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Predictive factors of 18F-choline PET/CT
positivity in patients with prostate cancer
recurrence after radiation therapy: is the
impact of PSA nadir underestimated?
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Abstract

Background: The objective of this study is to explore the impact of PSA nadirs on detection rates of prostate
cancer (PCa) recurrence with 18F-choline (CH) PET/CT after external beam radiation therapy (EBRT).

Methods: In this retrospective study, data were collected from 54 patients with suspicion of PCa biochemical
recurrence after EBRT (28 patients treated initially with EBRT and 26 as salvage therapy in the absence of PSA
decrease after initial treatment), who underwent 18F-CH PET/CT between 2010 and 2015. PSA nadir and trigger PSA
were collected from patient files. Relative PSA was calculated by subtracting the nadir from the trigger PSA.

Results: Median PSA nadir was 0.31 (0.01–13.31) ng/mL, trigger PSA was 7.85 (0.47–111.60) ng/mL, and relative PSA
was 6.05 (0.24–104.59) ng/mL. Overall, 40 (74%) PET/CT scans were positive: recurrence was local and/or regional in 29
patients, distant in 15 and combined both in four, with no association between PSA values and sites of recurrence.
In univariate analysis, trigger (p = 0.015) and relative (p = 0.0005) PSA values and PSA velocity (p= 0.01) were significantly
linked to positive PET/CT, but PSA nadir was not. In subgroup analysis, these significant differences were only found in the
salvage EBRT group. Akaike Information Criterion multivariate model comparison found that relative PSA was a better
predictor of positive PET/CT than trigger PSA (PSAt).
18F-CH PET/CT detection rates increased with trigger and relative PSA: 0% (0/4 patients), 71% (5/7 patients), and 81% (35/
43 patients) for PSAt <2 ng/mL, 2≤ PSAt ≤4 ng/mL, and PSAt >4 ng/mL, respectively, and 14% (1/7 patients), 50% (5/10
patients), and 92% (34/37 patients) when relative PSA was taken into account instead of trigger PSA, with seven (13%)
patients changing subgroups.

Conclusions: We found a high overall detection rate and an increase in detection rates proportional to trigger and
relative PSAs. Although relative PSA, taking into account PSA nadir, was a better predictive factor of PET/CT positivity in
univariate analysis, this was most noticeable for high PSAs. For low PSAs, trigger PSA remains most relevant. Larger series
with intermediate PSA values need to be studied to fully apprehend nadir impact.
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Background
Prostate cancer (PCa) is the most common cancer in
elderly men in developed countries and the fifth leading
cause of cancer-related death worldwide [1]. Known
significant risk factors include age, heredity, and ethni-
city. Risk groups defined by baseline prostate-specific
antigen (PSA), TNM staging, and Gleason score help
guide treatment [2]. Treatment options also depend on
age, life expectancy, and quality of life. Patients with
clinically localized disease can be treated with radical
prostatectomy (RP) or external beam radiation therapy
(EBRT) alone or with androgen deprivation therapy
(ADT). Low-dose rate brachytherapy is an option for
certain low-risk PCa patients [3].
Pre-treatment nomograms are available to determine

the risk of biochemical recurrence after RP [4] and
EBRT [5]. At 10 years of follow-up, approximately 35%
of men treated with RP and 50% of men treated with
EBRT will develop biochemical recurrence [6], defined
as two consecutive increasing PSA values >0.2 ng/mL
after RP and >2 ng/mL above the nadir after EBRT [7].
Salvage treatment is adapted to recurrence confirmation

and staging (local, regional, or distant). Rising PSA is the
main tool for PCa follow-up, but cannot predict the prob-
ability of systemic disease. Conventional imaging modalities
such as bone scintigraphy, computed tomography (CT),
and magnetic resonance imaging have relatively low accur-
acy and diagnostic yield in asymptomatic patients [8].

