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Potential of 99mTc-MIBI SPECT imaging for
evaluating non-alcoholic steatohepatitis induced
by methionine-choline-deficient diet in mice
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Abstract

Background: Hepatic mitochondrial dysfunction has been implicated in pathological conditions leading to
non-alcoholic steatohepatitis (NASH). Technetium-99 m-2-methoxyisobutyl-isonitrile (99mTc-MIBI), a lipophilic cationic
myocardial perfusion agent, is retained in the mitochondria depending on membrane potential. The aim of this
study was to investigate the feasibility of 99mTc-MIBI for evaluating the hepatic mitochondrial dysfunction induced
by methionine-choline-deficient (MCD) diet in mice.

Methods: Male C57Black6J/jcl mice were fed a MCD diet for up to 4 weeks. SPECT scan (N =6) with 99mTc-MIBI was
performed at 2 and 4 weeks after MCD diet. Mice were imaged with small-animal SPECT/CT under isoflurane anesthesia.
Radioactivity concentrations of the liver were measured, and the time of maximum (Tmax) and the elimination
half-life (T1/2) were evaluated. After SPECT scan, liver histopathology was analyzed to evaluate steatosis and inflammation.
Non-alcoholic fatty liver disease (NAFLD) activity score was obtained from the histological score of hepatic steatosis and
inflammation. Blood biochemistry and hepatic ATP content were also measured (N =5 to 6).

Results: Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were significantly elevated at
2 and 4 weeks after MCD diet. A decrease in hepatic ATP content was also observed in MCD-fed mice. 99mTc-MIBI SPECT
imaging clearly showed the decrease of hepatic 99mTc-MIBI retention in MCD-fed mice compared to control mice. T1/2
after 99mTc-MIBI injection was significantly decreased in the liver of MCD-fed mice (control, MCD 2 weeks, and MCD
4 weeks, T1/2 = 57.6, 37.6, and 19.8 min, respectively), although no change in Tmax was observed in MCD-fed mice. SPECT
data and histological score showed that the negative correlation (r = −0.74, p <0.05) between T1/2 and NAFLD activity
score was significant.

Conclusions: Hepatic 99mTc-MIBI elimination was increased with increase in NAFLD activity score (NAS) in mice fed MCD
diet for 2 and 4 weeks. These results suggest that 99mTc-MIBI SPECT imaging might be useful for detecting hepatic
mitochondrial dysfunction induced by steatosis and inflammation such as NAFLD or NASH.
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Figure 1 Schematic diagram of the experimental protocol. (A)
MCD diet feeding. (B) SPECT imaging protocol.
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Background
Non-alcoholic fatty liver disease (NAFLD) is one of the
most common forms of chronic liver disease recognized
as a hepatic manifestation of metabolic syndrome with-
out a history of alcoholic abuse [1]. NAFLD encom-
passes a wide spectrum of conditions ranging from
simple steatosis to non-alcoholic steatohepatitis (NASH)
with or without fibrosis, cirrhosis, and hepatocellular
carcinoma [2]. A two-hit theory has been proposed for
NASH pathogenesis. The first hit refers to factors that
promote hepatic steatosis, and the second hit refers to
factors leading from hepatic steatosis to steatohepatitis
[3,4]. One of the second hit factors is the formation of
reactive oxygen species (ROS) [5,6]. ROS directly dam-
ages respiratory chain polypeptides and oxidizes the un-
saturated lipid of cytoplasmic hepatic fat deposits to
cause lipid peroxidation. Both ROS and lipid peroxida-
tion products attack mitochondrial DNA [7]. Oxidative
mitochondrial DNA lesions and mitochondrial DNA de-
pletion may impair the synthesis of respiratory chain
polypeptides. These effects may further block the flow
of electrons in the respiratory chain to further increase
mitochondrial ROS formation and decrease the mito-
chondrial membrane potential [5,8]. Thus, NASH is
considered to be a mitochondrial disease because mito-
chondrial dysfunction in the liver would be involved in all
successive steps in the induction of NASH [9]. It has been
reported that patients with NASH present ultrastructural
mitochondrial alterations [10], impairment of hepatic
ATP synthesis [11], and increased ROS production
[12,13]. Therefore, mitochondrial dysfunction is con-
sidered to have an important role in the liver during
NASH progression since mitochondrial dysfunction
causes overproduction of ROS inducing lipid peroxida-
tion, inflammation, and cell death.
Technetium-99 m-2-methoxy-isobutyl-isonitrile (99mTc-

