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Abstract

were performed.

correlation was found between CTP parameters and MVD.

pathophysiological mechanisms in lung cancer.

Background: The purpose of this study was to assess the relationship of CT-perfusion (CTP), '®F-FDG-PET/CT and
histological parameters, and the possible added value of CTP to FDG-PET/CT in the initial staging of lung cancer.

Methods: Fifty-four consecutive patients (median age 65 years, 15 females, 39 males) with suspected lung cancer
were evaluated prospectively by CT-perfusion scan and '®F-FDG-PET/CT scan. Overall, 46 tumors were identified.
CTP parameters blood flow (BF), blood volume (BV), and mean transit time (MTT) of the tumor tissue were calculated.
Intratumoral microvessel density (MVD) was assessed quantitatively. Differences in CTP parameters concerning tumor
type, location, PET positivity of lymph nodes, TNM status, and UICC stage were analyzed. Spearman correlation analyses
between CTP and '8F-FDG-PET/CT parameters (SUVmax SUVmean PET o, and TLG), MVD, tumor size, and tumor stage

Results: The mean BF (mL/100 mL min~"), BV (mL/100 mL), and MTT (s) was 35.5, 84, and 14.2, respectively. The BF
and BV were lower in tumors with PET-positive lymph nodes (p = 0.02). However, the CTP values were not significantly
different among the N stages. The CTP values were not different, depending on tumor size and location. No significant

Conclusions: Overall, the CTP information showed only little additional information for the initial staging compared
with standard FDG-PET/CT. Low perfusion in lung tumors might possibly be associated with metabolically active
regional lymph nodes. Apart from that, both CTP and '®F-FDG-PET/CT parameter sets may reflect different
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Background

Lung cancer is a major public healthcare burden for de-
cades. Tobacco smoking accounts for 80% of lung cancers
in males worldwide and for 50% of lung cancers in females
[1-3]. In 2008, lung cancer was the most commonly diag-
nosed cancer and the leading cause of cancer-related
death in men worldwide [3]. From a clinical point of
view, early detection strategies have come into the focus,
questioning if computed tomography (CT) screening of
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individuals with risk factors is beneficial [4-6]. While
curative surgery is limited to the early stages of lung can-
cer, radiation therapy and chemotherapy are the treatment
of choice in more advanced stages. Angiogenesis, as one
of the key factors of tumor evolution and metastatic
capability, can be assessed histopathologically by deter-
mining the microvessel density (MVD) [7]. Recently, new
agents with antiangiogenic properties targeting tumor
vascularity have been introduced [8-11].

Staging and restaging of lung cancer is nowadays
usually done by '®F-fluoro-2-deoxy-D-glucose positron
emission tomography/computed tomography (**F-FDG-
PET/CT), which assesses cellular glucose metabolism.
While the response to antiangiogenic agents in general
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may be assessed accurately by '*F-FDG-PET/CT, it is
still not a direct measure of actual perfusion.

For non-invasive in vivo assessment of tumor vascular-
ity, CT-perfusion (CTP) is a promising modality [12-14].
It is known that lung tumors with higher perfusion are
more sensitive to radiochemotherapy than those with
lower perfusion [13]. CTP has technical advantages over
MR-perfusion in the lungs, concerning quantification of
perfusion, motion artifacts, reproducibility, and resolu-
tion. Besides some recent studies [15,16], data about
perfusion of the different types of lung cancer, being
properly assessed by sufficient scan coverage and post-
processing with motion-correction techniques, is still
limited. Also, the relationship between CTP parameters,
tumor size and stage, tumor location, **F-FDG-PET/CT
parameters, and MVD is partly unclear. Thus, the aims
of our study were (1) to assess the CTP and BE_FDG-
PET/CT parameters in different subtypes of lung cancer
and their possible contribution to staging and (2) to
analyze the relationship between the morphological,
functional, and metabolic parameters in these different
subtypes.

Methods

Patients

This prospective study was approved by the Institutional
Review Board and by the Cantonal Ethics Committee.
All patients provided informed signed consent prior to
the examinations.