11C- or 18F-choline (CH) positron emission tomography
(PET)/CT seems an accurate tool for early PCa recurrence
detection. CH is required for the biosynthesis of phosphat-
idylcholine, an essential cell membrane component. CH
uptake increases in malignant tumors. There can, however,
be overlap between radiolabeled CH uptake in prostatic
tumors and benign prostatic tissue [9]. A meta-analysis re-
ported pooled positive and negative predictive values of 70
and 85%, respectively, for 11C- and 18F-CH PET/CT per-
formed at biochemical recurrence after RP [10]. CH PET/
CT also appears to be highly accurate when performed
in patients after EBRT, with 81% sensitivity and 93%
specificity in a recent study [11, 12].
Gleason score and PSA kinetics, such as PSA doubling

time (PSAdt) and velocity (PSAvel) are correlated to CH
PET/CT detection rates [13]. After RP, thresholds for
optimal PET/CT sensitivity are PSA level >1 ng/mL,
PSAdt <6 months [14], and PSAvel >1 ng/mL/year [15].
There is no consensus for cutoff values after EBRT. Data
interpretation is muddled by the fact that cytotoxic
effects of EBRT occur over months or even years and do
not affect all PSA-producing benign prostatic tissue.
Also, the concomitant use of ADT can delay time to bio-
chemical recurrence. PSA nadir is thus generally higher
and occurs later after EBRT than after RP [16]. Recent
studies have suggested that PSA kinetics have an impact

on CH-PET/CT detection after EBRT, but that PSA
levels at the time of PET/CT scan do not [17]. To the
best of our knowledge, no studies have evaluated the im-
pact of high nadirs on CH-PET/CT accuracy.
Thus, in order to challenge or confirm certain of these

findings, we retrospectively analyzed a group of patients
treated with EBRT to determine whether there were iden-
tifiable factors predictive of PET/CT positivity. We also
evaluated the impact of taking PSA nadir into account
when selecting patients for 18F-CH PET/CT after EBRT.

Methods
Patient population
In this retrospective study, 106 consecutive male pa-
tients diagnosed with PCa biochemical recurrence and
referred to our center for restaging of disease with 18F-
CH PET/CT between December 2010 and July 2015
were evaluated. Efforts were made to comply with the
following PET/CT criteria: patients with PSAt <2 ng/mL,
with Gleason score (GS) >7 and PSAdt <6 months, 2≤
PSAt ≤4 ng/mL and GS >7 and/or PSAdt <6 months,
and PSAt >4 ng/mL (with any GS or PSAdt). Among
these 106 patients, 65 (61%) were treated by radical
prostatectomy (including 23 who further received sal-
vage EBRT because of the absence of postoperative PSA
decrease), 28 (26%) were treated by EBRT as initial treat-
ment, 8 (8%) patients received ADT, 2 (2%) were treated
with high-intensity focused ultra-sounds (HIFU), 2 (2%)
were treated with transurethral resection of the prostate
(TURP), and 1 (1%) was treated with brachytherapy.
Three patients received salvage EBRT after ADT, HIFU,
and TURP, respectively. Altogether, 54 (51%) patients
were treated with EBRT (Fig. 1).
Data were collected from clinical and radiological files

and recorded by the same investigator using a standard-
ized form. Only patients with at least two PSA values
since suspicion of relapse were included.
Study protocol was in accordance with the Declaration

of Helsinki and local protocols.

Imaging protocol
PET/CT was performed in non-fasting conditions [18].
An 8-min dynamic acquisition (8 × 1 min frames)
centered on the pelvis was started immediately after
intravenous injection of 18F-choline (3-3.5 MBq/kg).
Following this, an acquisition was made from mid-thigh
to skull base (five to six bed positions; 2 min 40s and
3 min 40s per bed position for normal weight (BMI <25)
and for overweight patients (BMI ≥25), respectively). CT
images were used for attenuation correction and topo-
graphic localization.
A lesion was considered abnormal when focal tracer

