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Abstract

Background: The targeting of the prostate-specific membrane antigen (PSMA) is of particular interest for radiotheragnostic
purposes of prostate cancer. Radiolabeled PSMA-617, a 14,7,10-tetraazacyclododecane-N,N'N"N"-tetraacetic acid (DOTA)-
functionalized PSMA ligand, revealed favorable kinetics with high tumor uptake, enabling its successful application for PET
imaging (**Ga) and radionudlide therapy (*’/Lu) in the clinics. In this study, PSMA-617 was labeled with cyclotron-produced
*Sc (T,, =404 h) and investigated preclinically for its use as a diagnostic match to '”’Lu-PSMA-617.

Results: “Sc was produced at the research cyclotron at PSI by irradiation of enriched *Ca targets, followed by
chromatographic separation. “*Sc-PSMA-617 was prepared under standard labeling conditions at elevated temperature
resulting in a radiochemical purity of >97% at a specific activity of up to 10 MBg/nmol. *'Sc-PSMA-617 was evaluated in vitro
and compared to the '”’Lu- and ®Ga-labeled match, as well as ®Ga-PSMA-11 using PSMA-positive PC-3 PIP and PSMA-
negative PC-3 flu prostate cancer cells. In these experiments it revealed similar in vitro properties to that of '’’Lu- and
®Ga-labeled PSMA-617. Moreover, “Sc-PSMA-617 bound specifically to PSMA-expressing PC-3 PIP tumor cells, while
unspecific binding to PC-3 flu cells was not observed. The radioligands were investigated with regard to their in vivo
properties in PC-3 PIP/flu tumor-bearing mice. “/Sc-PSMA-617 showed high tumor uptake and a fast renal excretion. The
overall tissue distribution of *Sc-PSMA-617 resembled that of '”/Lu-PSMA-617 most closely, while the ®*Ga-labeled ligands,
in particular %8Ga-PSMA-11, showed different distribution kinetics. “'Sc-PSMA-617 enabled distinct visualization of PC-3 PIP
tumor xenografts shortly after injection, with increasing tumor-to-background contrast over time while unspecific uptake in
the PC-3 flu tumors was not observed.

Conclusions: The in vitro characteristics and in vivo kinetics of **Sc-PSMA-617 were more similar to '”/Lu-PSMA-617
than to ®*Ga-PSMA-617 and 68Ga-PSMA-11. Due to the almost four-fold longer half-life of **Sc as compared to ®Ga, a
centralized production of **Sc-PSMA-617 and transport to satellite PET centers would be feasible. These features make
*Sc-PSMA-617 particularly appealing for clinical application.
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Background