Between November 2010 and December 2011, 54
consecutive patients (median age 65 years, range 42 to
79 years, 15 females, 39 males) with suspected lung
cancer being referred for baseline staging PET/CT were
evaluated prospectively. All patients received a CT-
perfusion scan of the lung tumor after a partial-body
'8E_-FDG-PET/CT scan within 15 min at our institution.
The exclusion criteria were as follows: renal insufficiency
(renal clearance below 30 mL/min) without dialysis,
known allergy or hypersensitivity to iodinated contrast
medium, untreated hyperthyroidism, pregnancy, and
non-compliance with recommended 6-h fasting period
before PET/CT. Eight patients were excluded after the
scan because histology results revealed lesions other
than lung cancer. Finally, 46 patients were eligible for
analysis. If the pathological TNM (pTNM) was not
available as standard of reference in a patient, e.g.,
because that patient underwent primary radiochemo-
therapy, clinical TNM (cTNM) was employed. The
c¢TNM was derived by imaging, transthoracic and trans-
bronchial biopsy/mediastinoscopy. Histopathological
determination of the N status was always forced in case
there was no clear metastatic involvement of regional
lymph nodes on imaging, such as nodes with necrotic
centers and FDG-avid rims.
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CT imaging protocols

All CTP scans were performed on a 256-slice CT
scanner (Somatom Definition Flash, Siemens Healthcare,
Erlangen, Germany). The covered z-axis scan length was
7 ¢cm (4D range). This relatively large scan length was
chosen to cover the whole tumor in every patient. The
fixed tube current was 100 mAs, and the fixed tube
voltage was 100 kV (peak). The duration of the CTP
scan was 60 s, with a rotation time of 1 s. CT-perfusion
scanning was delayed by 3 s after the start of the injection
of 40 mL of contrast medium (CM; Ultravist 370, Bayer
Healthcare, Leverkusen, Germany) at 4.5 mL/s. The CM
was injected into an antecubital vein by a dual-head pump
injection device (Stellant D, Medrad, Warrendale, PA,
USA), followed by a flush of 50 mL of NaCl at 4.5 mL/s.
With such a rather lengthy protocol, high reproducibility
of perfusion parameters can be obtained [17].

The patients were advised to resume shallow breathing
for the entire duration of the scan. The collimation was
64 x 0.6 mm. The CT-perfusion reconstruction incre-
ment was 3 mm at 5-mm slice width. Image reconstruc-
tion was performed with a 512 x 512-pixel matrix and
medium smooth B30f kernel. For image post-processing
and analysis, the reconstructed images were transferred
to a commercially available computer workstation (syngo
Multimodality Workplace, Siemens Healthcare).

'8F.FDG-PET/CT imaging protocols

All PET/CT scans were performed on a combined in-line
system (Discovery PET/CT 600, GE Healthcare, Milwaukee,
WI, USA) with a multidetector helical 16-slice CT and in-
tegrated full-ring PET. This dedicated system allows for
acquisition of co-registered PET and CT images in one
step. After the injection of a standard dose of 300 to 340
MBq '®F-FDG, the PET/CT imaging started with a delay
of 60 min. The patients were advised to drink 1,000 ml of
oral contrast medium during this uptake time.

The non-enhanced low-dose CT part of the combined
scan was acquired with a tube voltage of 120 kV, a tube
current of 40 mA, and a tube rotation time of 0.5 s. The
imaging range was from the vertex to the upper thighs.
Consecutively, the emission PET data acquisition started
with an acquisition time of 2 min per bed position. The
CT data was used for attenuation correction. CT images
were later reconstructed with 3.75-mm slice width, using
a fully 3D iterative algorithm (ordered subset expectation
maximization (OSEM)). For image post-processing, co-
registration, and analysis, the reconstructed images were
transferred to a commercially available computer worksta-
tion (Advantage Workstation 4.4, GE Healthcare).

Image evaluation
All evaluations were performed as a lesion-based ana-
lysis by two experienced radiologists in consensus. CT
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perfusion parameters blood flow (BF), blood volume
(BV), and mean transit time (MTT) were determined by
post-processing on the workstation, using a dedicated
lung tumor preset of a perfusion evaluation software
(syngo® Volume Perfusion CT Body, Siemens Healthcare).
A dataset motion correction and a noise reduction algo-
rithm were applied automatically. The processing thresh-
olds or segmentation tissue limits were —-50 and 150 HU
to exclude bone and other hyperdense materials. The
window width and center for the reference vessel input
was 300 and 150 HU, respectively. The relative threshold
for inside and outside was 50%; an adaptive smoothing
filter was used. The vendor’s default standard algorithmic
parameters were applied. 3D color-coded maps for BF,
BV, and MTT were generated with a sequential two-
compartment model (modified Patlak approach). Blood
flow (mL/100 mL min™") is defined as the amount of
blood flowing through 100 mL of tumor tissue within 1
min. Mean transit time (s) is defined as the average time
of contrast agent residence within the tumor tissue. Blood
volume (mL/100 mL) is the product of BF and MTT and
is defined as the amount of blood within 100 mL of tumor
tissue. BV can be expressed as the proportion of the total
volume of a dedicated voxel. For every patient, an individ-
ual arterial input fraction was determined by placing an
analytic region of interest (ROI) into the pulmonary trunk,
if depicted, or into the ipsilateral pulmonary artery. A
dedicated free-hand volume of interest (VOI) was drawn
around the whole tumor in the lung window and adapted
to its borders, trying to exclude necrotic tumor areas, in
all three planes to ensure reliable perfusion measurements
[18]. Adjacent bones, bronchi, and soft tissue structures
were excluded. The mean values of the CTP parameters
were recorded for the whole-tumor VOI.