accumulation was greater than background activity and
consistent with prostate disease patterns.
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Studied parameters and definitions
Relative PSA (PSArel) was defined as the difference
between PSA nadir and trigger PSA (PSAt), i.e., last PSA
before PET/CT scan. PSA doubling time (PSAdt) was
calculated by natural log of 2 (0.693) divided by the
slope of the relationship between the log of PSA and
time of PSA measurement for each patient [19]. If PSA
levels decreased, PSAdt was assigned a value equal to 0.
PSA velocity (PSAvel) was calculated with the following
formula: (trigger PSA – PSA2)/Δ time, with PSA2 the
PSA value at a Δ time from trigger PSA. PSAdt and
PSAvel were calculated using the Memorial Sloan-
Kettering Medical Center prostate cancer prediction
tools [20]. Risk groups were determined according to the
D’Amico classification [2].
Positive PET/CT results were considered true-positive

when there was either confirmation of recurrence on
histology of biopsies or surgical specimens, progressive
disease (new uptake sites or increase in uptake at known
sites) on follow-up PET/CT exams, repeated recurrence
confirmation on conventional imaging (bone scan, MRI,
CT scan), or biological and radiological response to local
and/or systemic treatment with follow-up of more than
12 months.

Statistical analysis
Quantitative variables were described with median and
range and compared between PET/CT positive and nega-
tive groups by Mann-Whitney test, whereas qualitative
variables were described with numbers and percentages
and compared between PET/CT positive and negative
groups by chi-square test (Fisher exact test if needed).
Comparisons between trigger and relative PSA values

were done using Wilcoxon signed rank test for paired
samples in both initial and salvage EBRT groups. Com-
parisons of PSA values between initial and salvage EBRT
groups were done using Mann-Whitney tests. Two-by-
two comparisons of PSAt according to the sites of
relapse were done using Mann-Whitney tests.
Concerning PET/CT positivity, univariate tests were first

performed to detect possible predictive factors. To detect
the best predictor of PET/CT positivity between PSAt and
PSArel, Akaike information criterion (AIC) was used.

For multivariate analysis, two logistic regressions were
computed with PSA values, one with PSAt and one with
PSArel because of their collinearity, as well as with PSA
doubling time, PSA velocity, and D’Amico risk group.
The best two models were chosen with stepwise algo-
rithm, using the AIC criteria.
Moreover, ROC curves of PSAt and PSArel were esti-

mated for their prediction of PET/CT results using the
AUC value. Youden’s index was used to determine the
best cutoff in terms of both sensitivity and specificity.
P < 0.05 was considered significant. All analyses

were performed with R, version 3.1.2 (R Foundation
for Statistical Computing: https://www.r-project.org/)
and Graphpad software.

Results
Patient characteristics
Age, clinical TNM stages, Gleason scores, D’Amico risk
groups, and initial PSA levels of the 54 patients treated
by EBRT are detailed in Table 1. At the time of PET/CT
scanning, no patients had documented metastatic dis-
ease and 12 (22%) were receiving ADT. Three patients
were receiving “adjuvant” hormonal therapy combined
with and then pursued for 2 to 3 years after radiotherapy
(because of an initial high risk of recurrence). The other
nine patients were under hormonal therapy for rising
PSAs with undocumented metastatic disease (despite re-
peated conventional imaging) and could be described as
micro-metastatic.

PSA parameters
Median PSA nadir was 0.31 (0.01–13.31) ng/mL,
equivalent to a median 4.2 (0.1–88.7) % of PSAt.
Median relative PSA was 6.05 (0.24–104.59) ng/mL.
Among the 54 patients, no significant differences
between PSArel and PSAt values were found (Fig. 2).
Sixteen patients had PSA nadir >1 ng/mL and their
median time to biochemical recurrence was signifi-
cantly shorter than patients with nadir ≤1 ng/mL (7
(2–58) vs. 39 (3–228) months; p = 0.001).

