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Rapid kit-based °®Ga-labelling and PET ® e
imaging with THP-Tyr’-octreotate: a preliminary
comparison with DOTA-Tyr*-octreotate

Michelle T. Ma"", Carleen Cullinane®?, Kelly Waldeck?, Peter Roselt?, Rodney J. Hicks>* and Philip J. Blower'

Abstract

Background: Ge/*®Ga generators provide an inexpensive source of a PET isotope to hospitals without cyclotron
facilities. The development of new ®®Ga-based molecular imaging agents and subsequent clinical translation would
be greatly facilitated by simplification of radiochemical syntheses. We report the properties of a tris(hydroxypyridinone)
conjugate of the SSTR2-targeted peptide, Tyr*-octreotate (TATE), and compare the ®®Ga-labelling and biodistribution of
[®®Ga(THP-TATE)] with the clinical radiopharmaceutical [**Ga(DOTATATE)].

Methods: A tris(hydroxypyridinone) with a pendant isothiocyanate group was conjugated to the primary amine
terminus of H,N-PEG,-Lys(iv-Dde)>-TATE, and the resulting conjugate was deprotected to provide THP-TATE.
THP-TATE was radiolabelled with ®®Ga®* from a ®®Ge/*®Ga generator. In vitro uptake was assessed in SSTR2-
positive 427-7 cells and SSTR2-negative 427 (parental) cells. Biodistribution of [%8Ga(THP-TATE)] was compared
with that of [*®Ga(DOTATATE)] in Balb/c nude mice bearing SSTR2-positive AR42J tumours. PET scans were
obtained 1 h post-injection, after which animals were euthanised and tissues/organs harvested and counted.

Results: [°®Ga(THP-TATE)] was radiolabelled and formulated rapidly in <2 min, in 295 % radiochemical yield at
pH 5-6.5 and specific activities of 60-80 MBqg nmol™' at ambient temperature. [**Ga(THP-TATE)] was rapidly
internalised into SSTR2-positive cells, but not SSTR2-negative cells, and receptor binding and internalisation
were specific. Animals administered [°®Ga(THP-TATE)] demonstrated comparable SSTR2-positive tumour activity
(11.5+0.6 %ID g~') compared to animals administered [*®Ga(DOTATATE)] (14.4 + 0.8 %ID g~ '). Co-administration
of unconjugated Tyr*-octreotate effectively blocked tumour accumulation of [**Ga(THP-TATE)] (2.7 + 0.6 %ID g~ '). Blood
clearance of [*®Ga(THP-TATE)] was rapid and excretion was predominantly renal, although compared to
[®®Ga(DOTATATE)], [*®Ga(THP-TATE)] exhibited comparatively longer kidney retention.

Conclusions: Radiochemical synthesis of [**Ga(THP-TATE)] is significantly faster, proceeds under milder conditions, and
requires less manipulation than that of [*®Ga(DOTATATE)]. A %Ga-labelled tris(hydroxypyridinone) conjugate of Tyr3f
octreotate demonstrates specificity and targeting affinity for SSTR2 receptors, with comparable in vivo targeting affinity
to the clinical PET tracer, [**Ga(DOTATATE)]. Thus, peptide conjugates based on tris(hydroxypyridinones) are conducive
to translation to kit-based preparation of PET tracers, enabling the expansion and adoption of ®®Ga PET in hospitals and
imaging centres without the need for costly automated synthesis modules.
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Background

The positron-emitting isotope gallium-68 (°®Ga) possesses
decay properties suitable for PET imaging (£, = 68 min,
90 % positron yield, 1.9 MeV) and has been utilised in
peptide receptor-targeted radiopharmaceuticals including
somatostatin- [1-5], PSMA- [6], GRPR- [7] and GLP-1R-
targeted [8] conjugates. Such agents are important as diag-
nostic agents in theranostic pairs of pharmaceuticals in
personalised medicine [9]. The ®*Ge/**Ga generator (*8Ge
t, = 270 days) provides hospitals daily access to ®*Ga with-
out expensive cyclotron facilities, and a European
pharmaceutical-grade generator has recently received
marketing authorisation [10]. In terms of simplicity and
accessibility, the ®®Ge/®®Ga generator has the potential to
become the “PET equivalent” of the *Mo/**™Tc gener-
ator, provided that suitable kit-based chemistry can be
developed to facilitate clinical translation.