MIBI) is a SPECT imaging probe which is used for
myocardial perfusion imaging [14]. This lipophilic cat-
ionic imaging probe predominantly accumulates in the
mitochondria, where it is retained in response to the
electrical potential generated across the membrane bi-
layer [15-17]. Therefore, 99mTc-MIBI retention in the
mitochondria might be related to mitochondrial func-
tion [15,18]. Masuda et al. have recently reported that
99mTc-MIBI scintigraphy is useful for discriminating
NASH from simple steatosis in clinical studies [19].
These findings suggest the possibility of 99mTc-MIBI
imaging for the evaluation of hepatic mitochondrial
function in the liver disease state such as NASH and
NAFLD. The present study was undertaken to investigate
the feasibility of 99mTc-MIBI imaging for evaluating hepatic
dysfunction using mice fed methionine-choline-deficient
(MCD) diet, one of the most commonly used NASH
animal models [20,21].
Methods
Animals and MCD diet
Male C57Black6J/jcl mice, aged 8 weeks, were purchased
from CLEA Japan (Shizuoka, Japan). Mice were studied at 2
and 4 weeks after MCD diet (Dyets, Bethlehem, PA, USA)
feeding or normal diet feeding (control group). They
were allowed free access to chow and tap water and
housed in a temperature-controlled room maintained
on a 12-h light/dark cycle with lights on at 8:00 am. The
experimental protocols were reviewed and approved
by the Institutional Animal Care and Use Committee
of Shionogi Research Laboratories, Osaka University
Graduate School of Medicine, and Animal Care Committee
of Chiba University.

SPECT/CT imaging
SPECT imaging and X-ray CT imaging were performed
with a small-animal SPECT/CT system (FX-3200, TriFoil
Imaging Inc., Chatsworth, CA, USA) equipped with a
five-pinhole (1.0 mm) collimator. 99mTc-MIBI was prepared
with a Cardiolite® kit (Fujifilm RI Pharma Co., Ltd., Tokyo,
Japan) or purchased as Cardiolite® (Fujifilm RI Pharma Co.,
Ltd., Tokyo, Japan). Mice were anesthetized with 3% isoflur-
ane and anesthesia was maintained with 1.5% isoflurane.
Under isoflurane anesthesia, the venous catheter was in-
troduced through the tail vein and used for the adminis-
tration of 99mTc-MIBI. As shown in Figure 1B, SPECT
scans (N =6 per group) were started immediately after
injection of 99mTc-MIBI (30 ~ 60 MBq). Dynamic data
acquisition was performed for 45 min by a two-scan se-
quence of 10 s per projection with stepwise rotation of
two projections over 360°, followed by 150 s per projec-
tion with stepwise rotation of two projections over 360°.
All SPECT data were reconstructed by a 3D-ordered

subset expectation maximization (3D-OSEM) algo-
rithm method with two subsets and five iterations in
FLEX-RECON software. Imaging data were analyzed
using AMIDE 0.9.2 software. 3D region of interest
(ROI) was put on the liver tissue except for the portal
area and estimated liver time-activity curves (TACs).