Prostate cancer is the second most frequently diagnosed
cancer type in men in the US [1]. Patients with localized
disease have a good prognosis for survival; however, those
diagnosed with metastatic castration-resistant prostate
cancer, have much less chance of successful treatment [1,
2]. Sensitive and specific imaging tools are needed in order
to enable tumor localization and staging of the disease, as
well as monitoring therapy [3]. Currently, nuclear imaging
of prostate cancer and related metastases is performed
using 'C- and '®F-choline for positron emission tomog-
raphy (PET) and ?*™Tc-methanediphosphonic acid for
single photon emission computed tomography (SPECT),
respectively [4, 5]. However, the clinical value of these ra-
diotracers has been controversially discussed due to the
low specificity and sensitivity [6, 7]. More promising may
be a class of radioligands for targeting prostate-specific
membrane antigen (PSMA) that has been widely investi-
gated over the last two decades [8—10]. PSMA is a trans-
membrane protein, upregulated in poorly differentiated,
metastatic, and hormone-refractory prostate carcinomas,
while physiological expression is restricted to only a few
sites, including the kidneys [11]. In recent years, a number
of PSMA-targeted nuclear imaging agents were developed
[12-14], among those PSMA-11, which comprises an
acyclic N,N’-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethy-
lenediamine-N,N -diacetic acid (HBED-CC)-chelator suit-
able for coordination of ®®Ga (T3, =68 min, EB. =
830 keV; Fig. 1, Table 1) [15, 16]. This PSMA radioligand
has been used successfully in clinics for PET imaging of
prostate cancer [17-19]. More recently, a structurally
modified PSMA ligand, referred to as PSMA-617,
has been designed with a 1,4,7,10-tetraazacyclododecane-
NN’ ,N"' N’ ’-tetraacetic acid (DOTA) chelator (Fig.1,
Table 1). This derivative allows coordination of diagnostic
and therapeutic radionuclides and, hence, it paved the way
towards a theragnostic approach [20, 21]. Clinical studies
performed so far demonstrated the promising potential of
®8Ga- and '""Lu-labeled PSMA-617 to be used for the
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management of prostate cancer (Table 1) [21, 22]. %8Ga-
PSMA-11 and “*Ga-PSMA-617 showed similar accumula-
tion in most organs, albeit the renal clearance of
®8Ga-PSMA-617 was significantly faster than for
®8Ga-PSMA-11 [20, 21]. In patients, application of
®8Ga-PSMA-11 resulted in an increased contrast on
delayed images; however, all lesions were already visible
on the 1 h post injection (p.i.) scans [21, 23]. On the other
hand, it was suggested to scan patients 2-3 h after injec-
tion of ®*Ga-PSMA-617 due to the improving image qual-
ity over time [21]. For the same reason, the scanning at
even later time points (>3 h p.i.) was supposed to enable
discovering additional lesions [21]; however, longer-lived
radionuclides would be required for this purpose. Several
'F_based PSMA-ligands are currently under develop-
ment, and the first clinical applications with **F-DCFPyl
and 8F-PSMA-1007 revealed promising results [24, 25].
The concept of radiotheragnostics, as proposed herein, is
based on the use of a diagnostic and a therapeutic radio-
nuclide with the same PSMA-targeting ligand.

In this regard, we proposed MSc (Ty,=4.04 h,
Table 1 [26]) as an alternative radionuclide to ®®Ga
for PET imaging allowing to use **Sc-PSMA-617 as a
diagnostic match to '"/Lu-PSMA-617. The emitted
positrons have a lower energy (Efs, =632 keV) as
compared to ®*Ga (EBZ, =830 keV), enabling PET im-
aging with a potentially favorable spatial resolution
[27, 28]. Recently, the production of **Sc via the
*Ca(p,n)**Sc nuclear reaction has been implemented
at the research cyclotron at Paul Scherrer Institut,
providing this radionuclide with high radionuclidic
purity (>99%) and at high activities (>2 GBq) [29].
There is great potential of using **Sc clinically, as it
can be produced at medical cyclotrons typically in-
stalled in PET centers worldwide. Another means of
producing **Sc is via the **Ti/**Sc generator [30];
however, the quantity of eluted **Sc activity is very
limited (<200 MBq) in this case. In contrast, the pro-
posed production route of **Sc at a cyclotron would
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Table 1 Overview of radionuclides and corresponding ligands used in this study

Nuclide Half-life Radiation energy Ligand Chelator Application Refs.

Hsc 404 h EBZ, =632 keV PSMA-617 DOTA PET Evaluated in this study
Ey=1157 keV* (B*-radiation)

YLy 6.65 days EB,, =134 keV PSMA-617 DOTA Therapy/SPECT [22, 37-39]
Ey=113 keV, 208 keV (B /y-radiation)

%Ga 68 min EBZ, =830 keV PSMA-617 DOTA PET 21]
Ey = 1077 keV** PSMA-11 HBED-CC (B*-radiation) (17, 18, 40]