18F-choline PET/CT results
18F-CH PET/CT detected PCa recurrence in 40 (74%)
patients. Recurrence was local and/or regional in 29 pa-
tients (including 12 with prostatic fossa involvement, 14
with pelvic nodal involvement, and three with both) and
distant in 15 patients. Among these 15 patients, 10 pre-
sented only bone metastases, one presented both bone
and soft tissue metastases, and four patients presented
both regional nodal and distant recurrence (i.e., distant
lymph node involvement, bone and/or visceral lesions).
There were no significant differences between median
trigger or relative PSA values of patients with local or
distant recurrences. Distant recurrences were found in

Fig. 1 Flowchart of study population
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patients with PSAt both superior and inferior to
4 ng/mL. No false positive scans were observed.

Recurrence confirmation and subsequent treatment
Six (15%) positive PET/CT scans were confirmed by
lymph node or metastasis pathology, three (7.5%) by
TRUS-guided biopsy, 19 (47.5%) by response to treat-
ment, and 12 (30%) by conventional imaging or repeated

PET/CT exams, with a median follow-up time after 18F-
CH PET/CT of 26 (5–61) months for all patients.
Among the 19 patients with recurrence confirmed by

response to treatment, 15 were treated with hormonal
therapy (HT), two with radiotherapy (EBRT), one with
both HT and EBRT, and one with chemotherapy.
Out of the 40 patients with positive PET/CT scans, 27

(67.5%) were treated with ADT (including one patient
also treated with nodal EBRT), five (12.5%) were treated

Table 1 Characteristics of patients with and without positive 18F-choline PET/CT

Total PET-positive PET-negative p value

N 54 40 14

Age at diagnosis (year) 62 (51–78) 61.5 (51–77) 62 (51–78) 0.57

Cancer characteristics

Initial PSA (ng/mL) 9.84 (4–180) 9.58 (4–180) 10.51 (4.26–180) 0.86

Initial Gleason score 7 (5–9) 7 (5–9) 7 (6–9) 0.40

Gleason score ≥7 36 (67)

TNM 0.79

T11 11 (20.5) 8 (20) 4 (29)

T2 18 (33) 13 (32.5) 5 (35.5)

T3 24 (44.5) 19 (47.5) 5 (35.5)

Other T (is, x) 1 (2)

N0 34 (63) 24 (60) 10 (71)

N1 2 (4) 2 (5) 0

N2 1 (2) 1 (2.5) 0

Nx 17 (31) 13 (32.5) 4 (29)

D’Amico risk group 0.004

High 38 (70.5) 31 (77.5) 7 (50)

Intermediate 11 (20.5) 4 (10) 7 (50)

Low 5 (9) 5 (12.5) 0

Initial treatment 0.12

RP 23 (43) 16 (40) 7 (50)

EBRT 28 (52) 23 (57.5) 5 (36)

Othera 3 (5) 1 (2.5) 2 (14)

PSA values

PSA nadir (ng/mL) 0.31 (0.01–13.31) 0.30 (0.01–11.26) 0.50 (0.01–13.31) 0.40

Pre-PET/CT PSA (trigger PSA) 7.85 (0.47–111.60) 9.14 (2.04–111.60) 4.25 (0.47–83.40) 0.015

Relative PSA 6.05 (0.24–104.59) 8.06 (1.85–104.59) 2.34 (0.24–82.97) 0.0005

PSA kinetics

PSAdt in the last 12 m before PET/CT (months) 5.4 (0.6–91.6) 4.7 (1.7–27.7) 7.7 (0.6–91.6) 0.15

PSA velocity (ng/mL/year) 6.40 (0.50–104.40) 8.10 (0.60–104.40) 3.05 (0.50–86.10) 0.01

PET/CT

ADT at time of PET/CT 12 (22) 11 (27.5) 1 (7) 0.11

Time from initial treatment to PET/CT (months) 83 (4–222) 86 (4–222) 77 (11–123) 0.27

All medians are followed by (min–max) interval
ADT androgen deprivation therapy, EBRT external beam radiation therapy, PSA prostate-specific antigen, PSAdt PSA doubling time, RP radical prostatectomy
aOther: hormonal therapy (n = 1), high-intensity focused ultrasounds (n = 1), transurethral resection of the prostate (n = 1)
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with radiotherapy alone (EBRT or cyberknife), three
(7.5%) with chemotherapy, one (2.5%) with orthopedic
surgery, and four (10%) were followed up and treated
only at further progression.