The total tumor size (mm) was measured on the CT
images in the lung window preset on a commercially
available picture archiving and communication system
(PACS) workstation (Merlin Diagnostic Workcenter 4.1,
Phonix-PACS, Freiburg, Germany). The tumor location
was determined vertically (upper vs. lower lung) and
radially (central vs. peripheral lung).

The PET/CT images were evaluated on a worksta-
tion which permits multiplanar reconstruction as sin-
gle (CT only, PET only) and combined (co-registered
PET/CT) procedures. For study purposes, the max-
imum (SUV,,,) and the mean standardized uptake
values (SUV can) of the tumor, the metabolic tumor
volume (PET,,)), and the total lesion glycolysis (TLG;
PET,o1 X SUV hean) Were determined. All the SUV as-
sessments were corrected for body weight and height.
All the PET/CT images were evaluated by a dual-
board-certified nuclear physician/radiologist in clinical
routine for staging according to our institution’s clin-
ical protocols.

Page 3 of 13

Histopathological analysis

To characterize the tumor vasculature, the mean
intratumoral MVD was quantitatively assessed accord-
ing to immunohistochemical CD34 staining. We obtained
formalin-fixed specimens embedded in paraffin of the 15
patients who underwent surgical tumor resection by
thoracotomy. The specimens were cut into 4-pm slices
and fixed to histology slides (X-tra, Leica Biosystems,
Nussloch, Germany). After hematoxylin/eosin staining,
the slides were stained with CD34 antibody (1:30, NCL-L
END, Novocastra, Leica Biosystems, Nussloch, Germany)
using an automated staining system (BenchMark XT,
Ventana Medical Systems, Oro Valley, AZ, USA). The
slides were scanned with a slide scanner (iScan Coreo,
Ventana Medical Systems). A pathologist blinded to clin-
ical and imaging data performed the histopathological
analysis by visually counting the positive microvessels on
the scanned images using public domain software (image],
http://rsbweb.nih.gov/ij).

Statistical analysis

Comparisons of the CTP parameters, "*F-FDG-PET/CT
parameters, tumor size, and MVD values were evaluated
by Mann—Whitney U test or Kruskal-Wallis test for sub-
types of tumors as defined by histology. The results were
illustrated as box plots. The correlations between pairs
of parameters (CTP, '*F-FDG-PET/CT, size, stage, and
MVD) were evaluated by Spearman’s rank correlation co-
efficient due to the skew distribution of the data. The re-
sults were interpreted as strong correlation between +0.5
and +1.0, moderate between +0.3 and +0.49, weak bet-
ween *0.1 and +0.29, and no correlation below +0.1 [19].
The bootstrap method was used for linear regression ana-
lysis of the relationship between the dependent variables
(SUV ao SUVeans PETyo, TLG, MVD, and size) and the
independent variables (BF, BV, and MTT). A p value
of <0.05 was considered statistically significant. The
software employed was IBM SPSS Statistics™ 19.0.1
(SPSS Inc., Chicago, IL, USA).

Results

The majority of the patients were diagnosed with non-
small cell lung carcinoma (NSCLC; n=41), and five
patients with small cell lung carcinoma (SCLC). The
NSCLC group consisted of adenocarcinoma (AC; n =24,
Figure 1A,B,C,D,E,EG,H), squamous cell carcinoma (SCC;
n=9), large cell carcinoma (LCC; n="7), and one neuro-
endocrine tumor (NET). The results derived from CTP,
"E_.FDG-PET/CT, tumor size and stage assessment, and
histopathological analysis were stratified according to
these histologic subtypes. During their consecutive ther-
apy, 15 patients (all with NSCLC, thereof nine adeno-
carcinomas, five squamous cell carcinomas, one large
cell carcinoma) underwent curative surgery and adjuvant
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Figure 1 Patient with peripheral adenocarcinoma of the left lower lobe. (A) Coronal PET-MIP, (B) axial PET, (C) axial CT in lung window, and
(D) axial '8F-FDG-PET/CT co-registration. The green VOI encompasses the metabolic tumor volume with 42% isocontour. The tumor is 34.7 mm in
size and exhibits @ SUVpmay Of 7.1, SUVimean Of 4.6, TLG of 54.9, and PET, of 11.8 cm”. (E) Axial time MIP. Color-coded maps for (F) BF, (G) BV, and (H)
MTT. The tumor has a BF of 29.8 mL/100 mL min~', a BV of 7.1 mL/100 mL, and an MTT of 12.2's. (I) MVD analysis of the post-surgical specimen
stained in hematoxylin/eosin, detected vessels labelled blue. "®F-FDG-PET/CT, "8F-fluoro-2-deoxy-D-glucose positron emission tomography/computed
tomography; BF, blood flow; BV, blood volume; CT, computed tomography; MVD, microvessel density; MTT, mean transit time; MIP, maximum intensity
projection; PET, positron emission tomography; PET,,,, metabolic tumor volume; SUV, ., maximum standardized uptake value; SUV ean, Mean
standardized uptake value; TLG, total lesion glycolysis; VOI, volume of interest.