*1=99.9%; **=3.2%

address the clinical needs and, thus, be a favorable
option for application of this radionuclide in patients.
The aim of this study was to investigate PSMA-617, labeled
with cyclotron-produced **Sc, in preclinical experiments.
*Sc-PSMA-617 was prepared and evaluated for direct com-
parison with "Lu- and ®*Ga-PSMA-617, as well as with
%Ga-PSMA-11. PSMA-positive (PC-3 PIP) and PSMA-
negative (PC-3 flu) prostate cancer cells were used for the
performance of in vitro studies and, as xenografts in mice, for
preclinical in vivo experiments including PET imaging,

Methods

PSMA-ligands and radionuclides

The PSMA ligands PSMA-617 and PSMA-11 were ob-
tained from Advanced Biochemical Compounds (ABX
GmbH, Radeberg, Germany). **Sc was prepared by proton
irradiation of enriched **Ca targets at the Injector 2 cyclo-
tron at PSI, as previously reported [29]. The irradiation of
targets with ~11 MeV protons at a beam current of 50 pA
lasted for 90 min. The separation of the produced **Sc
from the target material was carried out by chromato-
graphic methods using DGA resin [29]. **Sc was provided
in an acidic solution (~0.1 M HCI, pH ~1 in ~700 pL) and
was used directly for labeling reactions. No-carrier added
Y7Lu in HC1 0.5 M was provided by Isotope Technologies
Garching (ITG GmbH, Germany). “®Ga was obtained
from a *®Ge/°®*Ga generator (Eckert & Ziegler, Berlin,
Germany) using 0.1 M HCI as an eluent (radionuclidic
purity >99%).

Radiolabeling of PSMA-617 and PSMA-11

PSMA-617 was labeled with **Sc, ®*Ga, and '”"Lu in a mix-
ture of sodium acetate (0.5 M, pH 8) and HCl (0.05-0.1 M,
pH ~1) at a pH of 3.5-4.5. The reaction mixture was incu-
bated for 10 min at 95 °C. PSMA-11 was labeled with **Ga
under the same reaction conditions. Quality control of the
radiolabeled PSMA ligands was performed using high-
performance liquid chromatography (HPLC) with a C-18
reversed-phase column (Xterra™ MS, C18, 5 um, 150 x
4.6 mm; waters) (Additional file 1).

Determination of n-octanol/PBS distribution coefficients
The distribution coefficients (logD values) of the radioli-
gands were determined by a shake-flask method using

liquid-liquid extraction followed by phase separation, as
previously reported (Additional file 1) [31]. In brief, the
PSMA ligands were labeled at a specific activity of 5 MBq/
nmol. Samples containing 1.25 MBq (250 pmol) of the radi-
oligand in a volume of 25 uL were added to each vial con-
taining 1475 pL of PBS (pH 7.4) and 1500 pL of n-octanol.
The vials were vortexed vigorously for 1 min and then cen-
trifuged for 6 min for phase separation. The concentration
of radioactivity in a defined volume of each layer was mea-
sured in a y-counter (Perkin Elmer, Wallac Wizard 1480).
The distribution coefficients were expressed as the loga-
rithm of the ratio of counts per minute (cpm) measured in
the n-octanol phase to the cpm measure in the PBS phase.
The values are reported as the average of at least three in-
dependent measurements (+ standard deviation, SD), each
performed with five replicates. Data were analyzed for sig-
nificance using a one-way ANOVA test (GraphPad Prism
software, version 7). A p value of <0.05 was considered as
statistically significant.

Cell culture

The PC-3 PIP (PSMAP®) and PC-3 flu (PSMA"®) tumor
cells were kindly provided by Prof. Dr. Martin Pomper
(John Hopkins Institutions, Baltimore, USA) [32]. The
cells were grown in RPMI cell culture medium supple-
mented with 10% fetal calf serum, L-glutamine, antibi-
otics, and puromycin (2 pg/mL) to maintain PSMA
expression (Additional file 1) [33].