Impact of trigger PSA, PSA kinetics, and PSA nadir on
PET/CT detection rates
Differences in PSAt and PSArel between patients with
positive or negative 18F-CH PET/CT are shown in Table 1.
In univariate analysis, patients with positive PET/CT had
significantly higher PSAt (p = 0.015), PSArel (p = 0.0005)
levels and higher PSAvel (p = 0.01) than patients with
negative PET/CT scans. There were no significant differ-
ences in terms of PSAdt or PSA nadir between both
groups. AIC model comparison found that PSArel was a
better predictor of positive PET/CT than PSAt (AIC: 46.4
vs 55.7, respectively).
For multivariate analysis, whatever the PSA (trigger

or relative) entered into the model, the final selected
model was the one with only PSA velocity (HR
(+1 ng/mL/year) 1.03 CI95% 0.99–1.07, p value = 0.12)
and D’Amico risk group (high vs. intermediate/low:
HR 4.36 CI95% 1.12–17.00, p value = 0.032).
ROC analysis for prediction of 18F-CH PET/CT posi-

tive scans found the best cutoff point for PSArel to be
4.09 ng/mL (sensitivity = 85%, specificity = 78%), and
AUC was 0.81 (Fig. 3).
The percentages of positive 18F-CH PET/CT scans

were 0% (0/4 patients), 71% (5/7 patients), and 81%
(35/43 patients) for PSAt <2 ng/mL, 2≤ PSAt ≤4 ng/
mL, and PSAt >4 ng/mL, respectively. Seven (13%) pa-
tients changed subgroups when PSArel was taken into

account instead of PSAt: 5/14 (36%) patients with negative
PET/CT were down-graded from their PSA subgroup (2
from the “>4” to the “< 2” subgroup and 3 from the “>4”
to the “2 ≤ PSA ≤ 4” subgroup) and 2/40 (5%) patients with
positive PET/CT were down-graded. Detection rates were
14% (1/7 patients) for PSArel <2 ng/mL, 50% (5/10 pa-
tients) for 2≤ PSArel ≤4 ng/mL, and 92% (34/37 patients)
for PSArel >4 ng/mL.
As shown in Fig. 4, when PSArel is superior to 4 ng/mL,

relative PSA allows for better discrimination between
positive and negative PET/CT exams as 92% of patients
with PSArel >4 ng/mL had a positive exam. Conversely,
when PSAt is inferior to 2 ng/mL, PSAt discriminates
between positive and negative exams better than PSArel
as all patients with PSAt <2 ng/mL had a negative exam.
Patients in the 2–4 PSA subgroup, have a lower probabil-
ity of positive exams (50 vs. 71%) when taking PSArel into
account rather than PSAt. It is likely that other predictive
factors are necessary to consider scanning these patients.

Subgroup analysis of patients treated with initial EBRT
and salvage EBRT
Among patients treated with initial EBRT and those
treated with salvage EBRT, PSArel and PSAt values
were not significantly different (Fig. 2). However, me-
dian PSAt and PSArel values were both significantly
higher in patients initially treated with EBRT than those
treated with salvage EBRT (9.39 (1.32–111.60) vs. 5.53
(0.47–18.62) ng/mL, p = 0.03 and 8.49 (0.41–104.59) vs.
5.26 (0.24–17.62) ng/mL, p = 0.02, respectively).
There was no significant difference in median PSA

nadir between the salvage EBRT group and the initial

Fig. 2 Relative and trigger PSA values of patients treated with external beam radiation therapy (EBRT). Boxplots represent median and interquartile ranges;
crosses represent means
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EBRT group (median of 0.22 and 0.48 ng/mL, respect-
ively, p = 0.32).
When comparing patients with positive and negative

PET/CT scans, the significant differences of PSAt and
PSArel found among the 54 patients were only found in
the salvage EBRT group (Table 2).