radiochemotherapy, providing pTNM status and MVD
for analysis. Fifteen patients underwent primary cura-
tive radiochemotherapy, 13 palliative chemotherapy, and
3 neoadjuvant therapy and surgery. In these 31 patients,
only cTNM was available.

Descriptive statistics

The anatomical and clinical characteristics, CT-perfu-
sion and '*F-FDG-PET/CT data, and MVD are summa-
rized in Table 1 for all the tumors. The overall average
tumor size was 41.1 mm. No significant differences were
found for the TNM status and UICC stage. CT-perfusion
parameters did not differ significantly between the
tumor types (Figure 2A). The mean BF was 35.5 mL/100
mL min~' in NSCLC and SCLC, the mean BV was 8.4
mL/100 mL and 8.6 mL/100 mL, respectively, and the
mean MTT 14.4 and 12.4 s, respectively. The average
SUV hax Of all the tumors was 11.7, SUV can 7.2, TLG
120, and PET,, 17.0 cm®. Also, the "*F-FDG-PET/CT

parameters did not differ significantly between NSCLC
and SCLC. Among the NSCLC subtypes, significant
differences were found concerning the location and T
status. While AC and SCC were located preferably in
the upper parts of the lung, LCC yielded a balanced ver-
tical distribution (p =0.008). Lower T stages dominated
in AC and LCC, whereas the median T stage in SCC
was T3 (p =0.008). CT-perfusion and *F-FDG-PET/CT
parameters and MVD did not differ significantly among
the NSCLC subtypes.

CT-perfusion parameters by location, TNM status, UICC
stage, and PET positivity of lymph nodes

For further characterization of the CT-perfusion results,
subanalyses concerning the size, location, TNM status
(seventh edition), and UICC stage (seventh edition) of
the tumors, and the PET positivity of the regional lymph
nodes were done (Tables 2 and 3). The CT-perfusion
parameters were not significantly different, depending



Table 1 Anatomical and clinical CT-perfusion and "F-FDG-PET/CT characteristics of the histologic lung cancer subtypes

Tumor parameters All tumors Tumor type NSCLC subtype®
(n=46) SCLC (n=5) NSCLC (n=41) p Adenocarcinoma Squamous cell carcinoma Large cell carcinoma p
(n=24) (n=9) (n=7)
Anatomical characteristics
Longest diameter (mm), 41.1+£20.1 3524185 420+209 0.70 3994209 458+213 370+99 0.80
mean + SD
Location superior/inferior 83%/17% 80%/20% 83%/17% 0.92 87%/13% 100%/0% 43%/57% 0.008
Location central/peripheral 43%/57% 80%/20% 39%/61% 0.14 33%/66% 66%/33% 29%/73% 0.18
Clinical characteristics
T stage (median (range)) T2a (T1 to T4b) T2a (T1b to T4) T2a (Tlato T4) 0.84 T2a (Tlato T4) T3 (T2a to T4) T2a (T1b to T2b) 0.008
T 5 1 4 2 0 2
T2 29 2 27 18 5
T3 6 1 5 3 2 0
T4 6 1 5 1 3 0
N stage (median (range)) NT (NO to N3) N2 (NO to N3) N1 (NO to N3) 047 N2 (NO to N3) N1 (NO to N3) NO (NO to N3) 041
NO 15 1 13 7 1 4
N1 10 0 11 4 6 1
N2 9 3 6 5 0 1
N3 12 1 11 8 2 1
M stage (median (range)) MO (MO to M1) MO (MO) MO (MO to M1) MO (MO to M1) MO (MO to M1) M1 (MO to M1) 0.89
MO 28 5 23 041 14 6 3
M1 18 0 18 10 3 4
UICC stage (median (range)) I11B (IA to IV) IIIA (I1B to 111B) I11B (1A to IV) 032 1B (1A to IV) A (1A to IV) IV (1B to IV) 0.88
CT-perfusion characteristics
Blood flow (mL/100 mL min™"), 355+235 355£126 355£243 0.67 314+ 141 305£98 569+45.7 0.21
mean + SD
Blood volume (mL/100 mL), 84+64 86+48 84+64 0.85 91£74 53£28 99+54 0.16
mean = SD
Mean transit time (s), 142+45 124+38 144 +45 045 146+ 44 16341 11.8+40 0.30

mean + SD
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Table 1 Anatomical and clinical CT-perfusion and "®F-FDG-PET/CT characteristics of the histologic lung cancer subtypes (Continued)