Cell experiments

Determination of the PSMA affinity was performed by
saturation binding assays using PC-3 PIP cells and diffe-
rent concentrations of "*/**Sc-, "7y, "Y68Ga PSMA-
617, or "%%Ga-PSMA-11, respectively (Additional file 1).
The relative affinities were defined as the average of at
least three independent experiments and expressed as in-
verse molar ratio of compound needed for half-maximal
binding to PSMA and the relative affinity of '”"Lu-PSMA-
617 was set to 1.

Cell uptake and internalization experiments were per-
formed with **Sc-, ”’Lu-, and **Ga-PSMA-617 as well as
®8Ga-PSMA-11 using PSMAP* PC-3 PIP and PSMA™%
PC-3 flu cells in order to investigate whether they behaved
equally and whether the uptake was PSMA-specific. For
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this purpose, cells were seeded in 12-well plates (~5 x 10°
cells in 2 mL RPMI medium/well) allowing adhesion and
growth overnight at 37 °C. After removal of the super-
natant, cells were washed once with PBS prior to the
addition of RPMI medium without supplements (975 pL/
well), followed by the addition of the radiolabeled PSMA
ligands (MBq/nmol) to each well (25 pL, 7.5 pmol). Some
of the cell samples were co-incubated with excess 2-(phos-
phonomethyl)pentane-1,5-dioic acid (2-PMPA; 100 pM)
to block PSMA on the surface of PC-3 PIP cells. The well
plates were incubated at 37 °C for 2 and 4 h, respectively.
The cells were washed three times with ice-cold PBS to
determine the total uptake of the radioligands (PSMA-
bound fraction on the surface and internalized fraction).
The internalized fraction of the radioligands was deter-
mined in cells which were washed with ice-cold PBS, then
incubated for 10 min with acidic stripping buffer (0.05 M
glycine stripping buffer in 100 mM NaCl, pH 2.8) followed
by an additional washing step with ice-cold PBS. Cell sam-
ples were lysed by addition of NaOH (1 M, 1 mL) to each
well. The samples of the cell suspensions were measured
in a y-counter (Perkin Elmer, Wallac Wizard 1480). After
homogenization of the cell suspensions, the protein con-
centration was determined for each sample using a Micro
BCA Protein Assay kit (Pierce, Therma Scientific). The re-
sults were expressed as percentage of total added radio-
activity per 300 pg/mL protein.

Tumor mouse model

In vivo experiments were approved by the local veterin-
arian department and conducted in accordance with the
Swiss law of animal protection. All mice were obtained
from Charles River Laboratories (Sulzfeld, Germany), at
the age of 5-6 weeks. Female, athymic nude Balb/c mice
were subcutaneously inoculated with PC-3 PIP cells (6 x
10° cells in 100 pL Hank’s balanced salt solution (HBSS)
with Ca**/Mg®*) on the right shoulder and with PC-3
flu cells (5 x 10° cells in 100 pL HBSS with Ca®*/Mg>")
on the left shoulder 2 weeks before the performance of
the experiments.

Biodistribution studies

“Sc-, '7Lu-, and **Ga-PSMA-617 as well as **Ga-PSMA-
11 were intravenously injected (5 MBq, 1 nmol, 100-
200 pL). Mice were sacrificed at different time points post
injection (p.i.) of the radioligands. Selected tissues and
organs were collected, weighed and measured using a y-
counter. The results were decay-corrected and listed as a
percentage of the injected activity per gram of tissue mass
(% IA/g).

Imaging studies
PET/CT scans were performed using a small-animal
bench-top PET/CT scanner (G8, Sofie Biosciences, Culver
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City, California, USA, and Perkin Elmer, Massachusetts,
USA) and a small-animal SPECT/CT scanner (Nano-
SPECT/CT™, Mediso Medical Imaging Systems,
Budapest, Hungary), respectively (Additional file 1). During
the scans, the mice were anesthetized with a mixture of
isoflurane and oxygen.