Table 1 Plasma parameters in mice fed control and MCD
diet for 2 and 4 weeks

Plasma parameter Control MCD 2 weeks MCD 4 weeks

TC (mg/dL) 90.9 ± 2.55 57.7 ± 1.67** 32.9 ± 2.84**

TG (mg/dL) 110 ± 18.4 9.80 ± 1.77** 14.7 ± 1.81**

AST (IU/L) 63.8 ± 21.3 312 ± 84.5** 324 ± 65.8**

ALT (IU/L) 26.7 ± 8.02 191 ± 41.7** 239 ± 31.4**

HDLC (mg/dL) 50.9 ± 1.72 30.8 ± 1.58** 14.4 ± 1.63**

Data are expressed as mean ± SEM of five to seven experiments for each
group. Statistical differences were assessed using Dunnett's test. TC, total
cholesterol; TG, triglyceride; AST, aspartate transaminase; ALT, alanine
aminotransferase; HDLC, high-density lipoprotein cholesterol. *p <0.05, **p <0.01
compared to the control mice.

Table 2 Hepatic ATP content in mice fed control and
MCD diet for 2 and 4 weeks

μmol/g tissue Control MCD 2 weeks MCD 4 weeks

ATP content 3.04 ± 0.15 2.57 ± 0.03* 2.47 ± 0.02**

Data are expressed as mean ± SEM. Statistical difference was assessed using
Dunnett's test. *p <0.05, **p <0.01 compared to the control mice.
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TACs were normalized to liver activity peak. The half-life
(T1/2), peak time (Tmax), and area under the curve (AUC)
for each individual animal were calculated from the data of
TAC using WinNonlin. All the parameters were then aver-
aged for all the control mice and the mice fed the MCD diet
for 2 and 4 weeks. Because the hepatic TACs of 99mTc-MIBI
did not reach a constant level within 45 min, we used the
Figure 2 Histochemical investigation from the liver of mice fed the n
of hematoxylin and eosin (H&E). (B) Score of inflammation. (C) Score of ste
Statistical difference was assessed using Dunnett's test. *p <0.05, **p <0.01
first-order intermediate equation to fit the kinetic data and
generate the best fitted liver curves [22].

Hepatic ATP content
The content of hepatic ATP was measured by HPLC
according to the method of Dai et al. [23]. Briefly, tis-
sue samples were homogenized in homogenized buffer
(0.3 M HClO4 and 1 mM EDTA-Na) and centrifuged at
14,000 rpm for 2 min. A 20-μL portion of the supernatant
was injected into an HPLC system for ATP content deter-
mination. HPLC analysis was performed with Chemcosorb
5-I-C18 (4.6 mm× 300 mm, Chemco Scientific Co., Ltd.,
Osaka, Japan) at 1 mL/min. The composition of the mobile
phase was 0.2 M NH4H2PO4 adjusted to pH =4.1 with 1 N
HCl. The detection wavelength was 254 nm and the
ormal or MCD diet for 2 or 4 weeks. (A) Representative micrographs
atosis. (D) NAFLD activity score. Data are expressed as mean ± SEM.
compared to the control mice.



Figure 3 Dynamic SPECT images after 99mTc-MIBI injection in
control and MCD-fed mice. (A) Mouse fed control diet. (B) Mouse
fed MCD diet for 4 weeks.
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retention time of ATP was 16.3 min. ATP was calculated
using an internal standard method.

Histology and blood biochemistry
After SPECT scans, mice were sacrificed by exsanguination
under isoflurane anesthesia. Plasma was collected and
Figure 4 Liver radioactivity after 99mTc-MIBI injection in mice fed the
Time-activity curve of relative radioactivity. (B) AUC ratio compared to cont
expressed as mean ± SEM. Statistical difference was assessed using Dunnet
assayed for the content of alanine aminotransferase
(ALT), aspartate aminotransferase (AST), triglyceride
(TG), total cholesterol (TC), and high-density lipopro-
tein cholesterol (HDLC). The right hepatic lobes were
fixed in 10% formalin and sectioned, and the sections
were stained with hematoxylin and eosin (H&E). The liver
histopathology was scored as follows: steatosis (0 to 4),
inflammation (0 to 3), and ballooning (0 to 2). NAFLD
activity score (NAS) was calculated by using the sum of
each histological score.