'8F_FDG-PET/CT characteristics

SUVmay (Mean + SD) 117455

SUVimean @20 (Mean =+ SD) 72+33

TLG (median (range)) 120.0 (19 to 2621)

PET,o (cm?) (median (range)) 170 (1.2 to 315)

PET-positive lymph nodes 63%
Microvessel density® (1/mm?), 1499 +79.7
mean = SD

9.1£30
58+1.7
87.8 (7.8 t0 232)
126 (3.1 t0 39.6)
100%

120£56
74+35
1243 (1.9 to 2621)
182 (1.2 to 315)
59%
1499+79.7

0.35
043
0.39
0.58
0.14

11.3+49
69+29
116.2 (1.9 to 1,900)
18.1 (1.2 to 315)
64%
1558 +759

143£58
89+38
124.3 (30.5 to 1,555)
14.1 (34 t0 68.0)
67%
153.7+ 964

9.7+438
6.1+3.0
101.5 (33.2 to 2435)
18.2 (43 t0 67.7)
43%
771

0.28
0.29
0.88
093
0.59
0.50

'8F-FDG-PET/CT, '8F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography; CT, computed tomography; NSCLC, non-small cell lung carcinoma; PET, positron emission tomography; PET,q;,

metabolic tumor volume; SD, standard deviation; SCLC, small-cell lung carcinoma, SUVax, maximum standardized uptake value; SUV ,ean, mean standardized uptake value; TLG, total lesion glycolysis; UICC, Union for
International Cancer Control. 2Microvessel density data only available from 15 patients (15 NSCLC, thereof 9 adenocarcinoma, 5 squamous cell carcinoma, 1 large cell carcinoma). "Without the single

neuroendocrine tumor.
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Figure 2 Boxplots of CTP parameters, clinical tumor parameters, and 18E_FDG-PET/CT parameters. (A) BF in different tumor types. (B) BF
according to radial location of tumor. (C) BF according to tumor size. (D) BV according to T status. (E) BF according to PET positivity of regional
lymph nodes stratified by N status. PET-negative n =17, PET-positive/NO n =4, PET-positive/N1 to N3 n = 25. Circle depicts outlier. BF, blood flow;
BV, blood volume; CT, computed tomography; CTP, CT-perfusion; '8 F-FDG-PET/CT, 18F—ﬂuoro—2—deo><y—D—g\ucose positron emission tomography/
computed tomography; PET, positron emission tomography.

on the vertical (upper vs. lower lung) or radial location
(central vs. peripheral lung) (Figure 2B), or size (Figure 2C).
No significant difference was found concerning the T
status and M status (Figure 2D). The BV was signifi-
cantly different, depending on the N status, with higher
values obtained in NO and N2 tumors, and lower values
in N1 and N3 tumors (p = 0.005). The UICC stages yielded
no significant difference between the CT-perfusion
parameters. The tumors in patients displaying PET-
positive regional lymph node metastases had signifi-
cantly lower BF and BV (all tumors: p = 0.02; NSCLC:
p=0.01) than the tumors in patients with PET-negative
nodes (Figure 2E).

Correlation analysis

Based on the results of Spearman’s rank correlation coef-
ficient () analysis of the CT-perfusion parameters, *°F-
EDG-PET/CT parameters, MVD, and tumor size and
stage, the following correlations were found: In the LCC
group, strong inverse correlations between BF and

SUVnax and SUV ., are represented by a Spearman’s
correlation coefficient of -0.86 (p=0.01) each. BV
yielded a strong positive correlation with the T status of
LCC (r=0.79, p=0.03). MTT rendered a strong correl-
ation with the N status and the UICC stage in LCC (r =
091, p=0.005 r=0.81, p=0.03; respectively) and a
moderate correlation with UICC stage in SCC (r=0.32,
p=0.05). In the numerically largest NSCLC subgroup
AC, no correlation was found between the CT-perfusion
parameters and the other parameters. Besides, CT-
perfusion parameters did not yield a significant correl-
ation with MVD in any group.

