a cohort of patients with
neurofibromatosis-1 (NF1) in whom malignant trans-
formation of neurofibromas to malignant peripheral
nerve sheath tumours (MPNST) was suspected clinically
and in whom '®F-FDG PET data had been acquired at
two separate time points post-injection. As a purely
technical study, we did not aim to assess the ability of
texture features to discriminate benign from MPNSTs,
an analysis that will be the subject of a separate study.

Methods

Patients

This retrospective study included 54 patients with NF1
attending our national neurofibromatosis service (30
male, 24 female, mean age 35.1 years). All patients had
symptomatic plexiform neurofibromas clinically sus-
pected of malignant transformation and were referred
for further investigation with "*F-FDG PET/CT. An in-
stitutional review board waiver was obtained for this
retrospective analysis. All patients either had histological
confirmation of the tumours or were followed clinically
for at least 5 years.

'8F-FDG PET/CT scan acquisition and analysis

Adult patients were injected with 350 (+£10%) MBq of
'8E_FDG, and in children, the injected activity was scaled
by body weight (weight/70 x 350 MBq). All patients had
blood-glucose levels below 10 mmol/l at the time of in-
jection. Imaging was performed at two time points post-
injection of *F-FDG: an initial early acquisition at 101.5
+15.0 min and a later acquisition at 251.7 + 18.4 min, as
per the standard clinical protocol of our department for
characterisation of masses in patients with NF1 [8]. The
early scan was from the cerebellum to mid-thigh with
additional images acquired if the tumour was below the
mid-thigh or above the cerebellum. The late scan
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involved acquiring a local view of the symptomatic
tumour only. The acquisition time for both the early and
late scans was 5 min per bed position.

Scans were performed on one of two scanners
(Discovery VCT or DST, GE Healthcare, Chicago, USA)
which are cross-calibrated to within 3% [12]. All images,
from both scanners, were reconstructed with a voxel size
of 4.7 mm and slice thickness of 3.27 mm using the
ordered-subset expectation maximisation algorithm (2
iterations, 20 subsets). They were subsequently post-
filtered using a 3D Gaussian kernel with a full-width at
half maximum of 6 mm. Low-dose CT was acquired at
120 kVp and 65 mAs for the purposes of anatomical
localisation and attenuation correction without adminis-
tration of oral or intravenous contrast agent.

The reconstructed PET datasets were imported into in-
house texture analysis software implemented in MATLAB
(Release 2013b, The MathWorks, Inc., Natick, MA, USA).
Many of the tumours, particularly those that were classi-
fied as benign, showed only very low-grade '*F-FDG
uptake, and it was therefore not possible to implement
automated segmentation (e.g., threshold defined by a
percentage of maximum standardised uptake value (SUV-
max) or a fuzzy locally adapted Bayesian (FLAB) method)
nor was it possible to reliably define the region of interest
(ROI) by hand on the PET scan. All tumours, at both time
points, were therefore segmented manually on the CT im-
ages where the tumour edges were easily defined. ROI def-
inition was carried out by an experienced operator trained
in both radiology and nuclear medicine. The ROIs drawn
on the CT scans were automatically mapped onto the PET
scan (Fig. 1). Statistical and textural features that were
calculated from tumour volumes of interest included 37
first-order, 25 second-order, 31 high-order and 6 fractal
features as listed in Table 1. First-order ROI features were
decay corrected from the time of injection. Voxel values
within the tumour volume of interest (VOI) were
resampled to yield 64 discrete equally spaced bins. Seven
3D direction vectors and 2 distances were considered
resulting in 14 matrices. The 2 distances were used to cap-
ture relationships between voxels at larger distances and 7
directions to optimise computational time. The texture
descriptors were obtained from each matrix followed by
averaging the values calculated separately in each matrix.
Fractal features were computed using a differential box-
counting method.

To assess inter-observer variability, a random subset
of 16 patients had VOIs defined on early and late scans
by a separate operator blinded to the initial observer
measurements and clinical data.