Statistics
Quantitative data were expressed as means ± standard
error of the mean (SEM). Means were compared using
Dunnett's test. p values <0.05 were considered statistically
significant. The Pearson product-moment correlation
coefficient was used to evaluate the relationship between
T1/2 of 99mTc-MIBI in the liver and the liver histological
score or plasma.

Results
Physiological characteristics and hepatic pathology
Plasma ALT and AST levels were significantly elevated in
mice fed MCD diet compared to control mice (p <0.05)
(Table 1). Inflammation and steatosis were observed in
mice fed MCD diet for 2 weeks. These pathological
changes were aggravated by prolongation of the MCD
diet (4 weeks) (Figure 2). Ballooning was not observed
in MCD-fed mice.

Hepatic ATP content
Hepatic ATP was significantly decreased in mice fed
MCD diet for 2 weeks (2.57 ± 0.03 μmol/g tissue) and
4 weeks (2.47 ± 0.02 μmol/g tissue) compared with the
control group (3.04 ± 0.15 μmol/g tissue) (Table 2).
normal and MCD diet for 2 and 4 weeks. (N =6 per group). (A)
rol. Radioactivity was normalized by liver peak activity. Data are
t's test. *p <0.05, **p <0.01 compared to the control mice.



Figure 5 Pharmacokinetic parameter after 99mTc-MIBI injection
in mice fed control and MCD diet for 2 and 4 weeks. (A) Tmax in
the liver after 99mTc-MIBI injection. (B) T1/2 in the liver
after 99mTc-MIBI.
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SPECT imaging
Coronal slice dynamic SPECT images and TACs of the
liver are shown in Figures 3 and 4A. In the MCD-fed
mice livers, the washout ratio was faster than that in the
control mice. A significant decrease in the relative AUC
was observed in mice fed MCD diet for 2 and 4 weeks
(Figure 4B). As shown in Table 3 and Figure 5, T1/2

of 99mTc-MIBI was significantly decreased in MCD
diet mice compared with control mice. The value of
T1/2 was 57.6 ± 7.73 in control mice, 37.6 ± 5.80 in mice
fed MCD diet for 2 weeks (p <0.05), and 19.8 ± 2.05 in
mice fed MCD diet for 4 weeks (p <0.01). However, no
significant difference of Tmax was observed between
the control and MCD-fed groups. The correlation ana-
lysis between steatosis score and T1/2 indicated a nega-
tive correlation (r = −0.75, p <0.05). The correlation
between NAFLD activity score and T1/2 was also negative
(r= −0.74, p <0.05). The correlation between inflammation
and T1/2 was mild (r = −0.64, p >0.05) (Figure 6). The cor-
relation between T1/2 and AST or T1/2 and ALT was weak
(r= −0.20 and −0.39, p >0.05, respectively).

Discussion
99mTc-MIBI heart scintigraphy is used to evaluate cardiac
mitochondrial dysfunction in patients with cardiomyopathy
[24,25]. In addition, 99mTc-MIBI leg scintigraphy has
been used to detect mitochondrial dysfunction in pro-
gressive supranuclear palsy patient skeletal muscle [26].
99mTc-MIBI, a lipophilic cationic myocardial perfusion
agent, is considered to be retained in the mitochon-
dria by the higher membrane potential, and the loss of
mitochondrial membrane potential results in rapid
washout of 99mTc-MIBI from the myocyte [14]. In the
present study, we showed that rapid washout of
99mTc-MIBI indicating mitochondrial dysfunction was
observed in the liver of MCD-fed mice. The MCD-fed
rodent model is widely used as a NASH model because of
its similarity with human NASH pathology. Rodents fed
MCD diet showed mitochondrial dysfunction such as re-
duction of the activity of mitochondrial respiratory chain
and hepatic ATP depletion [27]. These findings suggest
that the cause of rapid washout of 99mTc-MIBI is the loss
of mitochondrial membrane potential since 99mTc-MIBI is
retained to the mitochondrial membrane in response
to membrane potential. Rogers et al. showed that pro-
longed exposure of preadipocytes to fatty acid led to
Table 3 Hepatic 99mTc-MIBI kinetics in mice fed control
and MCD diet for 2 and 4 weeks