Discussion

We evaluated the relationship of CTP and the '*F-FDG-
PET/CT parameters, and the possible additional value of
CTP in an initial staging setting in lung cancer. Up to
date, there is only little knowledge about these relation-
ships available in the literature. Our main result is that
CTP does not add significant information concerning



Table 2 CT-perfusion parameters by TNM status (seventh edition)

CT-perfusion parameters T status N status M status

All tumors (n = 46) T1(n=5) T2(n=29) T3 (n=6) T4(n=6) p NO(m=15) N1(n=10) N2 (n=9) N3 (n=12) p MO (n=28) M1(n=18) p
Blood flow (ML/100 mL min™"), mean+SD 321127 3824283 283+109 323+95 081 4564362 271+109 357+92 2974139 014 376+284 3224129 092
Blood volume (mL/100 mL), mean + SD 56£3.1 94+73 6.0 £ 45 84+44 026 113+89 47+28 105+49 63+27 0005 84+70 84+54 073
Mean transit time (s), mean + SD 144+26 13.6+48 148+42 159+£51 078 13559 14.7+29 15042 139+42 048 135+47 15241 0.39

NSCLC (n=41) T1(n=4) T2(n=27) T3 (n=5) T4 (n=5) p NO(m=14) N1(n=10) N2 (n=6) N3 (n=11) p MO (n=26) M1 (n=15) p
Blood flow (mL/100 mL min™"), mean+SD 320+ 147 3824293 306+104 283+109 096 4774367 2714109 349492 279+131 008 374+294 322+127 089
Blood volume (mL/100 mL), mean + SD 6.0£35 95+75 6.2+49 60+45 057 119£90 47+28 104+ 46 62+28 0.003 86+7.2 80+53 0.95
Mean transit time (s), mean £ SD 13.8+£26 13.8+4.7 155+43 166+54 065 136+6.1 147 +29 151 +5.1 14.7+36 0.62 13.7+46 156+43 030

CT, computed tomography; NSCLC, non-small cell lung carcinoma; SD, standard deviation.
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Table 3 CT-perfusion parameters by UICC stage (seventh edition) and PET positivity of lymph nodes

CT-perfusion parameters UICC stage PET-positive lymph nodes

All tumors (n =46) 1 (n=6) Il (n=10) Mmn=12) IV(n=18) p No (n=17) Yes (n=29) P
Blood flow (ML/100 mL min~"), mean+SD  300+178 420+444 378+130 3224129 061 4574336 295+120 0.02
Blood volume (mL/100 mL), mean + SD 73+6.1 75+44 97+£9.2 84+54 0.82 11.1+84 6.8+4.1 0.02
Mean transit time (s), mean + SD 128 +58 138+42 13.7+50 152+4.1 0.79 129+ 46 149+ 44 0.09

NSCLC (n=41) I (n=6) Il (n=9) @n=11) IV (n=15) p No (n=17) Yes (n=24) p
Blood flow (ML/100 mL min~"), mean+SD  300+178 430+470 378+130 3224129 070 457 +336 283115 0.01
Blood volume (mL/100 mL), mean + SD 73+x6.1 78+45 100£96 80x£53 0.84 11.1+£84 6.5+39 0.01
Mean transit time (s), mean + SD 128+58 135+43 143+46 156+43 0.72 129+46 154+43 0.04

CT, computed tomography; NSCLC, non-small cell lung carcinoma; PET, positron emission tomography; SD, standard deviation; UICC, Union for International

Cancer Control.

the staging of lung cancer. Only one questionable correl-
ation between FDG-positive lymph node metastases and
perfusion values, as well as several indicative correlations
for the small group of LCC, was found. Overall, CTP
does possibly reflect different pathophysiological path-
ways than "*F-FDG-PET/CT.

The introduction of combined functional imaging such
as PET/CT has changed the staging and therapy response
evaluation in lung cancer patients. While morphological
tumor assessment by CT provides information about
structure and extent, '*F-FDG-PET/CT facilitates the per-
ception of the metabolic activity. CT-perfusion imaging,
however, provides information about the vasculature of
tissue as expressed by, e. g., blood flow and blood volume.
The value of the combined assessment of tumor flow and
metabolism in terms of a flow-metabolic characterization
was shown to provide additional diagnostic information
for tumor grading and prediction of treatment response in
breast cancer, pancreatic cancer, and colorectal cancer
[20-26]. However, in our present study on lung cancer,
overall, only little additional significant information con-
cerning initial staging could be demonstrated.