The macrocyclic chelator DOTA is frequently
employed as a chelator for stable coordination of **Ga®*,
but synthesis of this complex requires heating at 80—100 °C
for 5-10 min at pH 3-5 (although microwave irradiation
can reduce reaction times to 1 min [11]), and often requires
a post-synthetic purification step [11-18]. As such, it is not
optimal for rapid kit-based syntheses of ®®*Ga-labelled
radiotracers. Ideally, kit-based synthesis of such tracers
could make use of a chelator that coordinates ®*Ga’*
rapidly (<2 min) at ambient temperature to minimise
synthesis time and simplify labelling and formulation
procedures. Alternative chelators for ®*Ga** have been
reported, including NOTA/NODAGA [19-22], TRAP
and its derivatives [23-26], sarcophagines [27], HBED
and its derivatives [6, 28], substituted 6-amino-
perhydrodiazepines AAZTA [29], the siderophore FSC
[30], and a series of chelators based on substituted
pyridine carboxylates (DEDPA) [31-33]. The bifunc-
tional chelator HBED-CC is used clinically in the
peptide-based ®*Ga-labelled radiopharmaceutical, **Ga-
HBED-PSMA, which targets the prostate specific mem-
brane antigen expressed in metastatic prostate cancer
[6]. Derivatives of HBED, along with TRAP, NOTA,
AAZTA, FSC and DEDPA conjugates have demon-
strated desirable radiolabelling properties, with label-
ling proceeding rapidly at room temperature in all
cases. We have reported that a tripodal tris(hydroxypyr-
idinone) ligand coordinates “®Ga®* via six O-atoms at
mild pH (pH 6.5-7.0), at low ligand concentrations
(10 uM) in <5 min, and specific activities of up to
80 MBq nmol ™" [34]. Bifunctional ®®Ga-labelled deriva-
tives of this compound are stable to demetallation in
vivo, accumulate selectively in target tissue and are ex-
creted mainly via a renal route [35].

We now report the synthesis, simple ®*Ga-labelling and
biodistribution of a somatostatin-2 receptor (SSTR2)-tar-
geting  tris(hydroxypyridinone) conjugate, THP-TATE.
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The SSTR2-targeting radiopharmaceutical [**Ga(DOTA-
TATE)] has demonstrated superior clinical resolution and
sensitivity compared to the '''In-labelled SPECT tracer,
"' In(DTPA-octreotide)], in identifying tumours express-
ing SSTR2 in neuroendocrine cancer patients [3]. Despite
the multistep radiochemistry required, [**Ga(DOTA-
TATE)] is used routinely in PET clinics, and in conjunc-
tion with 'F-FDG [5], is important in determining
therapeutic regimes of patients presenting with neuroen-
docrine tumours [1, 2, 4, 9, 10]. It is instructive to com-
pare DOTATATE with THP-TATE (Chart 1), both in
terms of (i) radiosynthesis in a hospital radiopharmacy
and (ii) preclinical biodistribution, in order to evaluate the
advantages and disadvantages of this new class of tris(hy-
droxypyridinone) chelators.

Methods

Materials and instrumentation

Mass spectra were recorded on an Agilent 6510 Q-TOF
LC/MS mass spectrometer (Agilent, Palo Alto, CA). In-
stant thin-layer chromatography strips (ITLC-SG) were
obtained from Varian Medical Systems UK, Ltd. (Crawley,
UK), and ITLC strips were visualised using a Raytest Rita-
Star TLC scanner. Semi-preparative reverse-phase HPLC
was conducted using an Agilent Eclipse XDB-C18 column
(9.4 x 250 mm, 5 pm) coupled to an Agilent 1200 LC sys-
tem, with a 3 mL min~" flow rate and UV spectroscopic
detection at 220 nm. Mobile phase A contained water
with 0.2 % TFA, and mobile phase B contained aceto-
nitrile with 0.2 % TFA. The gradient started with 100 % A
at 0 min, and the concentration of B increased at a rate of
1% min".

Analytical reverse-phase HPLC and radio-HPLC traces
were acquired using two different instruments: (1) an Agi-
lent 1200 LC system with an Agilent Zorbax Eclipse XDB-
C18 column (4.6 x 150 mm, 5 pm) and UV spectroscopic
detection at 220 nm. The radio-HPLC was coupled to a
LabLogic Flow-Count detector with a sodium iodide
probe (B-FC-3200). Mobile phase A comprised water with
0.1 % TFA, and mobile phase B comprised acetonitrile
with 0.1 % TFA. For method 1, the concentration of B
increased at a rate of 1.67 % min~!, with 100 % A at
0 min and 50 % B at 30 min with a flow rate of
1 mL min"%; (2) an Agilent Zorbax Eclipse XDB-C18
column (4.6 x 150 mm, 5 pum) with a 1 mL min™"
flow rate and UV spectroscopic detection at 220 nm
coupled to a Shimadzu HPLC. This was coupled to a
radiation detector consisting of an Ortec model 276
Photomultiplier Base with Preamplifier, Amplifier,
BIAS supply and SCA and a Bicron 1M 11.2 Photo-
multiplier Tube. For method 2, the concentration of
B increased at a rate of 6.67 % min ', with 100 % A
at 0 min and 80 % B at 12 min.
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Chart 1 Structures of DOTATATE, the bifunctional chelator, THP-NCS and the new peptide conjugate, THP-TATE
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Analytical size-exclusion radio-HPLC traces were ac-
quired using an Agilent 1200 Series HPLC system and a
Phenomenex Biosep 2000 (300 x 7.8 mm) size-exclusion
column with a phosphate-buffered saline mobile phase.

For initial radiolabelling and characterisation studies
that utilised <400 MBq, an Eckert and Ziegler ®*Ge/**Ga
generator (Berlin, Germany) was used. For biodistribu-
tion studies, and experiments that utilised >600 MBq
®8Ga, an iThemba Labs 1.85 GBq ®*Ge/**Ga generator
(IDB Holland BV, Netherlands) was used.