Statistical methods
All statistical analyses were performed using IBM ° SPSS
predictive analytics software, v22.0.0.0. As data were not
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of the tumour (below)

Fig. 1 Axial "8F-FDG PET and CT scans. The tumour is indicated by the arrow (above). A region of interest is shown on the same PET and CT slice

normally distributed, non-parametric tests were per-
formed. For each texture feature, the values obtained
were compared between the initial and later time points
using the related-samples Wilcoxon signed-rank test and
correlations made with Spearman correlation. Compari-
sons were performed for all 54 tumours and for the sub-
sets of the 30 benign and the 24 malignant tumours. A
significance level of p <0.05 was used. Inter-observer
variation was assessed with intraclass correlation coeffi-
cients (ICC).

Results
Good inter-observer agreement was found for measure-
ment of all parameters with mean ICC scores for individ-
ual patient scans of 0.93 and 0.96 for early and late
scanning time points, respectively, and there was no sig-
nificant difference between the segmented tumour
volumes obtained from the early and late scans (median
35.6 vs 34.9 cm?, respectively; p = 0.069). High correlation
was observed between early and late scan data for most
texture features (mean r value = 0.66 + 0.21; Table 1).
Several first-, second-, high-order statistical and fractal
features were significantly different between early and
late scans (p <0.05). In summary, overall 25/37 (68%)
first-order, 9/25 (36%) second-order, 13/31 (42%) high-
order and 3/6 (50%) fractal features showed significant
changes, i.e. 50/99 (50%) parameters in total (Table 1).
For the 30 benign tumours, 22/37 first-order, 7/25
second-order, 8/31 high-order and 2/6 fractal features
changed significantly (p <0.05) between the early and
late scans. The corresponding numbers for the 24 malig-
nant tumours were 11/37, 6/25, 8/31 and 0/6 (p <0.05)
(Table 2). Fifteen of the texture features that changed
significantly did so for both benign and malignant
tumours whilst the majority of features changed only for
benign (n = 24) or malignant (n = 10) tumours.

Overall, more texture features decreased (27/39
benign; 13/25 malignant) than increased (12/39 benign;
12/25 malignant) with time. This pattern was true for
first-order, second-order and high-order features in
benign tumours and for second-order and high-order
features in malignant tumours. However, in malignant
tumours, more first-order features increased (z =9) than
decreased (1 =2) (Table 2).

Discussion

Previous researchers have demonstrated changes in mea-
sured SUV parameters post-injection of '*F-FDG and
that this may even be of benefit for differentiating be-
nign and malignant lesions [8-11]. However, to our
knowledge, this is the first study that has investigated
how global first-order and loco-regional texture features
change with time post-injection of "*F-FDG.

Our study has demonstrated that a significant number
of statistical first-, second- and high-order and model-
based fractal features change with time post-injection of
'"8E_-FDG in benign and malignant PNSTs. These findings
suggest that both global and loco-regional uptake of °F-
EDG has not stabilised in both benign and malignant
tumours by 101.5 + 15.0 min after injection. We observed
an expected high correlation between early and late scan
texture features and the differences would therefore be
unlikely to impact significantly on discriminatory ability
between benign and malignant tumours but would be of
greater importance in studies where serial texture features
were being calculated as response measures.

The finding that a greater proportion of the global
first-order features changed than second-order, high-
order or model-based texture features suggests that
global changes predominate over regional or local
changes in '®F-FDG distribution. However, a significant
proportion of second-order, high-order and fractal
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Table 2 Number of texture features that significantly changed (p < 0.05), either increasing (1) or decreasing (]) between early and

late scanning time points

First order Second order High order Model based Total
All 54 tumours 25/37 (121, 13}) 9/25 (11, 8) 13/31 (71, 61) 3/6 21, 11) 50/99 (221, 28)
30 benign tumours 22/37 (61, 16)) 7/25 (21, 50) 8/31 (31, 51) 2/6 (11, 1)) 39/99 (121, 271)
24 malignant tumours 11/37 (91, 2]) 6/25 (01, 6]) 8/31 (31, 5]) 0/6 (01, 0J) 25/99 (121, 13])

texture features also changed, showing that regional and
local redistribution of "*F-FDG also occurs with time.

For first-order features, as expected, SUVmax
increased with time for malignant but not benign
tumours, as previously described for a number of malig-
nant tumours [8—11].