Discussion
Our study suggests that 18F-CH PET/CT detection rates
are positively related to relative PSA levels as well as trig-
ger PSA levels in patients treated with EBRT, especially in
patients treated with EBRT as salvage therapy after RP.
For PSA values above 4 ng/mL, taking relative PSA

into account instead of trigger PSA increased PET/CT
positivity. However, for PSA values below 2 ng/mL, trig-
ger PSA allowed for better discrimination of negative
PET/CT exams compared to relative PSA with detection
rates dropping from 14 to 0%, respectively. On the basis

of these results, the usefulness of taking the nadir into
account for PET/CT indication seems limited.
Indeed, early and reliable detection of relapse can

guide therapy and justify local treatment such as radio-
therapy or surgery, and delay hormonal therapy. Thus,
PET/CT should not, theoretically, primarily benefit pa-
tients with high PSA values, but rather those with low
PSAs [21]. However, for very low PSAs (<1 ng/mL),
studies have so far reported variable detection rates from
0 to 49%, usually in heterogeneous groups of patients
treated with either RP or EBRT [11, 22–24]. Our detec-
tion rates for low PSA values (despite Gleason score and
PSAdt selection criteria) were weak, but further analysis
is limited by the small number of patients.
Similarly to our study, some authors found that PSA

levels were not predictive of the site of recurrence with dis-
tant and local recurrences in all subgroups of PSA [25, 26].
This underlines the importance of PET/CT scans for cases

Fig. 3 ROC analysis of the optimal cutoff of trigger and relative PSA values for highest PET/CT accuracy

Fig. 4 18F-CH-PET/CT positivity according to trigger and relative PSA subgroups. Boxes represent PET/CT detection rates; upper bars represent
standard deviation

Johnson et al. EJNMMI Research  (2016) 6:84 Page 6 of 9



in which local treatment is discussed to determine sites of
recurrence and adapt treatment as biological analyses alone
are insufficient.
Many authors have studied the impact of trigger PSA

and PSA kinetics on 11C- and 18F-CH PET/CT positivity,
but generally studies have grouped patients treated with
EBRT with those treated with RP. Among those distin-
guishing EBRT from RP patients, Bertagna and al. studied
70 patients treated with EBRT and suggested an optimal
cutoff of 2 ng/mL of trigger PSA with best PET/CT sensi-
tivity of 81.8% and specificity of 92.9%. As opposed to
patients treated with RP, they did not find a statistical cor-
relation between PSA values and PET/CT results in the
subgroup treated with EBRT [12]. Chondrogiannis et al.
only found an impact of trigger PSA on PET/CT detection
rates in a study of 34 patients initially treated with EBRT
and an overall detection rate of 80%, similar to ours [25].
Later work by Ceci et al. found an impact of PSA kinetics
(PSAdt and PSAvel) on PET/CT detection rates in 140 pa-
tients with recurrence after EBRT, but no impact of trigger
PSA (p = 0.20) [17].
We found impacts of trigger PSA and PSAvel on PET/

CT positivity, but not of PSAdt. Likewise, Gleason score
did not seem to influence our PET/CT results, which di-
verges from the results of a recent study evaluating
Gleason score impacts on PET/CT detection rates in pa-
tients treated with EBRT, RP, or ADT [27]. As shown by
prior studies [22, 24, 25], ADT at the time of CH-PET/
CT did not have a significant effect on detection rates in
our series.
To our knowledge, no studies have taken into account

patients’ PSA nadir after EBRT. No target post-EBRT PSA

nadir is established, but, as we found in our study, it is
suggested that PSA nadir ≤1 ng/mL is correlated to longer
disease-free survival [28]. Intuitively, PSA nadir should
have a bigger impact on PET/CT results in post-EBRT pa-
tients with low PSAs as the subtraction of the nadir from
a low trigger PSA would diminish PSA elevation and thus
the probability of positive PET/CT scan. We could not de-
termine this in multivariate analysis of our series because
of the limited number of subjects with low PSA.
Our study is limited by its retrospective design, pre-