Static whole-body PET scans of 20 min duration were
performed at 30 min, 2 and 4 h after injection of **Sc-
PSMA-617 (~5 MBq, 1 nmol) and of 10 min duration at
30 min and 2 h after injection of ®*Ga-PSMA-617 and
®8Ga-PSMA-11 (~5 MBq, 1 nmol), respectively. The PET
scans were followed by a CT of 1.5 min. The SPECT scan
of 45 min duration was performed 2 h after injection of
Y7Lu-PSMA-617 (~50 MBgq, 1 nmol) followed by a CT of
7.5 min. Reconstruction of the acquired data was per-
formed by using the software of the respective scanner.

All images were prepared using VivoQuant post-
processing software (version 2.10, inviCRO Imaging
Services and Software, Boston USA). A Gauss post-
reconstruction filter (full width at half maximum =
1 mm) was applied to the images, which were presented
with the scale adjusted to allow visualization of the most
important organs and tissues, usually by cutting 0.5-1%
of the lower scale.

Results

Radiolabeling and in vitro evaluation of PSMA-targeted
radioligands

The radiochemical yield was always >97% for all radio-
labeled compounds at a specific activity of up to 10 MBq/
nmol (Additional file 1: Figure S1). The n-octanol/PBS dis-
tribution coefficients (logD values) were in the same range
for “Sc-, "Lu-, and ®*Ga-PSMA-617, but somewhat re-
duced for ®Ga-PSMA-11 (Table 2). The Kp, values obtained
for “*Sc-PSMA-617 and "’Lu-PSMA-617 were in the same
range, but somewhat higher values were determined for the
®*Ga-labeled PSMA ligands (Additional file 1: Figure S2).
The results were converted into relative PSMA-binding
affinities, which were similar for **Sc-PSMA-617 and *""Lu-
PSMA-617, but slightly reduced for the ®*Ga-labeled PSMA
ligands (Table 2).

Table 2 In vitro characteristics of the radiolabeled PSMA-ligands

Radioligand LogD values® Relative PSMA-binding affinity®
#Sc-PSMA-617 —-421+004 12
7 Lu-PSMA-617 —4.18+ 006 10
5Ga-PSMA-617 ~430+0.10 05
8Ga-PSMA-11 -4.82+007 04

?LogD values represent the average (+SD) of 3-5 independent experiments
performed in triplicate

bBinding affinity is the inverse molar ratio of the average Kp values
determined in four independent experiments performed in triplicates



Umbricht et al. EINMMI Research (2017) 7:9

Cell internalization studies of PSMA radioligands

Uptake and internalization of all four radioligands was
investigated using PC-3 PIP/flu cells (Fig. 2). The uptake
of all radioligands into PC-3 PIP cells (PSMAP®®) was
comparable and in the range of 55-70%, whereas the in-
ternalized fraction was about 10—15% of total added ac-
tivity (Fig. 2a). The uptake of all radioligands dropped to
<0.5% when PC-3 flu cells (PSMA"®) were used, which
proves PSMA-specific uptake/internalization of all four
radioligands (Fig. 2b).

Biodistribution studies in tumor-bearing mice

The tissue distribution profiles of **Sc-PSMA-617 and
7Lu-PSMA-617 were investigated in PC-3 PIP/flu tumor-
bearing mice over a period of 6 h (Fig. 3, Additional file 1:
Tables S1/S2). Relatively high radioactivity levels were de-
tected in the blood shortly after injection (~7% IA/g,
15 min p.i.); however, blood activity decreased quickly over
time to less than 0.5% IA/g at 2 h p.i. The uptake of both
radioligands in PC-3 PIP tumors was already high 15 min
after injection (36.5 = 7.44 and 32.3 + 3.54% IA/g) and in-
creased further to reach a maximum uptake (51.9 +4.05
and 56.0 + 8.0% IA/g) after 4 h (Fig. 3a). In PC-3 flu tumor
xenografts, however, the accumulated activity was clearly
below the blood level, indicating that unspecific accumula-
tion of the radioligands did not occur (Fig. 3b). The uptake
of the radioligands in the kidneys (37.7 £ 0.82 and 30.8 +
4.52% 1A/g, 15 min p.i.) was cleared quickly, resulting in
renal retention of ~6% IA/g after 2 h and ~3% IA/g after
6 h (Fig. 3c). Most importantly, the tissue distribution kine-
tics and excretion pattern of **Sc-PSMA-617 was com-
parable to that of '’“Lu-PSMA-617 (Fig. 3).