Overall, SUVmean decreased with time, predominantly
due to a decrease in uptake in benign tumours. First-
order entropy and standard deviation, reflecting the
global tumour randomness and distribution of voxel in-
tensities, increased with time across the whole group of
tumours but not in either of the benign or malignant
groups alone.

For second-order features that reflect the relationships
between pairs of voxel intensities and their spatial distri-
bution, 8 out of 9 of the 25 texture features that changed
showed a reduction. GLCM energy, a measure of uni-
formity, increased, and therefore overall the changes in
these local texture features implied a reduction in het-
erogeneity with time. Second-order features showed a
decrease in heterogeneity in both benign and malignant
tumours suggesting there is a change in relative
"8E-FDG distribution in the tumours between the two
different time points, causing a change in local tumour
texture features.

With high-order textures features, there were in-
creases and decreases in a number of local and regional
features in both benign and malignant tumours but with
no consistent pattern. This suggests that considering
texture features as showing heterogeneity or homogen-
eity in a binary manner is probably an oversimplification
of what each feature represents mathematically. Simi-
larly, a consistent pattern of change was not seen with
model-based fractal features.

A number of technical factors are known to affect the
measurement and reproducibility of texture features
including matrix size, reconstruction parameters, bin
width and tumour volume [4, 6, 7]. Our findings
demonstrate additionally the importance of quoting
post-injection '*F-FDG scanning times when discussing
texture features and the importance of consistent post-
injection 'F-FDG scanning times when comparing
global and texture features of patient tumours in inter-
and intra-patient longitudinal studies.

There are some limitations to our study. We only con-
sidered PNSTs in NF1 patients and as such, it is not

possible to generalise these findings to other tumour
types, and future research should investigate how texture
features change over time in other cancers. Scans were
acquired at 101.5+15.0 and 251.7+ 184 min post-
injection in this study as per the clinical protocol in our
department [8]. Therefore, we cannot comment on the
detail of the kinetics of change between these time
points or on the magnitude of change compared to
scans acquired at 60 min post-injection, which is a more
commonly used clinical protocol elsewhere. Whilst two
scanners were used for data used in this study, the ac-
quisition and reconstruction parameters were identical
and knowing that quantitative differences were minimal
[12], it is unlikely that this will have introduced a signifi-
cant bias in results. All the tumours included in this pro-
ject were segmented manually on the CT component of
the PET/CT scan, and therefore ROIs are subject to
more variability than semi-automated methods such as
threshold-based or FLAB. This was unavoidable as low-
grade activity in many of the tumours meant that
automated methods and direct ROI placement on the
PET images proved impossible. However, even on non-
contrast-enhanced CT scans as used in our study, the
edges of benign and malignant neurofibromas are
usually well demarcated (Fig. 1), thus facilitating ROI
definition and VOI definition proved straightforward
with good inter-observer reproducibility. This method
also has the advantage of minimising differences in seg-
mentation volumes due to changes in **F-FDG distribu-
tion, ensuring the whole tumour is included at both
time points. The ROIs that were drawn on the CT scan
were mapped onto the PET scan. Although all scans
were checked qualitatively by an experienced operator
to ensure there was no mis-registration of the ROls,
we otherwise made the assumption of accurate
co-registration with no patient movement between
CT and PET acquisitions.

As the later scans had fewer counts following radio-
active decay of *F-FDG, we cannot exclude image noise
as an element that may have contributed to differences
in texture features. However, more texture features
reduced with time (i.e., became more homogeneous) and
so it is unlikely that this is a dominant effect. Lastly, the
literature suggests that many texture features may be re-
dundant due to collinearity between features and that
only a small number of features should be used based on
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robustness to technical factors and reproducibility [4, 6].
However, as an initial study of the phenomenon of change
in texture feature quantification with time, we preferred to
report on multiple features with and without known collin-
earity to document these findings as broadly as possible.

Conclusions

This study has demonstrated that many '*F-FDG PET
texture features differ significantly between early and
late scan acquisition time points. As such, it is important
to scan patients at consistent times when measuring tex-
ture features in longitudinal patient studies, especially in
multi-centre patient trials.
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