Synthesis of THP-TATE

The peptide H-PEG,-dPhe-Cys-Tyr-dTrp-Lys(iv-Dde)-Thr-
Cys-Thr-OH was synthesised using standard solid-phase
peptide synthesis protocols [36—39], cyclised using 2,2'-
dithiodipyridine and purified using reverse-phase semi-

preparative HPLC. PEG,-Lys(iv-Dde)>-TATE (5-6 mg) was
dissolved in dimethylsulfoxide (100-300 pL) and added to
THP-NCS (synthesised as previously described [35]) (4 mg)
in dimethylsulfoxide (100-300 pL), and diisopropylethyla-
mine (5-10 pL) was added. The reaction solution was
heated in a microwave synthesiser (120 °C, 300 W, 30 min)
and then applied to a reverse-phase HPLC column (condi-
tions above). Fractions containing the desired (iv-Dde)-pro-
tected conjugate eluted at 45-47 min and were combined
and lyophilised. MS: m/z [CiogH143N1904,S5 + 3H]*",
observed monoisotopic peak =737.66, calculated = 737.66;
[C106H143N 160,55 + 2H]**, observed monoisotopic peak =
1105.99, calculated = 1105.99. The (iv-Dde)-protected con-
jugate was dissolved in a solution of 2 % hydrazine in
dimethylformamide (1-2 mL). Within 30 min, the solution
was applied to a reverse-phase HPLC column, and
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Fig. 1 HPLC traces (\»50) of THP-TATE (black) and ["“'Ga(THP-TATE)] (blue) and radio-HPLC trace of [®*Ga(THP-TATE)] (red). Inset: experimental (blue)
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fractions containing THP-TATE eluted at 33-35 min
and were combined and lyophilised. MS: m/z
[Co3H125N 1602555 + 3H]?*,  observed  monoisotopic
peak = 668.95, calculated = 668.95; [Co3H125N1902553 +
2H]**, observed monoisotopic peak = 1002.92, calcu-
lated = 1002.92, isolated yield ~25 %. Analytical HPLC
(220 nm): RT (retention time)=18.97 min, >97 %
purity (method 1, see above).

Radiolabelling

Initial radiolabelling experiments utilised an Eckert and
Ziegler “®*Ge/®®Ga generator. Aqueous HCl solution
(0.1 M, 5 mL) was passed through the generator, and the
eluate was fractionated (5 x 1 mL). The second fraction
(1 mL, containing 90-100 MBq “®*Ga) was added directly
to an ethanol/water solution (50 %/50 %, 50 pL) of
THP-TATE (25 pg) and immediately followed by a solu-
tion of ammonium acetate (2 M, 200 pL) to obtain a
solution of pH 5-6. This solution was immediately ap-
plied to an analytical reverse-phase C18 HPLC column.
[*®Ga(THP-TATE)]: radiochemical yield >99 % (HPLC),
HPLC: RT =20.23 min (HPLC method 1).

The non-radioactive analogue, ["“Ga(THP-TATE)]
was also prepared. An aqueous solution of Ga(NOs);
(I mg mL™Y, 4 mM, 5 pL) was added to THP-TATE
(25 pg) dissolved in deionised water/ethanol (50 %/50 %,
50 pL). The solutions were applied to an analytical
reverse-phase C18 HPLC column as well as being
subjected to LCMS analysis. ["*Ga(THP-TATE)]: HPLC
RT =20.17 min (HPLC method 1); [Co3H;55N1005555Ga
+3H]?*, observed monoisotopic peak = 690.92, calcu-
lated = 690.92; [Co3H125N100455:Ga + 2H]**, observed
monoisotopic peak = 1035.87, calculated = 1035.87.

For in vivo and in vitro studies, generator-produced
%8Ga®* (800—-1000 MBgq, iThemba Labs generator) was
concentrated on an AG 50WX4 (400 mesh) cation ex-
change cartridge and eluted with 200 puL 0.9 M HCI in
ethanol/water (90 %/10 %) [16]. This volume was di-
luted in deionised water (800 uL) and directly added to
THP-TATE (25 pg) at ambient temperature, followed
immediately by addition of aqueous ammonium acet-
ate (2 M, 400 pL) to obtain solutions of pH ~6.5,
resulting in [**Ga(THP-TATE)]. These solutions were
further diluted by addition of saline solution (0.9 %
NaCl w/v, 1.1 mL). Within 2-5 min of addition of
%Ga®" to the conjugates, the solutions were subjected
to analytical reverse-phase HPLC and ITLC analysis.
[*®Ga(THP-TATE)]: radiochemical yield >95 % (ITLC),
HPLC: RT = 10.48 min (HPLC method 2).