All four radioligands were investigated under the same
in vivo conditions over a period of 2 h (Fig. 4, Table 3,
Additional file 1: Tables S1-S5). Clearance of radioactiv-
ity from the blood pool was fast (<0.5% IA/g, 2 h p.i)
resulting in very high tumor-to-blood ratios (>200) at
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2 h p.i. The accumulation of activity in PC-3 PIP tumors
was comparable for all radioligands (45-49% IA/g, 2 h
p.i.). The tumor-to-background ratios of **Sc-PSMA-617
were virtually the same as those of '”"Lu-PSMA-617.
Renal retention of **Sc-PSMA-617 was comparable to
the ®®Ga- and '"’Lu-labeled versions; however, **Ga-
PSMA-11 showed a much higher uptake in the kidneys
(~60% IA/g, 2 h p.i., Fig. 4). This resulted in reduced
tumor-to-kidney ratios of “*Ga-PSMA-11 as compared to
the other radioligands. Moreover, uptake of “®Ga-PSMA-
11 in the spleen was also slightly increased. In comparison
to “Sc-PSMA-617 and '""Lu-PSMA-617, **Ga-PSMA-
617 showed reduced tumor-to-liver ratios which is due to
the increased liver uptake of this radioligand.

Imaging studies in PC-3 PIP/flu tumor-bearing mice
Nuclear imaging studies were performed with PC-3 PIP/
flu tumor-bearing mice 2 h after injection of Hgc.,
"Lu-, and ®®Ga-PSMA-617 as well as ®*Ga-PSMA-11
(Fig. 5, Additional file 1: Figure S3). PC-3 PIP tumor xeno-
grafts, located on the right shoulder, showed high uptake
of activity in all four cases. No activity was detected, how-
ever, in PC-3 flu tumors on the left shoulder, demonstrat-
ing the PSMA-specific tumor accumulation of the
radioligands. The PET images obtained with **Sc- and
%8Ga-PSMA-617 as well as the SPECT image obtained
with ""Lu-PSMA-617 showed a similar distribution
pattern and confirmed the post mortem data. The tissue
distribution of *®Ga-PSMA-11 was, however, different in
that it accumulated to a significantly higher extent in the
kidneys.

PET/CT scans were performed at 30 min, 2 and 4 h
after injection of **Sc-PSMA-617 to visualize the tissue
distribution in the same animal over time (Fig. 6). The
PC-3 PIP tumor (PSMAP®®) was visible already 30 min
p-i; however, at this time point, retention of radioactivity
was also seen in the kidneys. At delayed time points,
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when renal activity was cleared, the tumor became bet-
ter visible and was finally the only site showing accumu-
lated activity. These results demonstrated increasing
tumor-to-background contrast over time and confirmed
the advantage of late imaging.
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Discussion

In this study, **Sc-PSMA-617 was compared to **Ga-
PSMA-617 and ®®*Ga-PSMA-11 in vitro and in tumor-
bearing mice as a potential diagnostic match to the
therapeutically employed '”"Lu-PSMA-617 (Fig. 1). The
PC-3 PIP/flu tumor cells enabled the investigation of
PSMA-specific and -unspecific uptake of the radioli-
gands in vitro and in vivo by using a PC-3 PIP and PC-3
flu tumor xenograft in the same animal.