cluding complete data collection, and its small sample
size. As others have mentioned, validation of PET/CT
results is problematic as the gold standard, histological
analysis of each detected lesion, is neither ethical nor
practical, and is usually performed only in patients with
positive PET/CT [29]. Nevertheless, the prolonged
follow-up time of our cohort, with both clinical and
radiological examinations (repeated PET/CT and other
types of imagery), reduced the likelihood of false nega-
tives and positives. Patients treated with salvage EBRT
were the only sub-group of patients with an impact of
PSAt and PSArel values on PET/CT accuracy, but this
group also had significantly lower PSAt and PSArel
values than those treated with initial EBRT, which could
induce bias.
Finally, our recommendations for PET/CT intended

to select for patients with a high a priori probability
of PET/CT positivity, which may be regarded as a
bias. A few patients in our cohort had very high trig-
ger PSAs and median trigger PSA was slightly higher
than those found in the post-EBRT studies described
previously [17, 25]; however, none of our patients had

Table 2 PSA parameters and Gleason scores of patients with negative or positive PET/CT, in subgroups of patients treated with
initial or salvage radiation therapy

Total Positive PET/CT Negative PET/CT p value

Initial radiotherapy N = 28 N = 23 N = 5

Trigger PSA 9.39 (1.32–111.60) 9.50 (2.04–111.60) 8.50 (1.32–83.40) 0.76

Relative PSA 8.49 (0.41–104.59) 8.59 (2.03–104.59) 4.00 (0.41–82.97) 0.47

Gleason score ≤6 12 (43) 10 (44) 2 (40) 1.00*

Gleason score >6 16 (57) 13 (56) 3 (60)

PSAdt >6 months 9 (32) 7 (30) 2 (60) 1.00*

PSAdt ≤6 months 19 (68) 16 (70) 3 (40)

Salvage radiotherapy N = 26 N = 17 N = 9

Trigger PSA 5.53 (0.47–18.62) 7.81 (2.60–18.62) 3.85 (0.47–15.01) 0.009

Relative PSA 5.26 (0.24–17.62) 7.51 (1.85–17.62) 1.69 (0.24–5.09) 0.0004

Gleason score ≤6 7 (27) 5 (29) 2 (22) 1.00*

Gleason score >6 19 (73) 12 (71) 7 (78)

PSAdt >6 months 15 (58) 8 (47) 7 (80) 0.22*

PSAdt ≤6 months 11 (42) 9 (53) 2 (20)

PSAdt PSA doubling time
*Fisher’s exact test; all others: Mann-Whitney test
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documented metastatic disease but those with very
high PSA values could probably be considered micro-
metastatic. Our overall detection rate of 74% was also
higher than the 62% in a recent meta-analysis by
Fanti et al. [29] but similar to other studies of post-
EBRT patients [25].
Recent studies suggest that PMSA, a newer tracer,

is more accurate than choline for the diagnosis of
prostate cancer recurrence, especially for low PSA
values, but the use of this tracer is still restricted to
large academic centers [30–34].
Further prospective studies are necessary to determine

the impact of PSA nadir on 18F-CH or other radiotracer
PET/CT detection rates.

Conclusions
In this routine clinical setting study of patients with
rising PSA values after curative EBRT, 18F-CH PET/
CT detection rates were high and were correlated to
trigger and relative PSA, the latter being the best pre-
dictor of a positive exam. For high PSAs (>4 ng/mL),
relative PSA discriminated between positive and nega-
tive PET/CT scans more optimally than trigger PSA.
For low PSAs (<2 ng/mL), trigger PSA was most rele-
vant and it does not seem necessary to consider PSA
nadir in these patients. Larger series with intermedi-
ate PSA values need to be studied to fully apprehend
nadir impact.
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