Synthesis of [®®*Ga(DOTATATE)] was undertaken
using methods previously reported [17]. Briefly, an
iThemba Labs generator at approximately 3 months
post-calibration was eluted with aqueous HCl (0.4 M,
5 mL). The eluate was passed through an AG 50WX8
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(400 mesh) cation exchange resin, and the ®*Ga®" was
retained on the resin. The resin was washed with a solu-
tion of 80 % acetone/0.15 N HCI (1 mL) to remove re-
sidual *®Ge breakthrough, followed by elution of **Ga**
(using a solution of 97.6 % acetone/0.05 N HCI, 400 pL)
into a pre-heated reaction vial containing DOTATATE
(42 pg), ascorbic acid and gentisic acid in sterile Milli-Q
water (5 mL). After 10 min at 105 °C, the reaction mix-
ture was passed through a reverse-phase solid-phase ex-
traction cartridge (Strata-X, 30 mg, Phenomenex). The
Strata-X cartridge was rinsed with sterile Milli-Q water,
and [**Ga(DOTATATE)] was subsequently recovered
with ethanol (500 pL). The ethanol solution containing
[*®Ga(DOTATATE)] was transferred into a vial contain-
ing saline for injection (9 mL), and the resultant mixture
passed through a low protein-binding filter. Radiochem-
ical yields ranged from 50 to 70 %, and radiochemical
purity was greater than 95 %.

Log Poct/pes determination

A solution containing [8Ga(THP-TATE)] (10 uL, synthe-
sised using eluate from an Eckert and Ziegler generator as
described above) was added to 500 pL of octanol and
490 pL of aqueous phosphate-buffered saline solution.
The mixture was agitated using a vortex for 3—4 min, and
the phases separated by centrifugation (4000 rpm, 5 min).
Aliquots from each phase (50 puL) were counted for radio-
activity in a gamma counter. The experiment was repeated
six times.

Serum stability

A solution containing [**Ga(THP-TATE)] (150 pL, syn-
thesised using eluate from an Eckert and Ziegler gener-
ator as described above) was added to 1.5 mL of fresh
human female O serum, incubated at 37 °C for 5 h, and
the reaction mixture was analysed using size-exclusion
HPLC chromatography. Concurrently, a solution of
®Ga®" in ammonium acetate (0.33 M, 8 MBq, 300 pL)
was added to 1.5 mL of serum and incubated at 37 °C
for 4 h, followed by analysis using size-exclusion HPLC.

In vitro uptake

The A427 human non-small cell lung carcinoma cell line
was obtained from American Type Culture Collection
(catalogue number: HTB-53). The SSTR2 over-
expressing cell line A427-7 was a gift from Prof. Buck
Rogers [40]. A427-7 and parental A427 cells were plated
in Minimum Essential Medium (MEM) containing 10 %
FBS at 5 x 10° cells per well in poly-D-lysine-coated 12-
well cell culture dishes for 24 h. On the day of the bind-
ing assay, cells were washed in PBS and equilibrated in
MEM containing 1 % FCS. Cells were then treated with
[*®Ga(THP-TATE)] (1.5 MBq, 5 uL, 4 uM THP-TATE),
with or without blocking TATE peptide (5 pL, 800 uM,
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200-fold excess) for 5, 15, 30 and 60 min (A427-7 cells)
and 60 min (A427 parental cells) in triplicate. Uptake
was terminated by placing the cells on ice. Unbound free
tracer was collected, with the supernatant and cold PBS
washes combined for this fraction. The surface-bound
tracer fraction was collected through two 10-min acid
washes (0.1 M glycine in saline, pH 2.3). Finally, the
internalised fraction was collected through incubation in
1 M NaOH for 10 min. The activity of these fractions
was determined using a gamma counter (Biomedex).
Protein concentration in each well was determined using
the Pierce BCA Protein Assay Kit (Amersham) on the
internalised fractions collected. Results were calculated
as a percentage of added radioactivity and normalised to
protein concentration. The experiment was repeated
three times.

PET scanning and biodistribution

All animal experiments were performed with approval
from the Peter MacCallum animal ethics committee. Six-
to eight-week-old Balb/c nude mice (Animal Resources
Centre, Western Australia) were implanted subcutane-
ously on the right flank with three million AR42] cells
(sourced from ATCC). Once the tumours reached a vol-
ume >150 mm?, the animals (1 = 3) were injected intra-
venously with 23-28 MBq [**Ga(THP-TATE)] (containing
1 pg of THP-TATE). For blocking studies, animals (n = 3)
were coinjected with Tyr’-octreotate peptide (400 pg). For
[*®Ga(DOTATATE)], the animals (17=3) were injected
with 8 MBq of the tracer (containing 1 pg of DOTA-
TATE). At 1 h, the animals were anaesthetised and imaged
on a Philips MOSAIC small animal PET scanner. The im-
ages were reconstructed using a 3D RAMLA algorithm
and tracer uptake determined as described previously [41].
On completion of the scan, animals were euthanised and
tissues harvested, weighed and radioactivity counted using
a gamma counter (Biomedex). Quantitation of PET im-
ages was performed using in-house software (MARVn
3.31). Regions of interest were drawn around tissues of
interest and uptake ratio calculated as the maximum pixel
intensity in the tumour divided by the average uptake in a
mediastinal background region, liver or kidneys, as
appropriate.

Results
Synthesis and radiolabelling of THP-TATE
Reaction of the bifunctional chelator THP-NCS (Chart 1)
with H2N—PEG2—Lys(iv-Dde)5 -TATE under microwave
conditions resulted in the facile formation of THP-
PEG,-Lys(iv-Dde)-TATE. Removal of the iv-Dde group
from the Lys® side-chain resulted in the formation of
THP-TATE (Chart 1).