A comparable in vitro behavior of **Sc-PSMA-617 and
7Lu-PSMA-617, as was determined in this study, was
expected due to the chemical similarities of **Sc and
7Lu with regard to their complexation using DOTA
[34]. Our data revealed almost identical characteristics
of *Sc-PSMA-617 and '""Lu-PSMA-617 with regard to
their hydrophilic properties and PSMA-binding affinities
(Table 2). **Sc-PSMA-617 showed PSMA-specific cell
uptake and internalization, as was the case for all three
other radioligands (Fig. 2).

The evaluation of the radioligands in mice revealed a fa-
vorable tumor accumulation of **Sc-PSMA-617 already
shortly after injection and a relatively fast clearance of
background activity through the kidneys (Fig. 4). These
circumstances enabled PET/CT imaging with increasing
tumor-to-background contrast over time (Fig. 6). The tis-
sue distribution profile of **Sc-PSMA-617 was largely
identical to that obtained with ”’Lu-PSMA-617 over the
investigated period of 6 h (Fig. 3). Comparable pharmaco-
kinetic properties of **Sc- and '”’Lu-labeled compounds
were expected as previously shown in preclinical experi-
ments with a DOTA-functionalized folate conjugate [35].
The chemical similarities of these nuclides and, as a con-
sequence, comparable pharmacokinetics of ligands labeled
with **Sc and '”’Lu, respectively, would thus, allow pre-
dicting the exact tissue distribution of '""Lu-PSMA-617
based on the PET imaging results obtained with **Sc-
PSMA-617.

The chemical structure of **Ga-PSMA-11 is fundamen-
tally different (Fig. 1). Not surprisingly, the tissue distribu-
tion profile of ®®Ga-PSMA-11 in mice varied significantly
from those of the other investigated radioligands, as was
observed previously in preclinical experiments [15, 20].
High uptake of activity was found in the kidneys promptly
after injection of %8Ga-PSMA-11 (Fig. 4). This observation
was in agreement with the fact that in patients **Ga-
PSMA-11 showed an increased retention of activity in the
kidneys as compared to %8Ga-PSMA-617 [21, 23].

Even when using the same chelator, the chemical
properties of *®Ga- and '’“Lu-labeled compounds are
not identical due to the different coordination chemistry
of these radiometals [34] which may potentially result in
different in vivo kinetics [36]. In the case of ®®Ga-
PSMA-617, the pharmacokinetics were similar to those
of the **Sc- and '"’Lu-labeled versions, with the
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Fig. 4 Time-dependent uptake and retention of radioactivity in different organs and tissues over the first 2 h after injection of *'Sc-PSMA-617 (green),
7L u-PSMA-617 (vellow-brown), ®*Ga-PSMA-617 (red) and **Ga-PSMA-11 (blue)

Table 3 Tumor-to-background ratios obtained in PC-3 PIP/flu tumor-bearing mice

PSMA-ligand
Tumor-to-blood
Tumor-to-liver

Tumor-to-kidney

Tumor-to-blood
Tumor-to-liver

Tumor-to-kidney

Tumor-to-blood
Tumor-to-liver

Tumor-to-kidney

HSc-PSMA-617
538+090
188+ 502
097 021

#Sc-PSMA-617
176+123
556+7.36
1604022

#Sc-PSMA-617
>200

>200
798+1.71

15 min after injection

77 u-PSMA-617
445+ 066
204+ 548
106+ 0.14

Ga-PSMA-617
4154024
6.02+059
1264025

30 min after injection

7Lu-PSMA-617

160+ 352

53.1+6.68

209+024

2 h after injection

7Lu-PSMA-617

>200

>200

116+087

%8Ga-PSMA-617
169+422
1904232
362+081

8Ga-PSMA-617
>200
3524994
159+3.26

Ga-PSMA-11
6.10+1.84
153+3.96
041+0.14

%8Ga-PSMA-11
205 +6.40
3174248
058+0.10

5Ga-PSMA-11
>200
713+748
069+0.12
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44Sc-PSMA-617 77 u-PSMA-617