Tumor type and perfusion-metabolism relationship

Knowledge of the relationship of tumor perfusion and
metabolism could provide new insights into its biological
and pathophysiological characteristics, perhaps more than
either method alone [27]. Data on the perfusion-metabol-
ism relationship in lung cancer is limited and somewhat
erratic. Most of the CTP literature on lung cancer does
not differentiate between the NSCLC subgroups, probably
due to small study cohorts, and only a few studies focus
on the perfusion-metabolism relationship. A recent study
by Sauter et al. discriminates between AC and SCC [16].
They showed that the CTP parameters are not different in
these two groups, which parallels our results and of the
previous [21]. However, they did not provide a correlation
analysis between the CTP and '"*F-FDG-PET/CT parame-
ters. Schmid-Bindert et al. found a strong direct correl-
ation between SUV,,., and maximum iodine attenuation

in dual-energy CT (DECT) in NSCLC [28], which is how-
ever not directly comparable with perfusion parameters.
Ippolito et al. discriminate a larger number of NSCLC
(n=29) and a very small number of SCLC (n=3) and
state that there is no significant difference in the CTP
parameters among those [29]. However, these numbers
are small, and a subanalysis for the NSCLC group is not
provided. In the present study, we obtained CTP values
similar to those obtained by Sauter et al., but in part very
different from those by Ippolito et al. (e. g, NSCLC:
mean BF 35.5, 35.8, and 111.6 mL/100 mL min~', mean
BV 84, 8.1, and 6.0 mL/100 mL (present study, Sauter
et al, Ippolito et al., respectively)) [16,29]. One reason
may be refraining from motion correction by Ippolito
et al. [29]. Motion leads to falsely high BF values at the
lung/tumor interface (see also ‘Reproducibility’ section
below). However, they performed a regression analysis for
the perfusion and metabolism parameters and stated a
weak but significant inverse linear relationship (+* = 0.21)
between the BF and SUV,,,« and a direct linear relation-
ship (* = 0.23) between the MTT and SUV,,,, in tumors
larger than 3 cm [29]. We found such an inverse correl-
ation between the BF and metabolism parameters SUV .
and SUVean only for the LCC subgroup (r=-0.86),
which might however be due to the rather small number
of LCC in our cohort. LCC are usually tumors of poor dif-
ferentiation and high malignant potential. They exhibit ag-
gressive biological features and poor survival rates. Such
tumors typically have partly hypoxic areas, and hypoxia
may be associated with FDG uptake and aggressiveness in
some malignant tumors [30]. Matched high glucose me-
tabolism with increased vascularity (coupling) represents a
different biological status as compared with mismatched
high metabolism and low vascularity, the latter possibly
indicating adaptation to hypoxia [31,32]. If the recruit-
ment of pathologic vessels is insufficient to sustain the
tumor’s energy needs, then finally necrosis may result, and
necrotic lung cancer is known to exhibit decreased per-
fusion [21]. For NSCLC subgroups other than LCC, such
associations could not be shown. Since in our study the
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patient number is higher than in the other studies
available in the literature and we could not demonstrate
resilient general trends in the NSCLC group, such rela-
tionships might be debatable.

It is known that motion has a considerable effect not
only on the CTP parameters, but also on the SUV. The
observed lack of correlations between the perfusion and
metabolism parameters in the majority of lesions could
partly be due to the absence of motion correction of the
PET images in our study.

In our entire study cohort, the tumors with PET-
positive lymph node metastases showed significantly
lower BF and BV than those without. This might be ex-
plained by necrotic areas in more aggressive or advanced
tumors that have already spread to the regional lymph
nodes. Such a possible correlation is partly supported by a
recent study in which an inverse correlation between BF
and SUV,,c., (r=-0.51) and BF and SUV,,, (r=-0.54)
was found in the mediastinal lymph nodes [15]. Yet, these
correlations were only observed for lymph nodes with a
SUV hax > 2.5, PET/CT and CT perfusion were not done
on the same day, and histopathological verification was in-
complete. What challenges such possible correlations in
our study is that the BF and BV of the few tumors with
‘false’ PET-negative nodes were not significantly different
from tumors with ‘true’ PET-negative nodes. On the other
hand, one large PET/CT study has shown that the FDG
uptake by the primary tumor is an independent predictor
of regional lymph node metastasis in patients with
NSCLC [33]. Based on the histopathological results of our
cohort, we can however not corroborate the presence of
necrosis in tumors with regional lymph node metastases
since such quantitative data was not acquired.

Tumor stage, size, and location

The clinical tumor stage (UICC), T, and N status did not
correlate with blood flow in the entire cohort (# = 46) or
in NSCLC (n=41). There were again only considerable
correlations between MTT and tumor stage in certain
subgroups such as SCC (n=9, UICC stage) and LCC
(n=7, N stage). However, those subgroups were the
smallest ones, and the actual MTT values were not
significantly different if stratified by UICC stage and
N stage.