The new THP-TATE peptide conjugate could be radi-
olabelled with generator-produced eluate that was added
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directly from the generator or eluate that was precondi-
tioned to concentrate activity and remove any contamin-
ating ®®Ge [16]. In both cases, ®*Ga®>* in 1 mL HCI
solution was added to THP-TATE (10 nmol) at ambient
temperature, followed immediately by addition of aque-
ous ammonium acetate and saline to obtain solutions of
pH 5-7, which were then immediately subjected to
ITLC and HPLC analysis. This synthetic protocol repro-
ducibly provided the labelled conjugate [**Ga(THP-
TATE)] in >95 % radiochemical yield (with <5 % attrib-
utable to unchelated ®®Ga®") and in the case where a
generator eluting 750-1000 MBq was utilised, specific
activities of 60—80 MBq nmol ™. Using lower quantities
of THP-TATE (5 nmol) resulted in radiochemical yields
of 80—90 %, indicating that for every 1 mL solution con-
taining ®®*Ga®", at least 25 pg of THP-TATE is required
to reliably achieve radiochemical yields >95 %. Without
addition of ammonium acetate solution, radiolabelling of
THP-TATE was not observed: complex formation did
not occur in highly acidic solutions (such as in the final
solution isolated after preconditioning the eluate (0.9 M
HCI) or that used to elute the generator (0.1 M HCI)).

HPLC and LCMS analyses of the analogous non-
radioactive ["*Ga(THP-TATE)] compound were under-
taken to verify the identity of the radiolabelled product.
Only a single product was observed in the total ion
chromatogram of the LCMS of ["*Ga(THP-TATE)].
Only two signals were observed in the resulting mass
spectrum, corresponding to the dipositive and triposi-
tive ions of ["*“Ga(THP-TATE)] (Fig. 1, inset). Under
the HPLC conditions employed, [**Ga(THP-TATE)]
possessed a retention time (RT) of 20.23 min (sodium
iodide scintillation detection) (Fig. 1, red trace). Non-
radioactive ["*“Ga(THP-TATE)] possessed a RT of
20.17 min (UV detection at 220 nm) (Fig. 1, blue trace),
with the difference in retention times a result of the
configuration of the detectors in series. The co-elution
of the non-radioactive and radioactive Ga**-labelled
peptides was indicative of the formation of a single
radiolabelled product (>95 % radiochemical purity)
where the Ga>*:THP-TATE stoichiometry = 1:1.

Lipophilicity and serum stability studies

The log Pocrpes of [**Ga(THP-TATE) measured —3.20 +
0.09 (1 = 6), almost 0.5 units higher than that of [**Ga(DO-
TATATE)] which possesses a log Poct/pes of —3.69 [42],
indicating that the Ga**-coordinated THP complex is sig-
nificantly more lipophilic than the DOTA complex.

Serum stability studies were undertaken to determine
whether [*®Ga(THP-TATE)] releases ®®Ga* to endogen-
ous serum proteins. Addition of generator-produced
®8Ga" to a solution of human serum resulted in **Ga-
bound protein adducts that possessed distinct retention
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times of 6.6, 10.4 and 13.8 min when applied to the size-
exclusion HPLC column utilised in this study (Fig. 2a).
Radiolabelled [®*Ga(THP-TATE)] possessed a retention
time of 31.8 min (Fig. 2b). After incubation of [**Ga(THP-
TATE)] in fresh human serum at 37 °C for 5 h, the size-
exclusion chromatogram exhibited a strong signal at the
same retention time of [*®Ga(THP-TATE)] (>98 % integra-
tion), as well as small signals between 5 and 15 min (<2 %
integration), indicating that less than 2 % of ®*Ga** bound
to THP-TATE underwent transchelation to serum pro-
teins (Fig. 2c) during 5 h.

In vitro cell binding and internalisation of [*3Ga(THP-TATE)]
To assess the internalisation of [**Ga(THP-TATE)], and
specificity of [®®*Ga(THP-TATE)] for SSTR2 receptors,
[*8Ga(THP-TATE)] was incubated with SSTR2-positive
A427-7 cells [41]. At 5, 15, 30 and 60 min after addition
of [®®Ga(THP-TATE)], the amount of surface-bound and
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internalised radioactivity was quantified (Fig. 3). After a
60-min incubation, <4 % of added radioactivity/mg of
protein (%AR mg™') was bound to the cell surface, but
over 40 %AR mg ™' was internalised. Indeed, at all time
points, surface-bound activity measured <10 %AR mg "
whilst internalised activity increased over the course of
the 60-min experiment.

A427-7 cells were also co-incubated with [*®Ga(THP-
TATE)] and an excess of unconjugated Tyr’-octreotate
(TATE, 200-fold excess compared to THP-TATE)
peptide to determine SSTR2-specific uptake [41]. At all
time points, internalised and surface-bound activity
measured <1 %AR mg (Fig. 3). Lastly, [*®Ga(THP-
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and [®®Ga(THP-TATE)] in the presence of excess TATE peptide (red).
a Cell surface-bound activity, b internalised activity and c total activity
associated with cells. Uptake is expressed as a percentage of added
radioactivity (AR)/mg of protein, with uptake representing the mean
from three separate experiments. £rror bars correspond to standard
error of the mean
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TATE)] was incubated with the SSTR2-negative A427
parental cell line. After a 60-min incubation with
[*®Ga(THP-TATE)], uptake (surface-bound and interna-
lised) in A427 cells measured 0.15 + 0.04 %AR mg™" vs
uptake in A427-7 cells, which measured 50.4 +
6.9 %AR mg .