Parameter Control MCD 2 weeks MCD 4 weeks

T1/2 (min) 57.6 ± 7.73 37.6 ± 5.80* 19.8 ± 2.05**

Tmax (min) 3.59 ± 0.35 2.71 ± 0.28 2.63 ± 0.17

Data are expressed as mean ± SEM. Statistical difference was assessed using
Dunnett's test. *p <0.05, **p <0.01 compared to the control mice.
mitochondrial dysfunction such as decrease of ATP
content and reduction of mitochondrial inner membrane
potential [28]. We also confirmed the decrease of ATP
content in the liver of MCD-fed mice. Therefore, our and
previous findings indicate that the rapid clearance of
hepatic MIBI might be due to mitochondrial dysfunc-
tion including reduction of ATP content in MCD-fed
mice. Regarding magnetic resonance imaging (MRI), it
has been reported that Tmax and T1/2 after injection of
gadolinium-ethoxybenzyl-diethylenetriamine penta-acetic
acid (Gd-EOB-DTPA) were significantly prolonged in a
NASH rat model [29]. Furthermore, Tmax and T1/2 after
Gd-EOB-DTPA injection significantly correlated with
the fibrosis rate [30]. It is well known that organic
anion-transporting polypeptide (oatp) 1 mediates the
uptake of Gd-EOB-DTPA and multidrug resistance-
associated protein 2 (mrp2) mediates biliary excretion
of Gd-EOB-DTPA in rats [31,32]. These reports suggest
that the elimination of 99mTc-MIBI also might be influ-
enced by transporter expression in NASH pathology



Figure 6 Correlations between 99mTc-MIBI and histological data
in mice fed control and MCD diet for 2 and 4 weeks. (A)
Correlation between 99mTc-MIBI T1/2 and steatosis (r = −0.75, p <0.05).
(B) Correlation between 99mTc-MIBI T1/2 and inflammation (r = −0.64,
p >0.05). (C) Correlation between 99mTc-MIBI T1/2 and NAFLD activity
score (r = −0.74, p <0.05). Correlation analysis was assessed using the
Pearson product-moment correlation.
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since 99mTc-MIBI passively diffuses into hepatocytes
and the biliary excretion is mediated by P-glycoprotein
(P-gp) [33]. However, Canet et al. recently reported that
the liver protein expression of P-gp did not alter in a
MCD-fed mouse [34]. This report suggests that the role
of efflux transporter via P-gp is considered to be small
for 99mTc-MIBI washout in this MCD-fed mouse.
In the present study, the most important finding is to

show the negative correlation between 99mTc-MIBI clear-
ance (T1/2) and NAFLD activity score including steatosis
and inflammation score. Steatosis and inflammation were
histologically observed at 2 and 4 weeks after MCD diet in
this study. The MCD diet also seemed to aggravate the
inflammation at 4 weeks compared with that at 2 weeks
after feeding, although the severity of steatosis was not dif-
ferent between 2 and 4 weeks. These data suggest that the
99mTc-MIBI washout is likely to correlate with pathology
including both steatosis and inflammation in MCD mice.
Masuda et al. [19] have reported that hepatic 99mTc-MIBI
uptake is correlated with the NAFLD activity score in a
clinical study. These non-clinical and clinical findings sug-
gest that hepatic 99mTc-MIBI SPECT imaging might be
useful for evaluating NASH progression pathology such as
mitochondrial dysfunction. However, further study will be
needed to clarify the relation between mitochondrial
membrane potential and 99mTc-MIBI binding activity.

Conclusions
Hepatic retention of 99mTc-MIBI was decreased with in-
crease in NAFLD activity score in MCD-fed mice. This
study indicates that 99mTc-MIBI SPECT imaging might be
useful for evaluating hepatic mitochondrial dysfunction
such as NAFLD or NASH.
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