The tumor size is one of the main determinants of the
tumor stage. In an early study employing the maximum
slope method in a mixed population of advanced NSCLC
and SCLC, the perfusion was higher in smaller tumors
[34]. For NSCLC in general, Miles et al. did not observe a
significant correlation between SUV and standardized
perfusion value (SPV; SPV =tissue perfusion/whole body
perfusion); however, smaller tumors (<4.5 cm?) exhibited
a strong correlation [27]. Yet, in a mixed group of nine
small (<3 cm?) dedifferentiated lung tumors, an inverse
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correlation between enhancement, being assessed with dy-
namic contrast-enhanced (DCE) CT, and lesion diameter
was observed [35]. Higher BV in tumors smaller than 3
cm was also found in a heterogeneous sample of periph-
eral lung cancer [36]. In a mixed cohort of mainly NSCLC,
tumors larger than 3 cm exhibited a borderline significant
tendency towards lower BF and BV, while SUV,,,, was not
different [29]. However, the numbers were distributed un-
evenly across the analyzed groups. The authors concluded
that larger and thus more aggressive tumors might have
lower perfusion [29]. In our opinion, this needs further
investigation since aggressive biological behavior is not
merely a reflection of size. In our (larger) study, we found
no significant differences in the CTP parameters between
smaller (<30 mm) and larger tumors (>30 mm). Tumor
size assessed in terms of diameter, according to RECIST
1.1, was also not correlated with the CTP or '*F-FDG-
PET/CT parameters, neither in all tumors nor in any
subgroup.

Gravity and patient position have an impact on lung
perfusion. Pulmonary perfusion is different when assessed
in the supine position as with CT, as opposed to the up-
right position, where there is three times more blood flow
in the lung bases than in the apices. Studies found differ-
ences in perfusion with higher values obtained in lower-
lobe tumors or higher perfusion in peripherally located
tumors [29,34], which was not the case in our study. In
the present study, no perfusion differences related to
tumor size and location could be substantiated, and no
significant information for staging could be demonstrated.

Microvessel density

Microvessel density in NSCLC is associated with distant
metastatic spread and poor survival [37]. In other tu-
mors, there is evidence that the degree of vascularization
decreases with the grade of differentiation [38]. Several
previous studies have shown that DCE measurements of
lung cancer correlate with the histopathological assess-
ment of tumor vascularization such as MVD [36,39,40].
The failure to demonstrate a relationship between CTP
parameters and MVD in the present study is likely due to
our study setting, as we covered tumors of any size rather
than focusing on small malignant nodules, which are
usually removed surgically and qualify for MVD analysis,
whereas larger tumors are often irradiated. Additionally,
the association between CTP and MVD might also de-
pend on the histopathological method used [41-44].

Reproducibility

The reproducibility, and thus reliability, of quantitative
whole lung tumor CTP was ascertained by Ng and et al.
in ten patients with advanced NSCLC [45]. It was fur-
thermore shown to improve with greater z-axis scan
coverage [46] and motion correction [17]. Both sufficient
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scan coverage (7 cm) and state-of-the-art motion correc-
tion were part of our study. In another study, the CTP
assessment was performed in breath-hold technique for
25 to 30 s [29]. In our opinion, the implementation of
motion correction is mandatory. First, in our experience,
there is a slight motion conceivable within the lung par-
enchyma even in so-called breath-hold, increasingly if
prolonged, which inevitably influences perfusion values.
Second, tumors located close to the heart are subject to
its movement anyhow. Third, most patients will instinct-
ively hold their breath in inspiration and thus perform a
Valsalva maneuver. This has an impact on lung perfu-
sion by increasing the intrathoracic pressure. Last, lung
cancer patients are sometimes limited in their capability
of breath-hold due to coexisting emphysema and also
due to compromise by the tumor itself. This allows only
short periods of breath-hold and may even result in
additional incorrect measurement due to possible gasp-
ing prior to the end of the measurement.

Limitations

The MVD analysis was only possible in one third of pa-
tients as the remaining patients did not qualify for surgery.
Quantitative histopathological data about the presence of
necrosis within tumors was not acquired. Most of the
TNM stages reported were clinical as opposed to patho-
logic. The number of LC and SCC was quite small, and
the results regarding these NSCLC subgroups should be
interpreted with caution. We also did not acquire motion-
corrected PET, which could have contributed to the lack
of correlations in the majority of tumors.

Conclusions

In the present study, CTP generated only little additional
information for the initial staging of lung cancer com-
pared with standard PET/CT. In lung cancer, there might
be lower tumor perfusion in patients with metastatic
lymph node spread. However, this relationship certainly
needs further investigation. The possible association of
CTP parameters with clinical tumor stage also needs con-
firmation from larger studies.
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