Biodistribution of [**Ga(THP-TATE)] and [*®Ga(DOTATATE)]
The biodistribution of [*®Ga(THP-TATE)] was assessed
in Balb/c nu/nu mice bearing SSTR2-positive AR42]
tumours. Each animal was administered [*®Ga(THP-
TATE)] and PET scanned at 1 h post-injection (PI) for
10 min, followed by euthanasia and organ harvesting for
ex vivo radioactivity counting. To assess specificity of
the radiotracer, a separate group of animals was co-
administered [*®*Ga(THP-TATE)] and TATE peptide,
followed by scanning, euthanasia and ex vivo organ
counting 1 h PI. To allow for comparison between the
biodistribution of [*®Ga(THP-TATE)] and [®*Ga(DOTA-
TATE)], a third group of animals was administered
[*8Ga(DOTATATE)] followed by scanning, euthanasia
and ex vivo organ counting 1 h PL

In PET scans of animals administered [**Ga(THP-
TATE)] (Fig. 4a), the tumour of each animal could be
clearly delineated, as well as the kidneys. The tumour to
background (mediastinum), liver and kidney ratios are

(a)

kidneys~=;\___>

”/— a ’_ 7‘
1 kidneys <=~ tumour -~~~

kidneys~
bladder----> bladder-—-x4 bladder ----> 8

[8Ga(THP-TATE)]

tumour---

co-injection of
[68Ga(THP-TATE)]

[8Ga(DOTATATE)]

(b) and TATE
15
- 10
=]
a
R g
0 E
O 5 N @ Qo o
o R @ o O Q 2 O
RS {_\&‘ & & B S

Fig. 4 a Whole-body PET maximum intensity projection of Balb/c
nu/nu mice bearing an AR47J tumour on the right flank 1 h Pl of
%8Ga-labelled tracers. b Biodistribution of mice administered [°Ga(DO-
TATATE)] (grey) and [**Ga(THP-TATE)] (red) and co-administered
[**Ga(THP-TATE)] and TATE (blocked, blue) 1 h Pl n=3 and error bars
correspond to standard error of the mean
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listed in Table 1. Excretion was largely renal, with signifi-
cant amounts of activity in the bladders of all animals at
1 h PL In contrast, tumours in animals co-administered
TATE peptide could not be delineated. Animals adminis-
tered [**Ga(DOTATATE)] exhibited higher tumour to
kidney, tumour to liver, and tumour to background ra-
tios than those of [*®Ga(THP-TATE)] (Table 1).

Ex vivo biodistribution data were consistent with
PET data (Fig. 4b). AR42] tumour uptake in animals
administered [*®Ga(THP-TATE)] (11.5+0.6 %ID g
was slightly lower than tumour uptake in animals
administered [®*Ga(DOTATATE)] (14.4+0.8 %ID g/,
mean difference =2.9 %ID g%, 95 % confidence inter-
val (CI)=0.6-5.1 %ID g’l, p =0.023). Kidney reten-
tion in the [*®Ga(THP-TATE)] group was significantly
higher (22.3+4.2 %ID g') compared to that in the
[*®Ga(DOTATATE)] group (5.6+0.5 %ID g !, mean
difference = 16.7 %ID g™*, 95 % CI=7.1-26.3 %ID g/,
p =0.0085). Additionally, increased liver accumulation
was observed for [*®Ga(THP-TATE)] compared to
[**Ga(DOTATATE)] (1.4+0.1 vs 0.4+0.04 %ID g,
respectively, mean difference = 1.0 %ID g%, 95 % ClI =
0.8-1.2 %ID g, p=0.00010) as well as higher blood
retention (0.6 +0.1 vs 0.3+0.08 %ID g™, respectively,
mean difference=0.3 %ID g, 95 % CI=0.004—
0.603 %ID g, p=0.048) 1 h PL

Compared to animals administered solely [*®*Ga(THP-
TATE)], animals co-administered [*®Ga(THP-TATE)]
and TATE peptide demonstrated lower uptake in tu-
mours (11.5 + 0.6 vs 2.7 + 0.6 %ID g™*, respectively, mean
difference = 8.8 %ID g', 95 % CI=7.0-10.5 %ID g/,
p =0.00016), very high kidney retention (22.3 £4.2 vs
123.3+412 %ID g ', mean difference=101.1, 95 %
CI=7.1-1950 %ID g', p=0.040) and higher blood
activity (0.6+0.1 vs 4.7+0.7 %ID g', mean differ-
ence =4.1 %ID g%, 95 % CI = 2.6-5.6 %ID g*, p = 0.0017),
and significantly higher activity values were associated with
non-target organs and tissue (Fig. 4b).