Fig. 5 Images (PET/CT and SPECT/CT, respectively) as maximum intensity projections (MIPs) of PC-3 PIP/flu tumor-bearing mice 2 h after injection of
a “Sc-PSMA-617, b '7/Lu-PSMA-617, ¢ ®®Ga-PSMA-617, and d ®®Ga-PSMA-11. PSMA- PC-3 flu tumor, PSMA+ PC-3 PIP tumor, ki kidney, b/ urinar bladder
J

6Ga-PSMA-617  8Ga-PSMA-11

exception of an increased uptake of **Ga-PSMA-617 in
the liver (Fig. 4). Exactly the same phenomenon has
been previously observed in mice, when they were
injected with “®Ga-labeled DOTA peptides [28]. In pa-
tients, increased hepatic uptake of radioactivity was not
detected after injection of %8Ga-PSMA-617 [21, 23].

Although ®*Ga-labeled PSMA ligands—in particular
8Ga-PSMA-11—are successfully employed in the clinics, it
is indisputable that the high cost for a ®*Ge/*®*Ga generator
is a disadvantage when considering the limited activity that
can be eluted daily. The short half-life of ®*Ga is also a
limiting factor, making transportation of activity over long

Fig. 6 PET/CT images as maximum intensity projections (MIPs) of PC-3 PIP/flu tumor-bearing mice a 0.5, b 2, and ¢ 4 h after injection of
HSc-PSMA-617. PSMA- PC-3 flu tumor, PSMA+ PC-3 PIP tumor, ki kidney, bl urinary bladder
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distances unattractive. The almost fourfold longer half-life
of *Sc as compared to ®*Ga would enable the shipment of
*Sc-based radiopharmaceuticals to PET centers without
cyclotron and radiopharmaceutical facilities. Concerns of
radiation safety with regard to the high-energy y-radiation
of *Sc (Ey=1157 keV) may be addressed by using
tungsten-based containers as are employed for other com-
mercial PET nuclides such as ®Zr, which emits high-
energy Y-radiation (E, = 909 keV) as well.

The use of **Sc-PSMA-617 as a diagnostic radioligand
would be novel and favorable, since the longer half-life of
*Sc permits a greater flexibility of patient scheduling to
accommodate urgent cases in between, thus, allowing
optimization of patient management in nuclear medicine
departments. Moreover, **Sc-PSMA-617 would allow
PET/CT imaging of patients several hours after injection,
potentially allowing dosimetry estimations and enabling
the detection of small pathological lesions due to in-
creased tumor-to-background ratios and, consequently,
improved image contrast.

A clinical translation of the proposed concept, as is
planned for the near future, will allow addressing the diverse
aspects of this promising approach. Appropriate acquisition
parameters for PET imaging of patients with prostate
cancer remain to be determined after collecting practical
experiences with **Sc-PSMA-617 in a clinical setting.

Conclusions

In this study, the potential of **Sc-PSMA-617 for PET im-
aging was demonstrated in a preclinical setting. The results
indicate more similar characteristics of **Sc-PSMA-617 to
’Lu-PSMA-617 than is the case for ®*Ga-PSMA-11. An
important advantage of using **Sc over *®Ga is the feasibility
of transporting **Sc-based PSMA-ligands to PET centers
without cyclotron and radiopharmaceutical facilities due to
its longer half-life. The fact that “*Sc-PSMA-617 can enable
delayed PET imaging makes it particularly appealing for
clinical application as it may allow pretherapeutic dosimetry
and an improved image quality at later time points after
injection.
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2-PMPA: 2-(Phosphonomethylpentane-1,5-dioic acid; PSMA: prostate-specific
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HBED-CC: NN-bis-[2-hydroxy-5-(carboxyethyl)benzyllethylenediamine-NN-diacetic acid;
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PET: Positron emission tomography; PSMA: Prostate-specific membrane antigen;
SPECT: Single photon emission computed tomography
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