Discussion

The work described here demonstrates that with suitable
design of chelators—in this case, the tripodal hexaden-
tate THP chelator—to facilitate extremely fast chelation
under mild conditions and low ligand concentration,
rapid kit-based synthesis of ®®Ga radiopharmaceuticals is

Table 1 Tumour to organ/background ratios (+SEM) obtained
from PET images of animals administered [**Ga(DOTATATE)] and
[®Ga(THP-TATE)] (n=3)

[*®Ga(DOTATATE)] [*®*Ga(THP-TATE)]
Tumour to kidney 57+02 15405
Tumour to liver 27.2+39 10.5+20
Tumour to mediastinum 512+38. 360+£81
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readily achievable and can be performed in a few mi-
nutes using a generator, a kit vial, a syringe and appro-
priate shielding. This has the potential to greatly
increase the availability of ®®Ga radiopharmaceuticals for
the benefit of more hospitals and patients.

Several methods for radiosynthesis of [**Ga(DOTA-
TATE)] have been reported, and although radiochemical
yields of between >99 and 95 % can be obtained (obviat-
ing a post-synthetic purification step), all require 5-10-
min reaction time at 80—-100 °C [11-18] or microwave
heating for 1 min at 90 °C [11] with pH 3-5 (Table 2).
Radiochemical syntheses typically require between 7 and
30 nmol of DOTATATE (or DOTATOC), although in
the case of microwave heating, 0.5-1 nmol of conjugate
is sufficient for quantitative radiolabelling [11-18].

In contrast, radiosynthesis to produce [**Ga(THP-
TATE)] in specific activities sufficient for in vivo admin-
istration could be undertaken in <2 min, at room
temperature and formulated to pH 6-7 at the same time
the reaction occurs (Table 2). Under the conditions
employed here, it is possible that the rate of reaction of
%8Ga®* with THP-TATE is limited only by the rate of dif-
fusion of components in the reaction mixture. Provided
25 pg (equivalent to 10 nmol) of THP-TATE is utilised,
radiochemical yields >95 % are routinely achievable. The
specific activities achieved (60-80 MBq nmol™) are
comparable to specific activities achieved in the clinical
production of [**Ga(DOTATATE)].

Several other chelators are capable of achieving near-
quantitative radiochemical labelling at room temperature.
NOTA/NODAGA conjugates can be radiolabelled at
room temperature in radiochemical yields in excess of
95 % at pH 3.5-4 within 10 min [19]. The DEDPA chela-
tor can similarly be radiolabelled in excess of 97 % yield at
pH 4.5 in 10 min at nmol levels [31, 32]. Whilst TRAP
and its derivatives have typically been labelled at elevated
temperatures in order to achieve extraordinarily high spe-
cific activities, at pH 3.3, near quantitative-radiolabelling
(~95 %) can be achieved at uM concentrations in 10 min
at room temperature [24]. The advent of bifunctional
tris(hydroxypyridinone) chelators increases the pH range
at which biomolecules can be radiolabelled at room

Table 2 Comparison of ®®Ga" labelling conditions commonly
employed for radiosynthesis of [®Ga(DOTATATE)] and the
conditions employed for radiosynthesis of [®*Ga(THP-TATE)]

Reaction variables [**Ga(DOTATATE)] [®Ga(THP-TATE)]
Temperature 80-90 °C 20-25 °C

Time 5-10 min <2 min

Yield >95 % >95 %

pH 3-5 5-7

Amount of conjugate 7-30 nmol 10 nmol
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temperature, permitting labelling at neutral pH and hence
®8Ga PET imaging of fusion proteins, antibody fragments
and other proteins that are sensitive to extremes of heat
and pH.

Whilst THP-TATE could be labelled using unpro-
cessed, fractionated eluate directly from the generator, a
post-processing method to remove any ®*Ge (as required
in radiopharmaceutical preparations from some °®Ge/
®8Ge generators) that ultimately provided an ethanolic
solution (18 % ethanol in aqueous HCI solution) of
®Ga®* was utilised in preparations of [®Ga(THP-
TATE)] for in vivo experiments [16]. Radiochemical
yields of [**Ga(THP-TATE)] prepared using such solu-
tions were high, heating and post-purification were not
required, and the final formulation was suitable for in-
jection into mice (Table 2).

The bifunctional chelator THP-NCS provides a facile
synthetic route to peptide conjugates bearing tris(hydroxy-
pyridinone) chelators [35]. The THP chelator is signifi-
cantly larger than DOTA, and previous work has
suggested that increasing the distance between the THP
chelator and the targeting peptide leads to increased re-
ceptor affinity [35]. A PEG linker was included in the
THP-TATE conjugate to circumvent potential deleterious
effects the close proximity of the THP group might exert
upon the conjugate affinity for SSTR2 receptors. Synthesis
from the Lys(iv-Dde)5 derivative, PEGz—Lys(Dde)S-TATE,
ensured selective attachment of the isothiocyanate, THP-
NCS, to the N-terminus of the peptide.

Less than 2 % of *®Ga®* dissociated from [*®Ga(THP-
TATE)] to serum proteins in competition studies using
fresh human serum over a 5-h incubation period, sug-
gesting that [**Ga(THP-TATE)] is of sufficient stability
to withstand competition from endogenous proteins in
vivo over a time period of at least 1-2 h.

Similar to other agonist conjugates of Tyr’-octreotate
[43-45], [*®Ga(THP-TATE)] underwent rapid internal-
isation upon SSTR2 binding. Co-incubation of
[*®Ga(THP-TATE)] with an excess of TATE peptide ef-
fectively blocked binding of [*8Ga(THP-TATE)] to
SSTR2 receptors, and incubation of [**Ga(THP-TATE)]
with SSTR-negative cells did not result in either
surface-bound or internalised uptake of activity. These
qualitative data strongly point to high specificity of
[*8Ga(THP-TATE)].

The biodistribution profile of [**Ga(THP-TATE)] dem-
onstrated that, like [**Ga(DOTATATE)], [*®Ga(THP-
TATE)] targets SSTR2-positive tissue and is cleared pre-
dominantly via a renal pathway. Tumour uptake for
[*®Ga(THP-TATE)] and [*®*Ga(DOTATATE)] is compar-
able (11.5+0.6 vs 14.4+0.8 %ID g') but [**Ga(THP-
TATE)] has a longer residence time in the kidney (22.3
+4.2 vs 56+05 %ID g '), higher uptake in the liver
(14+0.1 vs 04+0.04 %D g*') and higher blood
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retention (0.6+ 0.1 vs 0.3+ 0.1 %ID g™') 1 h PI, resulting
in lower tumour to background/non-target organ ratios
for [*®Ga(THP-TATE)] compared to [**Ga(DOTATATE)]
(Table 1). This is not a result of differences in charge, as
the overall charge of both radiotracers is the same. Indeed,
log Pocrpes measurements indicated that [**Ga(THP-
TATE)] is significantly more lipophilic than [**Ga(DOTA-
TATE)] (by almost 0.5 units), and thus, it is most likely
that differences in biodistribution, particularly liver up-
take, arise from these differences in lipophilicity. We have
observed similar in vivo behaviour for an a,f3 integrin-
targeted conjugate of THP-NCS: [*®Ga(THP-NCS-RGD)]
activity measured 2.94 + 0.06 %ID g™ in the liver, 4.76 +
0.36 %ID g in the kidneys and 0.84 + 0.09 %ID g in the
blood 1 h PI [35]. Lastly, although we did not detect
colloids at the point of HPLC and ITLC analysis, the pos-
sibility that unchelated %8Ga®* (<5 %), present in the for-
mulation, resulted in some colloid formation between the
point of analysis and the point of in vivo administration,
in turn contributing to a small proportion of liver activity
in animals administered [*®*Ga(THP-TATE)], cannot be
completely eliminated.

PET scanning experiments and ex vivo biodistribution
in animals co-administered TATE peptide (blockade
group) demonstrated that TATE peptide effectively
blocks SSTR2 receptor binding by [*®Ga(THP-TATE)],
indicating in vivo specificity of [*8Ga(THP-TATE)] for
SSTR2. Significantly higher blood and kidney activity in
the blockade group was also observed, contrasting most
[42, 45, 46] but not all [47] previous reports that com-
pare preclinical biodistribution of SSTR2 radiotracers in
blockade and non-blockade groups of SSTR2-positive
tumour-bearing mice. It is possible that the significantly
higher blood activity observed in the blockade group
compared to the non-blockade group (4.7 + 0.7 vs 0.6 £
0.1 %ID g™', respectively) is in part a consequence of
persistent presence of the radiotracer in circulation in
the absence of receptors available for binding, rather
than high non-specific organ uptake. In this scenario,
higher blood and kidney activity in the blocked group
compared to that of the [**Ga(THP-TATE)] group is a
result of blocked SSTR2 sites that are no longer able to
function as a “sink” for [*®Ga(THP-TATE)] [48]. It is also
possible that the observed higher blood and kidney ac-
tivity in the blockade group is a result of slower clear-
ance of [*®Ga(THP-TATE)] from circulation via a renal
route in the presence of excess TATE peptide.

Conclusions

Simplicity of labelling with minimal need for complex
equipment and radiochemical expertise, which is likely
to be a key to the wider availability of ®®Ga PET, is
afforded by appropriate design of the ®*Ga chelator. The
tris(hydroxypyridinone) bifunctional chelator, THP-NCS,
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provides facile access to the peptide conjugate THP-
TATE, which can be radiolabelled with generator-
produced ®*Ga®* in high radiochemical yield (>95 %)
and specific activities of 60-80 MBq nmol'. Radio-
synthesis and formulation is rapid (<2 min), proceeds at
ambient temperature and simply requires addition of
®8Ga>" solution to the conjugate and neutralisation with
acetate solution. The resulting tracer, [**Ga(THP-
TATE)], specifically binds to SSTR2 and, similar to other
agonists of SSTR2, is rapidly internalised. In vivo,
[*®Ga(THP-TATE)] clears rapidly from circulation, accu-
mulates specifically at SSTR2-positive tumours and is
cleared predominantly via a renal pathway. In compari-
son with [®®Ga(DOTATATE)], synthesis of [**Ga(THP-
TATE)] is significantly faster and occurs at ambient
temperature. [*®*Ga(THP-TATE)] and [*®*Ga(DOTA-
TATE)] show comparable tumour uptake, but
[*®Ga(THP-TATE)] exhibits comparatively longer kidney
retention.
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